Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Supporting Information

A rational quest for selectivity through precise ligand-positioning in the tandem DNA-catalysed Friedel-Crafts alkylation/ asymmetric protonation

Justine Mansot,^{‡,a} Sidonie Aubert,^{‡,b} Nicolas Duchemin,^b Jean-Jacques Vasseur,^a Stellios Arseniyadis,^{b,*} and Michael Smietana^{a,*}

^a Institut des biomolécules Max Mousseron, UMR 5287 CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France.

^b School of Biological and Chemical Sciences, Queen Mary University of London, Joseph Priestley Building, Mile End Road, London E1 4NS, UK.

[‡] These authors have equally contributed

Table of contents

I.	Ge	neral Information	.4
II.	Sy	nthesis of modified dmbipy and phosphoramidite	.5
III.	DN	IA sequences	10
a.	S	ynthesis	10
	1.	Post-synthetic approach	10
	2.	Phosphoramidite approach	10
b	. Н	PLC and Mass Analysis	10
	1.	ODN1	11
	2.	ODN2	11
	3.	ODN3	11
	4.	ODN4	11
	5.	ODN5	12
	1.	ODN5/ODN4	13
	2.	ODN1/ODN4	13
	3.	ODN2/ODN3	13
	4.	ODN3/ODN4	13
IV.	Fri	iedel-Crafts alkylation/protonation	14
a	S	ynthesis of starting materials	14
b	. P	reparation of racemic products	16
c.	P	rocedure of enantioselective Friedel-Crafts alkylation/protonation	16
	1.	Preparation of a 200 mM MES buffer (pH 5.0)	16
	2.	Preparation of a 0.90 mM Cu(NO ₃) ₂ .dmbipy stock solution	16
	3.	Preparation of a 1.00 mM Cu(NO ₃) ₂ stock solution	16
	4. app	General procedure A. Enantioselective Friedel-Crafts alkylation/protonation, supramolecul proach with st-DNA	ar 16
	5. app	General procedure B. Enantioselective Friedel-Crafts alkylation/protonation, supramolecul proach with ODN5/ODN4 duplex	ar 17
	6. app	General procedure C. Enantioselective Friedel-Crafts alkylation/protonation, covalent proach with ODN1/ODN4 duplex	18
	7. app	General procedure D. Enantioselective Friedel-Crafts alkylation/protonation, covalent proach with ODN2/ODN4 duplex	18

	8. General procedure E. Enantioselective Friedel-Crafts alkylation/protonation, covalent approach with ODN3/ODN4 duplex	. 19
d	. NMR description of racemate products, HPLC methods and results of enantioselective	
p	rotonation reactions	. 20
V.	NMR of compounds	.35
a	¹ H and ¹³ C NMR spectra for compound 3	. 35
b	¹ H and ¹³ NMR spectra of compound 4	. 36
c	¹ H and ¹³ C NMR spectra for compound 5	. 37
d	¹ H and ¹³ C NMR spectra for compound 6	. 38
e	¹ H and ¹³ C NMR spectra of compound 14	. 39
f.	¹ H, ¹³ C and ³¹ P NMR spectra of compound 15	. 40
g	. ¹ H and ¹³ C spectra of compound 18e	. 42
h	. ¹ H and ¹³ C NMR spectra of compound 18f	. 43
i.	¹ H, ¹³ C and ¹⁹ F NMR spectra of compound 18i	. 44
j.	¹ H and ¹³ C NMR spectra of compound 181	. 46
VI.	Results of catalysis : HPLC chromatograms	, 47
a	. HPLC chromatograms of compound 18a	. 47
b	. HPLC chromatograms of compound 18b	. 51
c	. HPLC chromatograms of compound 18c	. 55
d	. HPLC chromatograms of compound 18d	. 59
e	. HPLC chromatograms of compound 18e	. 63
f.	HPLC chromatograms of compound 18f	. 67
g	. HPLC chromatograms of compound 18g	. 71
h	. HPLC chromatograms of compound 18h	. 75
i.	HPLC chromatograms of compound 18i	. 79
j.	HPLC chromatograms of compound 18j	. 83
k	. HPLC chromatograms of compound 18k	. 87
1.	HPLC chromatograms of compound 181	. 91
n	n. HPLC chromatograms of compound 18m	. 95
n	. HPLC chromatograms of compound 18n	. 99
0	. HPLC chromatograms of compound 180	103

I. General Information

Pyridine, DIEA and diisopropylamine were distilled over calcium hydride. THF was distilled over sodium/benzophenone. All reactions were performed in anhydrous conditions under argon. 4,4'-Dimethyl-2,2'-bipyrine, 5-ethynyl-2'deoxyuridine, 2'-propargyl-deoxyuridine and 2,2'-anydrodeoxyuridine were purchased from Alfa and Carbosynth. Phosphoramidite precursors were purchased from Eurogenetech.

Thin-layer chromatographies (TLC) were performed on silica plate 60 F254 Merck and the different spots were revealed under λ illumination at 254 nm. Silica gel purifications were carried out with 0.040-0.063 mm silica from Merck.

NMR experiments were accomplished on a Bruker DRX 600 spectrometer, 400 spectrometer or 300 spectrometer at 20 °C in CDCl₃. The ¹H NMR spectra are described as follow: chemical shifts expressed in δ (ppm) values (part per million) and internal standard of residual CHCl₃ was fixed at 7.26 ppm. Multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, quint. = quintuplet, m = multiplet), coupling constant *J* (Hz) and integration.

The syntheses of the oligonucleotides were performed on solid support using an automated DNA synthesizer (Applied Biosystems 394). Crude oligonucleotides were analysed by RP-HPLC (Macherey-Nagel Nucleodur C-18, 100 Å, 8 x 125 mm, Buffer A: 50 mM TEAAc in 0.2% CH₃CN, Buffer B: 50 mM TEEAc in 80% CH₃CN, 2 mL/min flow rate, detection at 260 nm) and purified by flash chromatography (interchim column PF-15C18HQ-F0025, 15 mL/min flow rate, detection at 260 nm and λ scan 200-600 nm). Oligonucleotides were desalted using a dialysis membrane Float-A-Lyzer G2 Dialysis Device CE, Biotech CE, 0.5-1.0 kD MWCO, 1 mL, and transferred to a 2 mL Eppendorf-vial and lyophilized from water.

MALDI-TOF mass spectra were recorded on a Shimazu Alliance using 2,4,6-trihydroxyacetophenone as a saturated solution in a mixture of acetonitrile/0.1M ammonium citrate solution (1:1, v/v) for the matrix. Analytical samples were mixed with the matrix in a 1:5 (v/v) ratio, crystallized on a 100-well stainless steel plate and analysed.

Tm experiments were performed on a Varian Cary 300 Bio λ /Visible spectrometer by measuring absorbance at 260 nm. Oligonucleotides were diluted in 20 mM cacodylate buffer with 100 mM NaCl.

All the ees were determined by HPLC using a chiral column (Chiralpak IA and IB). The sign before the ee values is arbitrarily attributed.

