Biophysical Journal, Volume 116

Supplemental Information

KRAS Prenylation Is Required for Bivalent Binding with Calmodulin in a

Nucleotide-Independent Manner

Constance Agamasu, Rodolfo Ghirlando, Troy Taylor, Simon Messing, Timothy H. Tran, Lakshman Bindu, Marco Tonelli, Dwight V. Nissley, Frank McCormick, and Andrew G. Stephen Table S1: Characterization of components studied by sedimentation velocity

Table S2: Summary of binding parameters obtained of CaM binding to GDP-bound KRAS4bvariants via SV-AUC, SPR and ITC

Table S3. Summary of binding affinities obtained for CaM binding to various KRAS4b constructs via ITC

Figure S1. Unprenylated GDP and GNP-bound KRAS4b do not interact with CaM (A) Sedimentation velocity absorbance c(s) profiles obtained for individual CaM and KRAS4b variants at 70 μ M CaM (cyan) and ~10 μ M GDP and GNP-bound KRAS4b-FMe, KRAS4b 2-185 and KRAS4b 2-169. (B) Sedimentation velocity absorbance c(s) profiles for mixtures of 30 μ M CaM and 20 μ M GDP and GNP-bound KRAS4b constructs as indicated. Faster sedimenting species was only observed for CaM and GDP and GNP-bound KRAS4b-FMe. (C) ITC heat of dilution data acquired upon injection of buffer into 30 μ M KRAS4b-FMe and 1 mM CaM into buffer. (D) ITC data obtained for CaM (1 mM) titrated into GDP and GNP-bound KRAS4b 2-185 (30 μ M).

Figure S2. *Prenylated GDP and GNP-bound KRAS4b-FMe forms a 2:1 complexes with CaM.* Absorbance (top panel) and interference (bottom panel) sedimentation velocity c(s) profiles for the titration of (**A**) CaM into 6 μ M GDP-bound KRAS4b-FMe, CaM into 3 μ M GDP-biund KRAS4b-FMe, and GDP-bound KRAS4b-FMe into 6 μ M CaM, (**B**) CaM-C into 3 μ M GDP-bound KRAS4b-FMe and (**C**) CaM-N into 3 μ M GDP-bound KRAS4b-FMe at the concentrations indicated. The weighted-average sedimentation coefficient *S_w* used for analysis in Figure 2 is obtained by integration of the c(s) profiles shown.

Figure S3. *NMR data further supports that unprenylated GDP and GNP-bound KRAS4b do not interact with CaM.* 2D ¹H-¹⁵N HSQC of ¹⁵N-labeled GDP and GNP-bound KRAS4b2-185 at 50 μ M titrated with 500 μ M CaM. Again, no CSP or line broadening was observed between unprenylated KRAS4b and CaM.

Figure S4. *NMR data of GDP-bound KRAS4b-FMe binding to CaM-C and CaM-N.* (**A**)2D ¹H-¹⁵N HSQC of ¹⁵N-labeled CaM-N titrated with GDP-bound KRAS4b-FMe at a 1.5:1 ratio. (**B**) 2D ¹H-¹⁵N HSQC of ¹⁵N-labeled CaM-C titrated with GDP- bound KRAS4b-FMe at a 1.5:1 ratio. (**C-D**) A histogram of normalized ¹H-¹⁵N chemical shift changes vs. residue number calculated from the HSQC spectra for CaM-N and CaM-C upon addition of GDP-bound KRAS4b-FMe. (**E-F**) Cartoon representation of CaM structure (PDB ID: 3CLN) highlighting residues that exhibited substantial (>0.05 ppm) chemical shift changes for CaM-N(red) or CaM-C(magenta).

Figure S5. *NMR data further supports that unprenylated GDP and GNP-bound KRAS4b do not interact with CaM.* 2D 1 H- 15 N HSQC of 15 N-labeled CaM at 50 μ M titrated with 500 μ M upon titration of unprenylated KRAS4b into CaM.