II. Synthesis of modified dmbipy and phosphoramidite

4-Methyl-4'-ethyltosylate-2,2'-bipyridine (3)

Under argon, a round-bottom flask was charged with 4-methyl-4'-hydroxyethyl-2,2'-bipyridine **2** synthetized as described in literature¹ (400 mg, 1.87 mmol), pyridine (1.30 mL, 14.9 mmol) in anhydrous dichloromethane (16.0 mL). The reaction was stirred overnight and after completion monitored by TLC, the mixture was diluted in 15.0 mL of ether. The organic phase was washed with 10.0 mL of water and neutralised with 10.0 mL of saturated NaHCO₃ solution. The aqueous phase was extracted with ether (3 x 20.0 mL) and the resulting organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuum. The crude product was purified by silica gel chromatography (0-100% EtOAc, cyclohexane, 4% of Et₃N) to afford product **3** as a yellow oil with 57% yield (255 mg, 1.07 mmol) R_f 0.40 (Cyclohexane EtOAc 3:7 with 4% Et₃N). ¹H NMR (**300 MHz, CDCl**₃) δ 8.53 (t, J = 5.7 Hz, 2H), 8.24 (s, 1H), 8.15 (s, 1H), 7.71-7.61 (m, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.17 (dd, J = 5.0, 0.9 Hz, 1H), 7.10 (dd, J = 5.0, 1.7 Hz, 1H), 4.31 (t, J = 6.6 Hz, 2H), 3.03 (t, J = 6.6 Hz, 2H), 2.45 (s, 3H), 2.32 (s, 3H). ¹³C NMR (**75 MHz, CDCl**₃) δ 155.4, 154.8, 149.6, 149.3, 148.2, 147.0, 144.9, 132.6, 129.9, 128.9, 127.9, 126.1, 125.2, 124.7, 122.5, 121.8, 69.3, 34.9, 29.8, 21.6. HRMS-ESI m/z 369.1276 ([M+H]⁺ C₂₀H₂₁N₂O₃S calcd 369.1273).

4-Methyl-4'-azidoethyl-2,2'-bipyridine (4)

To a round-bottom flask filled with dry DMF (6.00 mL), was added 4-methyl-4'-ethyltosylate-2,2'bipyridine **3** (230 mg, 0.63 mmol) and sodium azide (49.0 mg, 0.75 mmol). The reaction was stirred for 2 h at 0 °C. After total consumption of the starting material, the mixture was diluted in EtOAc (15.0 mL), washed with water (10.0 mL) and with a saturated NaCl solution. The aqueous phase was extracted with EtOAc (3 x 15.0 mL) and the organic layers were dried over anhydrous Na₂SO₄ before evaporation of solvent. The crude material was purified by silica gel chromatography (Cyclohexane/EtOAc 0-100%, 4% of Et₃N) to afford product **4** as a yellow oil with 85% yield (127 mg, 0.53 mmol) $R_{\rm f}$ 0.40 (Cyclohexane EtOAc 8:2 with 4% Et₃N). ¹**H** NMR (300 MHz, CDCl₃) δ 8.57 (dd, J = 21.3, 4.5 Hz, 2H), 8.26 (d, J = 12.4 Hz, 2H), 7.16 (dd, J = 11.4, 4.6 Hz, 2H), 3.62 (t, J = 6.9 Hz, 2H), 2.97 (t, J = 7.0 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 156.6, 155.7, 149.4, 149.0, 148.4, 148.2, 125.0, 124.2, 122.2, 121.5, 51.4, 35.0, 21.3. HRMS-ESI *m*/*z* 240.1253 ([M+H]⁺ C₁₃H₁₄N₅ calcd 240.1249).

4-Methyl-4'-(4"-(trimethylsilyl)-but-3"-inyl)-2,2'-bipyridine (5)

To a solution of diisopropylamine (1.40 mL, 8.00 mmol) in dry THF (6.70 mL) was added dropwise a solution of *n*-BuLi (1.80 M solution in hexane, 1.70 mL, 3.00 mmol) and the reaction mixture was stirred for 30 min at -78 °C. Commercially available 2,2'-dimethyl-4,4'-bipyridine **1** (1.00 g, 5.5 mmol) in dry THF (40.0 mL) was added dropwise and the black mixture was stirred for another 2 h. Trimethylsilylpropargyl bromide (2.00 mL, 12.2 mmol) in dry THF (33.0 mL) was added dropwise and stirred for 1 h at -78 °C, and then allowed to reach room temperature in 1 h. The colour of anion disappeared, and the mixture turned yellow. The excess LDA was quenched with water

(20.0 mL) and the aqueous phase was extracted with EtOAc (3 × 30.0 ml). The organics layers were washed with brine (10.0 mL) and dried over magnesium sulphate. Evaporation of the solvent gave an orange oil which was purified on reverse phase silica gel column chromatography with water/acetonitrile (0-100%) to afford **5** as a white powder with 46% yield (736 mg, 2.50 mmol). $R_{\rm f}$ 0.20 (H₂O Acetonitrile 5:5). ¹H NMR (300 MHz, CDCl₃) δ 8.54 (dd, J = 15.1, 5.0 Hz, 2H), 8.24 (d, J = 16.2 Hz, 2H), 7.26-7.10 (m, 2H), 2.89 (t, J = 7.3 Hz, 2H), 2.57 (t, J = 7.3 Hz, 2H), 2.42 (s, 3H), 0.11 (m, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 156.3, 156.0, 150.4, 149.0, 149.0, 148.2, 124.7, 124.1, 122.0, 121.5, 105.6, 86.2, 53.5, 34.4, 21.2, 21.1, 0.1. HRMS-ESI m/z 295.1630 ([M+H]⁺ C₁₈H₂₄N₂Si calcd 295.1631).

4-Methyl-4'-(but-3"-inyl)-2,2'-bipyridine (6)

To a stirred solution of trimethylsilyl-protected compound **5** (700 mg, 2.37 mmol) in CH₃OH/THF (1:1) was added KF (700 mg, 12.0 mmol) as a solid. After complete consumption of the starting material (ca. 20 h), the solution was concentrated in vacuum. Dichloromethane was added to the white crude product and the resulting solution was filtered through silica gel. The solvent was evaporated to afford compound **6** as a white solid powder with 98% yield (515 mg, 2.32 mmol) R_f 0.39 (Cyclohexane/EtOAc = 9:1 with 4% Et₃N). ¹H NMR (300 MHz, CDCl₃) δ 8.57 (dd, *J* = 16.5, 5.0 Hz, 2H), 8.27 (d, *J* = 12.8 Hz, 2H), 7.23-7.14 (m, 2H), 2.93 (t, *J* = 7.4 Hz, 2H), 2.58 (td, *J* = 7.4, 2.6 Hz, 2H), 2.44 (s, 3H), 1.98 (t, *J* = 2.6 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 156.3, 155.8, 150.3, 149.2, 148.9, 148.4, 124.8, 123.9, 122.2, 121.3, 82.9, 69.6, 34.3, 21.3, 19.5. HRMS-ESI *m*/*z* 223.1235 ([M+H]⁺ C₁₅H₁₅N₂ calcd 223.1235).

5'-O-(4,4'-Dimethoxytrityl)-2'-Deoxy-2'-(4'-ethyl-(4-méthyl-2,2'-bipyririne)-1,2,3-triazol-1-yl) uridine (14)

In a degassed solution of THF:H₂O:pyridine (6:3:2, 20.0 mL) under argon, 2'-Azido-5'-O-(4,4'dimethoxytrityl)-2'-deoxyuridine 13 synthetized as described in the literature (990 mg, 1.73 mmol), and 4-methyl-4'-(4''-(trimethylsilyl)-but-3"-inyl)-2.2'-bipyridine 6 (500 mg, 2.25 mmol) were dissolved. A degassed solution of sodium ascorbate (139 mg, 0.69 mmol) and CuSO₄·5H₂O (86 mg, 0.35 mmol) in water (3.00 mL) was added, and the reaction mixture was stirred at room temperature for 30 min. The reaction mixture was concentrated to 2 mL and then diluted with CH₂Cl₂ (40.0 mL), and the mixture was washed with a saturated aqueous solution of NaHCO₃ (20.0 mL). The aqueous phase was extracted with CH_2Cl_2 (3 × 20.0 mL) and the combined organic phases were dried under anhydrous Na₂SO₄. The resulting organic phase was concentrated to obtain a crude yellow oil which was purified by silica gel column chromatography: Cyclohexane-EtOAc (0-100%) and EtOAc-MeOH (0-50%) with 4% Et₃N to afford the product 14 as a yellow foam with 69% yield (882 mg, 1.19 mmol). R_f 0.30 (EtOAc with 4% Et₃N). ¹H NMR (300 MHz, CDCl₃) δ 8.57 (d, J = 4.9 Hz, 1H), 8.25-8.09 (m, 2H), 7.75 (d, J = 8.2 Hz, 1H), 7.67 (s, 1H), 7.47 (s, 1H), 7.40 (d, J = 7.2 Hz, 2H), 7.35-7.17 (m, 11H), 7.03 (d, J = 4.6 Hz, 1H), 6.84 (d, J = 8.6 Hz, 4H), 6.58 (d, J = 7.4 Hz, 1H), 5.45 (d, *J* = 8.2 Hz, 1H), 5.36-5.19 (m, 1H), 4.66-4.50 (m, 1H), 4.43 (d, *J* = 2.8 Hz, 1H), 3.78 (s, 6H), 3.56 (qd, J = 11.0, 2.8 Hz, 2H), 3.32-2.87 (m, 4H), 2.43 (s, 3H), 2.00 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.5, 158.9, 156.3, 155.1, 150.8, 150.3, 149.6, 149.4, 147.9, 145.8, 144.2, 139.3, 135.2, 135.1, 130.2, 128.2, 127.3, 124.9, 124.6, 123.5, 123.5, 113.5, 103.4, 87.5, 85.6, 71.0, 65.9, 63.0, 55.4, 35.6, 34.6, 29.8, 26.9, 21.3, 14.9. **HRMS-ESI** m/z 794.3303 ([M+H]⁺ C₄₅H₄₅N₇O₇ calcd 794.3302).

3'-O-(2-Cyanoethoxy(diisopropylamino)phosphinyl))-5'-O-(4,4'-dimethoxytrityl)-2'-Deoxy-2'-(4' -ethyl-(4-méthyl-2,2'-bipyririne)-1,2,3-triazol-1-yl)uridine (15)

Under argon, diisopropylethylamine (0.70 mL, 3.21 mmol) was added to a solution of 14 (850 mg, 1.07 mmol) in dry CH₂Cl₂ (20.0 mL). Then 2-cyanoethyl-N,N-diisopropylchlorophosphoramidite (954 mg, 4.28 mmol) was added. After stirring for 2 h at room temperature, EtOAc previously washed with saturated aqueous NaHCO₃ solution was added (50.0 mL) and the reaction mixture was washed with 30.0 mL of solution NaCl/NaHCO₃ (1/1 v/v). The aqueous phase was extracted with EtOAc (3 x 20.0 mL) and the organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography with cyclohexane-EtOAc (0-100%) and EtOAc-MeOH (0-50%) containing 10% Et₃N. The desired phosphoramidite 15 was obtained as white foam with 84% yield (883 mg, 0.89 mmol). $R_{\rm f} = 0.45$ (4% MeOH in EtOAc with adding of 10% Et₃N). ¹H NMR (300 MHz, CDCl₃) & 8.64-8.45 (m, 2H), 8.31-8.15 (m, 2H), 7.89 (dd, J = 42.0, 8.2 Hz, 1H), 7.60 (s, 1H), 7.42 (d, J = 7.8 Hz, 2H), 7.37-7.20 (m, 9H), 7.16 (dd, J = 17.4, 4.1 Hz, 2H), 6.85 (t, J = 6.7 Hz, 4H), 6.47 (dd, J = 41.6, 5.1 Hz, 1H), 5.64-5.25 (m, 2H), 5.03-4.50 (m, 2H), 3.79 (d, J = 2.7 Hz, 6H), 3.75-3.14 (m, 7H), 3.14-3.00 (m, 6H), 2.59 (t, J = 5.9 Hz, 1H), 2.43 (s, 3H), 2.06-1.93 (m, 7H), 1.39-1.21 (m, 6H), 1.17-0.97 (m, 7H), 0.90 (dd, J = 13.3, 6.7 Hz, 6H). ³¹P NMR (121 MHz, CDCl₃) δ 151.57, 150.39. ¹³C NMR (126 MHz, CDCl₃) δ 175.1, 163.2, 162.7, 158.9, 158.8, 158.8, 156.4, 156.0, 156.0, 151.2, 151.2, 150.4, 150.3, 149.3, 149.3, 149.0, 148.3, 146.4, 146.0, 144.2, 144.1, 139.7, 139.2, 135.2, 135.0, 130.3, 130.2, 128.3, 128.2, 128.1, 127.4, 127.2, 124.8, 124.0, 123.9, 123.6, 122.6, 122.3, 122.2, 121.4, 121.4, 118.0, 117.4, 113.5, 113.4, 103.3, 102.6, 88.1, 87.5, 87.2, 85.8, 84.8, 72.6, 72.5, 70.9, 70.7, 66.2, 62.4, 60.8, 58.1, 57.9, 57.9, 57.8, 55.4, 55.3, 46.8, 46.8, 45.5, 43.3, 43.3, 35.2, 35.0, 29.8, 26.6, 26.4, 26.4, 24.6, 24.5, 24.4, 24.4, 23.0, 22.6, 21.6, 21.3, 20.6, 20.5, 20.4, 20.3, 19.3, 19.3, 14.9, 8.6, 2.0. HRMS-ESI m/z 994.4381 ([M+H]+ C₅₄H₆₁N₉O₈P calcd 994.4381).

III. DNA sequences

a. Synthesis

1. Post-synthetic approach

Commercial phosphoramidites **7** and **10** were incorporated with 5 min time coupling (0.1 M) to synthetize **ODN1** and **ODN2**. After synthesis of these modified oligonucleotide bearing an alkyne function, CPG beads were washed with a 0.2 M solution of sodium bisulfite (3 x 1 mL), water (3 x 2 mL), anhydrous acetonitrile $(3 \times 2 \text{ mL})$ and then dried by nitrogen flushing. To the solid-supported oligonucleotide (1 µmol) were added azido dmbipy **4** (2 equiv, 2 µmol, 20 µL of a 0.1 M solution in dioxane), freshly prepared CuSO₄ (1 equiv, 1 µmol, 25 µL of a 0.04 M solution in degassed H₂O), freshly prepared sodium ascorbate (5 equiv, 5 µmol, 50 µL of a 0.1 M solution in degassed H₂O), THPTA (3 equiv, 3 µmol, 30 µL of a 0.1 M solution), and dioxane (20 µL). The resulting preparation was treated with microwave for 1h30 in a sealed vessel. The solution was removed by filtration, and the CPG beads were washed with dioxane, water, saturated EDTA acid solution, water, and acetonitrile (2 mL each).

2. Phosphoramidite approach

Commercial phosphoramidites **7** and **10** were incorporated with 5 min simple coupling (0.1 M) to synthetize **ODN1** and **ODN2**.

Modified phosphoramidite **15** was incorporated with $2 \ge 20$ min time coupling (0.2M) to synthesize **ODN3**.

Entry	Name	Calcd	Found
1	ODN1	3880.81	3880.26
2	ODN2	3910.29	3910.45
3	ODN3	3880.81	3881.22
4	ODN4	3661.37	3661.93
5	ODN5	3630.13	3630.42

b. HPLC and Mass Analysis

3. ODN3

5. *ODN5*

Melting temperature c.

ODN5/ODN4 1.

ODN1/ODN4 2.