Figure S6. *KSKTKC-FMe does not induce secondary structural rearrangements in CaM*. FarUV circular dichroism spectra obtained for CaM (magenta) and the KSKTKC-FMe: CaM complex(green).

Component	Concentration	$S_{20,w}(S)$	M (kDa)
	studied (µM)		
CaM	70	2.0	18
CaM-N	110	1.4	10
CaM-C	25	1.5	13
GDP KRAS4b-FMe	10	2.2	23
GNP KRAS4b-FMe	10	2.2	22
GDP KRAS4b 2-185	10	2.2	23
GNP KRAS4b 2-185	10	2.2	23
GDP KRAS4b 2-169	10	2.2	21
GNP KRAS4b 2-169	10	2.3	21
MSP1D1 POPC:POPS 70:30 Nanodisc	4.5	3.1	84

 Table S1: Characterization of components studied by sedimentation velocity.

Technique	Sample 1	Sample 2	Kd (µM)	ΔH (kcal/mol)	-T∆S (kcal/mol)	∆G (kcal/mol)
SV-AUC	CaM	KRAS4b-FMe	Co-Op*			
SV-AUC	CaM-C	KRAS4b-FMe	0.4 ± 0.1			
SV-AUC	CaM-N	KRAS4b-FMe	4 ± 1			
SPR	CaM	KRAS4b-FMe	0.4 ± 0.1			
SPR	CaM-C	KRAS4b-FMe	0.6 ± 0.1			
SPR	CaM-N	KRAS4b-FMe	3 ± 0.2			
ITC	CaM	KRAS4b-FMe	0.3 ± 0.1			
ITC	CaM-C	KRAS4b-FMe	0.5 ±0.1	-5.1 ± 0.3	-3.5	-8.6
ITC	CaM-N	KRAS4b-FMe	4 ± 1	-7.3 ± 0.5	-0.2	-7.5

Table S2: Summary of binding parameters obtained of CaM binding to GDP-bound KRAS4b variants via SV-AUC, SPR and ITC

Co-op* Data were modeled in terms of two non-symmetric sites with microscopic binding constants. The microscopic binding constants observed for binding to CaM-N and CaM-C were applied and fixed to obtain a favorable co-operative term.

Cell	Syringe	K d	
KRAS4b-FMe	CaM (120 µM)	0.3 μM ± 0.08 μM	
(44 µM)			
KRAS4b-FMe	CaM-C (300 µM)	$0.5 \ \mu M \ \pm 0.07 \ \mu M$	
(30 µM)			
KRAS4b-FMe	CaM-N (500 µM)	$4 \ \mu M \pm 1 \ \mu M$	
(30 µM)			
KRAS4b-Farnesyl (57 μM)	CaM (300 µM)	$2 \ \mu M \pm 0.2 \ \mu M$	
KRAS4b-2-180-AAAAC-	CaM (440 µM)	$10 \ \mu M \pm 1 \ \mu M$	
Farnesyl (48 µM)			
HVR-FMe	CaM (150 μM)	$0.3 \ \mu M \pm 0.06 \ \mu M$	
(50 µM)			
KSKTKC-FMe (50 µM)	CaM (130 µM)	$0.4 \ \mu M \ \pm 0.1 \ \mu M$	
KSKTKC-GMe (30 µM)	CaM (200 µM)	$3 \ \mu M \pm 0.01 \ \mu M$	
KSKTKC-PMe (30 µM)	CaM (800 µM)	$30 \ \mu M \pm 3 \ \mu M$	
GDP KRAS4b 2-185 (30	CaM (1 mM)	ND *	
μM)			
GNP KRAS4b 2-185 (30	CaM (1 mM)	ND *	
μM)			

Table S3: Summary of binding affinities obtained for CaM binding to various KRAS4b constructs via ITC

ND* No binding detected.

Figure S6