3. ODN2/ODN3

4. ODN3/ODN4

g)

0,12 0,1

0,04 0,02

20 40 60 Temperature (°C) 80

o

IV. Friedel-Crafts alkylation/protonation

a. Synthesis of starting materials

2-Methyl-1-(thiazol-2-yl)prop-2-en-1-ol

2-(Trimethysilyl)triazole (1.60 mL, 10.0 mmol, 1.00 equiv.) and methacrolein (0.82 mL, 10.0 mmol, 1.00 equiv.) were stirred at room temperature for 4 h. The mixture was then diluted in THF (200 mL) and tetrabutylammonium fluoride solution 1.0 M in THF (10.0 mL, 10.0 mmol, 1.00 equiv.) was added. After additional stirring for 1 h, the solvent was removed under vacuum and the crude residue was dissolved in EtOAc and washed with a saturated aqueous solution of NaHCO₃. The crude reaction mixture was purified by flash column chromatography over silica gel (PE/EtOAc, from 100:0 to 80:20) to afford the desired alcohol as a yellow oil, with 50% yield (776 mg, 5.00 mmol). ¹H NMR and ¹³C NMR spectra matched those reported in the literature.³

2-Methyl-1-(thiazol-2-yl)prop-2-en-1-one (16)

2-Methyl-1-(thiazol-2-yl)prop-2-en-1-ol (100 mg, 0.64 mmol, 1.00 equiv.) was dissolved in dichloromethane (3.50 mL) and MnO_2 (576 mg, 6.40 mmol, 10.0 equiv.) was added to the solution. The mixture was stirred at room temperature for 1.5 h. After completion of the reaction monitored by TLC (PE/EtOAc, 70:30), the crude was filtered over Celite[®] and the solvent was removed under vacuum. The product was obtained as colourless oil with 87% yield (85.3 mg, 0.56 mmol) and was used on the same day without further purification. ¹H NMR and ¹³C NMR spectra matched those reported in the literature.³

5-(Piperidin-1-yl)-1*H*-indole (17m)

In an oven-dried tube, Pd_2dba_3 (9.10 mg, 0.01 mmol, 1.00 mol%), 2-diclyclohexylphosphino-2'-(*N*,*N*-dimethylamino)biphenyl (9.40 mg, 0.024 mmol, 2.40 mol%) and 5-bromoindole (196 mg, 1.00 mmol, 1.00 equiv.) were dissolved in THF (1.00 mL). LiHMDS solution 1.0 M in THF (2.20 mL, 2.20 mmol, 2.20 equiv.) and morpholine (105 µL, 1.20 mmol, 1.20 equiv.) were slowly added to the solution, which was stirred at 65 °C overnight. After cooling down at room temperature, HCl 1M (2.00 mL) was added and the mixture was stirred for additional 15 min. The crude was diluted with a saturated aqueous solution of NaHCO₃, and extracted with EtOAc. The combined organic phases were washed with brine, dried over MgSO₄ and concentrated under vacuum. The crude was purified by flash column chromatography over silica gel (PE/EtOAc, from 100:0 to 125:75) to afford the desired compound as a brown oil with 75% yield (150 mg, 0.75 mmol). ¹H NMR and ¹³C NMR spectra matched those reported in the literature.³

4-(1*H*-Indol-5-yl)morpholine (17n)

In an oven-dried tube, Pd_2dba_3 (9.10 mg, 0.01 mmol, 1.00 mol%), 2-diclyclohexylphosphino-2'-(*N*,*N*-dimethylamino)biphenyl (9.40 mg, 0.024 mmol, 2.40 mol%) and 5-bromoindole (196 mg, 1.00 mmol, 1.00 equiv.) were dissolved in THF (1.00 mL). LiHMDS solution 1.0 M in THF (2.20 mL, 2.20 mmol, 2.20 equiv.) and morpholine (105 μ L, 1.20 mmol, 1.20 equiv.) were slowly added to the solution, which was stirred at 65 °C overnight. After cooling down at room temperature, HCl 1M (2.00 mL) was added and the mixture was stirred for additional 15 min. The crude was diluted with a saturated aqueous solution of NaHCO₃, and extracted with EtOAc. The combined organic phases were washed with brine, dried over MgSO₄ and concentrated under vacuum. The crude residue was purified by flash column chromatography over silica gel (PE/EtOAc, from 100:0 to 125:75) to afford the desired compound as a brown oil with 70% yield (142 mg, 0.70 mmol). ¹H NMR and ¹³C NMR spectra matched those reported in the literature.⁴

b. Preparation of racemic products

In an oven-dried tube, $Cu(NO_3)_2.3H_2O$ (6.30 mg, 0.026 mmol, 10 mol%) and 4,4'-dimethyl-2,2'-bipyridyl (dmbipy, 5.70 mg, 0.03 mmol, 12 mol%) were dissolved in acetonitrile (2.00 mL). The mixture was stirred for 10 min and a solution of enone (**16**) (40.0 mg, 0.26 mmol, 1.00 equiv.) and the desired indole (0.39 mmol, 1.50 equiv.) in acetonitrile (2.00 mL) was added. The mixture was stirred at room temperature for 3 d. The solvent was removed under vacuum and the crude residue was purified by flash column chromatography over silica gel (*n*-Hexanes/EtOAc) to afford the desired compound.

c. Procedure of enantioselective Friedel-Crafts alkylation/protonation

1. Preparation of a 200 mM MES buffer (pH 5.0)

3-(N-Morpholino)ethanesulfonic acid (2.13 g, 10.0 mmol) was dissolved in Milli-Q H₂O (40.0 mL). The pH was adjusted to 5.0 using a pH meter with a NaOH solution 0.1 M. The volume was finally adjusted with MilliQ-H₂O to 50 mL.

2. Preparation of a 0.90 mM Cu(NO₃)₂.dmbipy stock solution

Cu(NO₃)₂•3H₂O (4.80 mg, 0.02 mmol, 1.00 equiv.) and 4,4'-dimethyl-2,2'-bipyridyl (dmbipy, 4.40 mg, 0.024 mmol, 1.20 equiv.) were dissolved in 22.2 mL of Milli-Q H₂O. The mixture was stirred at room temperature for 5 h and used in the next step without further purification.

3. Preparation of a 1.00 mM Cu(NO₃)₂ stock solution

 $Cu(NO_3)_2 \cdot 3H_2O$ (4.80 mg, 0.02 mmol, 1.00 equiv.) was dissolved in 20.0 mL of Milli-Q H₂O. The mixture was stirred at room temperature for 1 h and used the next day.

4. General procedure A. Enantioselective Friedel-Crafts alkylation/protonation, supramolecular approach with st-DNA

St-DNA solution (29.0 μ L, stock solution 4.5 mg/mL or 6.92 mM (bp) in Milli-Q H₂O, 2 mM final concentration) and Milli-Q H₂O (23.7 μ L) were successively added to a 500 μ L Eppendorf tube. The reaction mixture was briefly mixed. MES buffer solution (10.0 μ L, stock solution 200 mM in Milli-Q

H₂O, pH 5.0, 1/10 V_{tot}) and Cu(NO₃)₂.dmbipy solution (33.3 μ L, stock solution 0.90 mM in Milli-Q H₂O prepared 24 h in advance, 30.0 mol%) were then added. The resulting mixture was stirred at 19 °C for 20 min and frozen at -20 °C for 30 min. Freshly prepared enone (**16**) (2.00 μ L, stock solution 0.05 M in DMSO, 0.10 μ mol, 1.00 equiv.) was added and the mixture was frozen again at -20 °C for 30 min. Desired indole (2.00 μ L, stock solution 0.05 M in DMSO, 0.10 μ mol, 1.00 equiv.) was finally added in a cold room. The resulting solution was stirred at 4 °C for 3 d in a thermoshaker placed in a cold room. The mixture was then transferred into 1.5 mL Eppendorf tube. The initial Eppendorf tube was rinsed with H₂O (100 μ L) and diethyl ether (100 μ L). Additional diethyl ether (400 μ L) was finally added. After stirring, the tube was placed in dry ice to freeze H₂O. The etheral phase was poured into a new 1.5 mL Eppendorf tube. The process was repeated twice (2 x 500 μ L diethyl ether). After evaporation of diethyl ether, the sample was dissolved in *i*-PrOH (2 x 50 μ L), transferred in an HPLC mini vial and injected to measure both the conversion and the *ee*.

5. General procedure B. Enantioselective Friedel-Crafts alkylation/protonation, supramolecular approach with ODN5/ODN4 duplex.

Strand solution **ODN5** (21.8 µL, stock solution 1838 nmol/mL in Milli-Q H₂O, 40.0 mol%), counter strand solution **ODN4** (15.4 µL stock solution 2599 nmol/mL in Milli-Q H₂O, 40.0 mol%) and Milli-O H₂O (15.5 μ L) were successively added to a 500 μ L Eppendorf tube. The reaction mixture was briefly mixed, heated at 90 °C for 5 min and allowed to cool down at room temperature. MES buffer solution (10.0 µL, stock solution 200 mM in Milli-Q H₂O, pH 5.0, 1/10 V_{tot}) and Cu(NO₃)₂.dmbipy solution (33.3 µL, stock solution 0.90 mM in Milli-Q H₂O prepared 24 h in advance, 30.0 mol%) were then added. The resulting mixture was stirred at 19 °C for 20 min and frozen at -20 °C for 30 min. Freshly prepared enone (16) (2.00 µL, stock solution 0.05 M in DMSO, 0.10 µmol, 1.00 equiv.) was added and the mixture was frozen again at -20 °C for 30 min. Desired indole (2.00 µL, stock solution 0.05 M in DMSO, 0.10 µmol, 1.00 equiv.) was finally added in a cold room. The resulting solution was stirred at 4 °C for 3 d in a thermoshaker placed in a cold room. The mixture was then transferred into 1.5 mL Eppendorf tube. The initial Eppendorf tube was rinsed with H_2O (100 µL) and diethyl ether (100 µL). Additional diethyl ether (400 µL) was finally added. After stirring, the tube was placed in dry ice to freeze H₂O. The etheral phase was poured into a new 1.5 mL Eppendorf tube. The process was repeated twice (2 x 500 μ L diethyl ether). After evaporation of diethyl ether, the sample was dissolved in *i*-PrOH (2 x 50 μ L), transferred in an HPLC mini vial and injected to measure both the conversion and the ee.

6. General procedure C. Enantioselective Friedel-Crafts alkylation/protonation, covalent approach with ODN1/ODN4 duplex.

Strand solution **ODN1** (18.7 µL, stock solution 2136 nmol/mL in Milli-Q H₂O, 40.0 mol%), counter strand solution ODN4 (15.4 µL stock solution 2599 nmol/mL in Milli-Q H₂O, 40.0 mol%) and Milli-Q H₂O (21.9 µL) were successively added to a 500 µL Eppendorf tube. The reaction mixture was briefly mixed, heated at 90 °C for 5 min and allowed to cool down at room temperature. MES buffer solution (10.0 μL, stock solution 200 mM in Milli-Q H₂O, pH 5.0, 1/10 V_{tot}) and Cu(NO₃)₂ solution (30.0 µL, stock solution 1.00 mM in Milli-Q H₂O, 30.0 mol%) were then added. The resulting mixture was stirred at 19 °C for 20 min and frozen at -20 °C for 30 min. Freshly prepared enone (16) (2.00 µL, stock solution 0.05 M in DMSO, 0.10 µmol, 1.00 equiv.) was added and the mixture was frozen again at -20 °C for 30 min. Desired indole (2.00 µL, stock solution 0.05 M in DMSO, 0.10 μ mol, 1.00 equiv.) was finally added in a cold room. The resulting solution was stirred at 4 °C for 3 d in a thermoshaker placed in a cold room. The mixture was then transferred into 1.5 mL Eppendorf tube. The initial Eppendorf tube was rinsed with H₂O (100 μ L) and diethyl ether (100 μ L). Additional diethyl ether (400 μ L) was finally added. After stirring, the tube was placed in dry ice to freeze H₂O. The etheral phase was poured into a new 1.5 mL Eppendorf tube. The process was repeated twice $(2 \times 500 \ \mu L \text{ diethyl ether})$. After evaporation of diethyl ether, the sample was dissolved in *i*-PrOH (2 x 50 µL), transferred in an HPLC mini vial and injected to measure both the conversion and the ee.

7. General procedure D. Enantioselective Friedel-Crafts alkylation/protonation, covalent approach with ODN2/ODN4 duplex.

Strand solution **ODN2** (34.7 μ L, stock solution 1153 nmol/mL in Milli-Q H₂O, 40.0 mol%), counter strand solution **ODN4** (15.4 μ L stock solution 2599 nmol/mL in Milli-Q H₂O, 40.0 mol%) and Milli-Q H₂O (5.90 μ L) were successively added to a 500 μ L Eppendorf tube. The reaction mixture was briefly mixed, heated at 90 °C for 5 min and allowed to cool down at room temperature. MES buffer solution (10.0 μ L, stock solution 200 mM in Milli-Q H₂O, pH 5.0, 1/10 V_{tot}) and Cu(NO₃)₂ solution (30.0 μ L, stock solution 1.00 mM in Milli-Q H₂O, 30.0 mol%) were then added. The resulting mixture was stirred at 19 °C for 20 min and frozen at -20 °C for 30 min. Freshly prepared enone (**16**) (2.00 μ L, stock solution 0.05 M in DMSO, 0.10 μ mol, 1.00 equiv.) was finally added in a cold room. The resulting solution was stirred at 4 °C for 3 d in a thermoshaker placed in a cold room. The mixture was then transferred into 1.5 mL Eppendorf tube. The initial Eppendorf tube was rinsed with H₂O (100 μ L) and diethyl ether (100 μ L). Additional diethyl ether (400 μ L) was finally added. After stirring, the tube was placed in dry ice to freeze H₂O.

The etheral phase was poured into a new 1.5 mL Eppendorf tube. The process was repeated twice (2 x 500 μ L diethyl ether). After evaporation of diethyl ether, the sample was dissolved in *i*-PrOH (2 x 50 μ L), transferred in an HPLC mini vial and injected to measure both the conversion and the *ee*.

8. General procedure E. Enantioselective Friedel-Crafts alkylation/protonation, covalent approach with ODN3/ODN4 duplex.

Strand solution **ODN3** (50.2 µL, stock solution 797 nmol/mL in Milli-Q H₂O, 40.0 mol%) and counter strand solution **ODN4** (15.4 µL stock solution 2599 nmol/mL in Milli-Q H₂O, 40.0 mol%) successively added to a 500 µL Eppendorf tube. The reaction mixture was briefly mixed, heated at 90 °C for 5 min and allowed to cool down at room temperature. MES buffer solution (10.0 µL, stock solution 200 mM in Milli-Q H₂O, pH 5.0, $1/10 V_{tot}$) and Cu(NO₃)₂ solution (30.0 µL, stock solution 1.00 mM in Milli-Q H₂O, 30.0 mol%) were then added. The resulting mixture was stirred at 19 °C for 20 min and frozen at -20 °C for 30 min. Freshly prepared enone (16) (2.00 µL, stock solution 0.05 M in DMSO, 0.10 µmol, 1.00 equiv.) was added and the mixture was frozen again at -20 °C for 30 min. Desired indole (2.00 µL, stock solution 0.05 M in DMSO, 0.10 µmol, 1.00 equiv.) was finally added in a cold room. The resulting solution was stirred at 4 °C for 3 d in a thermoshaker placed in a cold room. The mixture was then transferred into 1.5 mL Eppendorf tube. The initial Eppendorf tube was rinsed with H₂O (100 μ L) and diethyl ether (100 μ L). Additional diethyl ether (400 μ L) was finally added. After stirring, the tube was placed in dry ice to freeze H₂O. The etheral phase was poured into a new 1.5 mL Eppendorf tube. The process was repeated twice (2 x 500 µL diethyl ether). After evaporation of diethyl ether, the sample was dissolved in *i*-PrOH (2 x 50 µL), transferred in an HPLC mini vial and injected to measure both the conversion and the ee.

- d. NMR description of racemate products, HPLC methods and results of enantioselective protonation reactions
- 3-(1H-Indol-3-yl)-2-methyl-1-(thiazol-2-yl)propan-1-one (18a)

¹H NMR and ¹³C NMR spectra matched those reported in the literature.³

HPLC: Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3, 1 mL/min, λ = 280 nm, t_R = 44.430 min and t_R = 53.322 min.

Entry	General procedure	Sequences	Indole/Products ^a	ee (%) ^a
1	А	st-DNA	5:95	(+) 21
2	В	ODN5/ODN4	13 : 87	(+) 40
3	С	ODN1/ODN4	70:30	(-) 20
4	D	ODN2/ODN4	24 : 76	(-) 80
5	Е	ODN3/ODN4	70 : 30	(+) 7

3-(7-Methoxy-1*H*-indol-3-yl)-2-methyl-1-(thiazol-2-yl)propan-1-one (18b)

¹H NMR and ¹³C NMR spectra matched those reported in the literature.³

HPLC: Chiralpak IB column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 23.083 min and t_R = 27.820 min.

Entry	General procedure	Sequences	Indole/Products ^a	ee (%) ^a
1	А	st-DNA	4:96	(+) 17
2	В	ODN5/ODN4	20:80	(+) 38
3	С	ODN1/ODN4	48 : 52	(-) 12
4	D	ODN2/ODN4	22:78	(-) 86
5	Е	ODN3/ODN4	68 : 32	(-) 29

3-(6-Methoxy-1*H*-indol-3-yl)-2-methyl-1-(thiazol-2-yl)propan-1-one (18c)

¹H NMR and ¹³C NMR spectra matched those reported in the literature.³

HPLC: Chiralpak IA column, 100 bar, T = 25 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 33.767 min and t_R = 52.823 min.

Entry	General procedure	Sequences	Indole/Products ^a	ee (%) ^a
1	А	st-DNA	12:88	(+) 29
2	В	ODN5/ODN4	35 : 65	(+) 5
3	С	ODN1/ODN4	56 : 44	(–) 16
4	D	ODN2/ODN4	36 : 64	(-) 86
5	E	ODN3/ODN4	79:21	(-) 19

3-(5-Methoxy-1*H*-indol-3-yl)-2-methyl-1-(thiazol-2-yl)propan-1-one (18d)

¹H NMR and ¹³C NMR spectra matched those reported in the literature.³

HPLC: Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 24.167 min and t_R = 28.463 min.

Entry	General procedure	Sequences	Indole/Products ^a	ee (%) ^a
1	А	st-DNA	17:83	(+) 43
2	В	ODN5/ODN4	1:99	(+) 41
3	С	ODN1/ODN4	22:78	(–) 6
4	D	ODN2/ODN4	15:85	(-) 74
5	Е	ODN3/ODN4	35 : 65	0

2-Methyl-3-(7-methyl-1*H*-indol-3-yl)-1-(thiazol-2-yl)propan-1-one (18e)

The racemic was isolated as a slightly yellow oil. $R_f = 0.59$ (PE/EtOAc 7:3). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 3.0 Hz, 1H), 7.92 (br, *-NH*), 7.63 (d, J = 3.0 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 7.02-6.97 (m, 2H), 4.30-4.21 (m, 1H), 3.40 (dd, J = 14.4, 6.3 Hz, 1H), 2.90 (dd, J = 14.4, 7.9 Hz, 1H), 2.46 (s, 3H), 1.31 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.5, 167.1, 144.8, 135.9, 127.3, 126.3, 122.6, 122.4, 120.3, 119.7, 117.0, 114.4, 42.6, 29.0, 17.0, 16.7. HRMS-ESI *m*/*z*: calculated for C₁₆H₁₇N₂OS [M+H]⁺ 285. 1061. found 323.1063. IR (neat): 3411, 1676, 1388, 926, 733 cm⁻¹.

HPLC: Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 98:2, 1 mL/min, λ = 280 nm, t_R = 56.977 min and t_R = 66.383 min.

Entry	General procedure	Sequences	Indole/Products ^a	ee (%) ^a	
1	А	st-DNA	8:92	(+) 11	
2	В	ODN5/ODN4	8:92	(+) 37	
3	С	ODN1/ODN4	75 : 25	(-) 14	
4	D	ODN2/ODN4	12:88	(-) 82	
5	Е	ODN3/ODN4	74 : 26	(+) 8	
					_

2-Methyl-3-(6-methyl-1*H*-indol-3-yl)-1-(thiazol-2-yl)propan-1-one (18f)

The racemic was isolated as a slightly yellow oil. $R_f = 0.58$ (PE/EtOAc 1:1). ¹H NMR (400 MHz, **CDCl**₃) δ 8.02 (d, J = 3.0 Hz, 1H), 7.85 (br, 1H), 7.63 (d, J = 3.0 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.11 (br, 1H), 6.98 (dd, J = 8.0, 1.4 Hz, 1H), 6.93 (d, J = 2.3 Hz, 1H), 4.31-4.19 (m, 1H), 3.38 (dd, J = 14.3, 6.3 Hz, 1H), 2.88 (dd, J = 14.3, 7.9 Hz, 1H), 2.46 (s, 3H), 1.30 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 167.1, 144.8, 136.8, 131.8, 126.3, 125.6, 122.0, 121.2, 118.9, 113.7, 111.1, 42.6, 28.9, 21.8, 16.9. HRMS-ESI *m/z*: calculated for C₁₆H₁₇N₂OS [M+H]⁺ 285.1061. found 323.1063. IR (neat): 3406, 1677, 1453, 1388, 800, 734 cm⁻¹.

HPLC: Chiralpak IB column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 92:8, 1 mL/min, λ = 300 nm, t_R = 15.375 min and t_R = 19.436 min.

Entry	General procedure	Sequences	Indole/Products ^a	ee (%) ^a
1	А	st-DNA	5:95	(+) 36
2	В	ODN5/ODN4	1:99	(+) 36
3	С	ODN1/ODN4	56 : 44	(-) 14
4	D	ODN2/ODN4	1:99	(-) 73
5	Е	ODN3/ODN4	58:42	(+) 13

2-Methyl-3-(5-methyl-1*H*-indol-3-yl)-1-(thiazol-2-yl)propan-1-one (18g)

¹H NMR and ¹³C NMR spectra matched those reported in the literature.³

HPLC: Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3,1 mL/min, λ = 280 nm, t_R = 34.221 min and t_R = 44.000 min.

Entry	General procedure	Sequences	Indole/Products ^a	ee (%) ^a
1	А	st-DNA	1:99	(+) 43
2	В	ODN5/ODN4	10:90	(+) 43
3	С	ODN1/ODN4	54 : 46	(–) 4
4	D	ODN2/ODN4	19:81	(–) 67
5	Е	ODN3/ODN4	50 : 50	(+) 20

3-(5-Hydroxy-1*H*-indol-3-yl)-2-methyl-1-(thiazol-2-yl)propan-1-one (18h)

¹H NMR and ¹³C NMR spectra matched those reported in the literature.³

HPLC: Chiralpak IA column, 250 bar, T = 25 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 90:10, 1 mL/min, λ = 300 nm, t_R = 29.340 min and t_R = 34.167 min.

Entry	General procedure	Sequences	Indole/Products ^a	ee (%) ^a
1	А	st-DNA	17:83	(+) 37
2	В	ODN5/ODN4	> 1 : 99	(+) 29
3	С	ODN1/ODN4	29:71	(-) 20
4	D	ODN2/ODN4	12:88	(-) 70
5	Е	ODN3/ODN4	47 : 53	(-) 15

3-(5-Fluoro-1*H*-indol-3-yl)-2-methyl-1-(thiazol-2-yl)propan-1-one (18i)

The racemic was isolated as a slightly yellow oil. $R_f = 0.34$ (PE/EtOAc 7:3). ¹H NMR (400 MHz, **CDCl**₃) δ 8.03 (d, J = 3.1 Hz, 1H), 8.01 (s, 1H), 7.65 (d, J = 3.1 Hz, 1H), 7.39 (dd, J = 9.7, 2.5 Hz, 1H), 7.22 (dd, J = 9.7, 4.3 Hz, 1H), 7.04 (d, J = 2.4 Hz, 1H), 6.92 (td, J = 9.0, 2.5 Hz, 1H), 4.27-4.13 (m, 1H), 3.34 (dd, J = 14.4, 6.3 Hz, 1H), 2.84 (dd, J = 14.4, 7.9 Hz, 1H), 1.29 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 167.0, 157.9 (d, J = 234.3 Hz), 144.9, 132.8, 128.1 (d, J = 9.8 Hz), 126.4, 124.4, 114.1 (d, J = 4.8 Hz), 111.7 (d, J = 9.7 Hz), 110.4 (d, J = 26.5 Hz), 104.2 (d, J = 23.5 Hz), 42.5, 28.9, 16.8. ¹⁹F NMR (377 MHz, CDCl₃) δ -124.71. HRMS-ESI *m*/*z*: calculated for C₁₅H₁₃FN₂OSNa [M+Na]⁺ 307.0630. found 307.0554. IR (neat): 3410, 1678, 1485, 1389, 936 cm⁻¹.

HPLC: Chiralpak IA column, 250 bar, T = 30 °C, Hexane/*i*-PrOH = 97:3, 1 mL/min, λ = 280 nm, t_R = 45.925 min and t_R = 53.440 min.

Entry	General procedure	Sequences	Indole/Products ^a	ee (%) ^a	
1	А	st-DNA	13 : 87	(+) 27	
2	В	ODN5/ODN4	32:68	(+) 42	
3	С	ODN1/ODN4	85 : 15	(-) 2	
4	D	ODN2/ODN4	61 : 39	(-) 80	
5	Е	ODN3/ODN4	87:13	(+) 8	
^a Datamain ad by UDI	C				

3-(5-Chloro-1*H*-indol-3-yl)-2-methyl-1-(thiazol-2-yl)propan-1-one (18j)

¹H NMR and ¹³C NMR spectra matched those reported in the literature.³

HPLC: Chiralpak IA column, 250 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 97:3, 1 mL/min, λ = 300 nm, t_R = 26.413 min and t_R = 32.027 min.

Entry	General procedure	Sequences	Indole/Products ^a	ee (%) ^a
1	А	st-DNA	31 : 69	(+) 19
2	В	ODN5/ODN4	53:47	(+) 4
3	С	ODN1/ODN4	89:11	(+) 27
4	D	ODN2/ODN4	68:32	(-) 63
5	Е	ODN3/ODN4	95 : 5	(+) 7

3-(5-Bromo-1*H*-indol-3-yl)-2-methyl-1-(thiazol-2-yl)propan-1-one (18k)

¹H NMR and ¹³C NMR spectra matched those reported in the literature.³

HPLC: Chiralpak IA column, 250 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 97:3, 1 mL/min, λ = 300 nm, t_R = 27.153 min and t_R = 33.570 min.

Entry	General procedure	Sequences	Indole/Products ^a	ee (%) ^a
1	А	st-DNA	30:70	(+) 16
2	В	ODN5/ODN4	63 : 37	(+) 20
3	С	ODN1/ODN4	90 : 10	(+) 11
4	D	ODN2/ODN4	82 : 18	(-) 54
5	Е	ODN3/ODN4	96:4	(+) 19

Methyl 3-(2-methyl-3-oxo-3-(thiazol-2-yl)propyl)-1H-indole-5-carboxylate (18l)

The racemic was isolated as a slightly yellow oil. $R_f = 0.18$ (PE/EtOAc 7:3). ¹H NMR (400 MHz, CDCl₃) δ 8.56-8.51 (br, 1H), 8.36 (br, -*NH*), 8.02 (d, J = 3.0 Hz, 1H), 7.88 (dd, J = 8.5, 1.6 Hz, 1H), 7.64 (d, J = 3.0 Hz, 1H), 7.31 (d, J = 8.6 Hz, 1H), 7.05 (d, J = 2.2 Hz, 1H), 4.29-4.15 (m, 1H), 3.95 (s, 3H), 3.41 (dd, J = 14.5, 6.5 Hz, 1H), 2.93 (dd, J = 14.5, 7.5 Hz, 1H), 1.31 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 168.5, 166.8, 144.9, 138.9, 127.3, 126.4, 124.0, 123.4, 122.3, 121.4, 115.2, 110.9, 52.0, 42.7, 28.7, 16.9. HRMS-ESI *m/z*: calculated for C₁₇H₁₆N₂O₃SNa [M+Na]⁺ 351.0779. found 351.0762. IR (neat): 3334, 1679, 1435, 1237, 747 cm⁻¹.

HPLC: Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 95:5, 1 mL/min, λ = 280 nm, t_R = 51.429 min and t_R = 57.744 min.

Entry	General procedure	Sequences	Indole/Products ^a	ee (%) ^a
1	А	st-DNA	57:43	(+) 23
2	В	ODN5/ODN4	76 : 24	(+) 24
3	С	ODN1/ODN4	traces	nd
4	D	ODN2/ODN4	91:9	(-) 49
5	Е	ODN3/ODN4	traces	nd
	N C			

2-Methyl-3-(5-(piperidin-1-yl)-1*H*-indol-3-yl)-1-(thiazol-2-yl)propan-1-one (18m)

¹H NMR and ¹³C NMR spectra matched those reported in the literature.³

HPLC: Chiralpak IB column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 92:8, 1 mL/min, λ = 300 nm, t_R = 27.286 min and t_R = 34.958 min.

Entry	General procedure	ODN	Indole/Products ^a	ee (%) ^a
1	А	st-DNA	5:95	(+) 72
2	В	ODN5/ODN4	16:84	(+) 72
3	С	ODN1/ODN4	traces	nd
4	D	ODN2/ODN4	53:47	(–) 67
5	Е	ODN3/ODN4	traces	(+) 4

2-Methyl-3-(5-morpholino-1*H*-indol-3-yl)-1-(thiazol-2-yl)propan-1-one (18n)

¹H NMR and ¹³C NMR spectra matched those reported in the literature.³

HPLC: Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 90:10, 1 mL/min, λ = 280 nm, t_R = 29.559 min and t_R = 34.195 min.

Entry	General procedure	Sequences	Indole/Products ^a	ee (%) ^a
1	А	st-DNA	24 : 76	(+) 79
2	В	ODN5/ODN4	23:77	(+) 71
3	С	ODN1/ODN4	94 : 6	(+) 8
4	D	ODN2/ODN4	50 : 50	(-) 65
5	Е	ODN3/ODN4	87:13	(+) 8

2-Methyl-3-(1-methyl-1*H*-indol-3-yl)-1-(thiazol-2-yl)propan-1-one (180)

¹H NMR and ¹³C NMR spectra matched those reported in the literature.³

HPLC: Chiralpak IB column, 250 bar, T = 15 °C, *n*-Hexane/*i*-PrOH = 98:2, 0.8 mL/min, λ = 230 nm, t_R = 21.430 min and t_R = 25.843 min.

Entry	General procedure	Sequences	Indole/Products ^a	ee (%) ^a
1	А	st-DNA	> 1:99	(+) 3
2	В	ODN5/ODN4	> 1 : 99	(-) 36
3	С	ODN1/ODN4	traces	nd
4	D	ODN2/ODN4	> 1:99	(+) 61
5	Е	ODN3/ODN4	traces	nd

V. NMR of compounds

a. ${}^{1}H$ and ${}^{13}C$ NMR spectra for compound (3)

b. ¹H and ¹³NMR spectra of compound (4)

c. ¹H and ¹³C NMR spectra for compound (5)

d. ¹H and ¹³C NMR spectra for compound (6)

e. ¹H and ¹³C NMR spectra of compound (14)

f. ¹H, ¹³C and ³¹P NMR spectra of compound (15)

88.58
88.58
88.55
88.55
88.55
88.57
88.57
88.20
88.20
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
88.21
<

g. ¹H and ¹³C spectra of compound (18e)

h. ¹H and ¹³C NMR spectra of compound (18f)

i. ¹H, ¹³C and ¹⁹F NMR spectra of compound (18i)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 11 (ppm) j. ¹H and ¹³C NMR spectra of compound (18l)

VI. Results of catalysis : HPLC chromatograms

a. HPLC chromatograms of compound (18a)

Racemic [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3, 1 mL/min, λ = 280 nm, t_R = 44.430 min and t_R = 53.322 min].

Indole [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3, 1 mL/min, λ = 280 nm, t_R = 13.494 min].

Following the general procedure A. HPLC analysis of the crude residue indicated a ratio indole/18a of 5:95 and an enantiomeric excess of (+) 21 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3, 1 mL/min, λ = 280 nm, t_R = 51.196 min and t_R = 58.355 min].

Following the general procedure B. HPLC analysis of the crude residue indicated a ratio indole/18a of 13:87 and an enantiomeric excess of (+) 40 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3, 1 mL/min, λ = 280 nm, t_R = 44.668 min and t_R = 53.437 min].

Following the general procedure C. HPLC analysis of the crude residue indicated a ratio indole/18a of 70:30 and an enantiomeric excess of (-) 20 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3, 1 mL/min, λ = 280 nm, t_R = 45.948 min and t_R = 52.906 min].

Following the general procedure D. HPLC analysis of the crude residue indicated a ratio indole/18a of 24:76 and an enantiomeric excess of (-) 80 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3, 1 mL/min, λ = 280 nm, t_R = 45.162 min and t_R = 54.145 min].

Following the general procedure E. HPLC analysis of the crude residue indicated a ratio indole/18a of 70:30 and an enantiomeric excess of (+) 7 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3, 1 mL/min, λ = 280 nm, t_R = 45.641 min and t_R = 51.833 min].

Peak	Retention Time	Rel. Area
	min	%
1	45.641	46.5957
2	51.833	53.4043

b. HPLC chromatograms of compound (18b)

Racemic [Chiralpak IB column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 23.083 min and t_R = 27.820 min].

Indole [Chiralpak IB column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 9.053 min].

Peak Name	Retention Time	Rel.Area
	min	%
1	9,053	100

Following the general procedure A. HPLC analysis of the crude residue indicated a ratio indole/18b of 4:96 and an enantiomeric excess of (+) 17 [Chiralpak IB column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 21.600 min and t_R = 26.183 min].

Following the general procedure B. HPLC analysis of the crude residue indicated a ratio indole/18b of 20:80 and an enantiomeric excess of (+) 38 [Chiralpak IB column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 23.207 min and t_R = 27.953 min].

Following the general procedure C. HPLC analysis of the crude residue indicated a ratio indole/18b of 48:52 and an enantiomeric excess of (-) 12 [Chiralpak IB column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 23.213 min and t_R = 28.000 min].

Following the general procedure D. HPLC analysis of the crude residue indicated a ratio indole/18b of 22:78 and an enantiomeric excess of (-) 86 [Chiralpak IB column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 23.200 min and t_R = 27.993 min].

23,2	93,02
27.993	6.98

2

Following the general procedure E. HPLC analysis of the crude residue indicated a ratio indole/18b of 68:32 and an enantiomeric excess of (-) 29 [Chiralpak IB column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 23.270 min and t_R = 28.037 min].

c. HPLC chromatograms of compound (18c)

Racemic [Chiralpak IA column, 100 bar, T = 25°C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 33.767 min and t_R = 52.823 min].

Indole [Chiralpak IA column, 100 bar, T = 25 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 13.497 min].

Following the general procedure A. HPLC analysis of the crude residue indicated a ratio indole/18c of 12:88 and an enantiomeric excess of (+) 29 [Chiralpak IA column, 100 bar, T = 25 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 33.633 min and t_R = 53.603 min].

Following the general procedure B. HPLC analysis of the crude residue indicated a ratio indole/18c of 35:65 and an enantiomeric excess of (+) 5 [Chiralpak IA column, 100 bar, T = 25 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 33.163 min and t_R = 52.503 min].

Peak Name	Retention Time	Rel.Area
	min	%
1	33,16	3 47,62
2	52,50	3 52,38

Following the general procedure C. HPLC analysis of the crude residue indicated a ratio indole/18c of 56:44 and an enantiomeric excess of (-) 16 [Chiralpak IA column, 100 bar, T = 25 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 33.193 min and t_R = 52.633 min].

Following the general procedure D. HPLC analysis of the crude residue indicated a ratio indole/18c of 36:64 and an enantiomeric excess of (-) 86 [Chiralpak IA column, 100 bar, T = 25 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 33.150 min and t_R = 52.657 min].

Following the general procedure E. HPLC analysis of the crude residue indicated a ratio indole/18c of 79:21 and an enantiomeric excess of (-) 19 [Chiralpak IA column, 100 bar, T = 25 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 33.180 min and t_R = 52.690 min].

Peak Name	Retention Time	Rel.Area
	min	%
1	33,:	18 59,64
2	52,6	59 40,36

d. HPLC chromatograms of compound (18d)

Racemic [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 24.167 min and t_R = 28.463 min].

Indole [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 14.733 min].

Following the general procedure A. HPLC analysis of the crude residue indicated a ratio indole/18d of 17:83 and an enantiomeric excess of (+) 43 [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 24.100 min and t_R = 28.380 min].

Peak Name	Retention Time	Rel.Area
	min	%
1	24,1	28,37
2	28,38	3 71,63

Following the general procedure B. HPLC analysis of the crude residue indicated a ratio indole/18d of 1:99 and an enantiomeric excess of (+) 41 [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 24.010 min and t_R = 28.230 min].

Peak Name	Retention Time	Rel.Area
	min	%
1	24,01	29,27
2	28,23	70,73

Following the general procedure C. HPLC analysis of the crude residue indicated a ratio indole/18d of 22:78 and an enantiomeric excess of (-) 6 [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 24.010 min and t_R = 28.257 min].

Following the general procedure D. HPLC analysis of the crude residue indicated a ratio indole/18d of 15:85 and an enantiomeric excess of (-) 74 [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 23.990 min and t_R = 28.273 min].

Peak Name	Retention Time	Rel.Area
	min	%
1	23,99	86,89
2	28,273	13,11

Following the general procedure E. HPLC analysis of the crude residue indicated a ratio indole/18d of 35:65 and an enantiomeric excess of 0 [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 95:5, 1 mL/min, λ = 300 nm, t_R = 24.003 min and t_R = 28.263 min].

e. HPLC chromatograms of compound (18e)

Racemic [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 98:2, 1 mL/min, λ = 280 nm, t_R = 56.977 min and t_R = 66.383 min].

Indole [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 98:2, 1 mL/min, λ = 280 nm, t_R = 12.066 min].

Following the general procedure A. HPLC analysis of the crude residue indicated a ratio indole/18e of 8:92 and an enantiomeric excess of (+) 11 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 98:2, 1 mL/min, λ = 280 nm, t_R = 54.394 min and t_R = 61.506 min].

Following the general procedure B. HPLC analysis of the crude residue indicated a ratio indole/18e of 8:92 and an enantiomeric excess of (+) 37 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 98:2, 1 mL/min, λ = 280 nm, t_R = 54.443 min and t_R = 61.179 min].

Following the general procedure C. HPLC analysis of the crude residue indicated a ratio indole/18e of 75:25 and an enantiomeric excess of (-) 14 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 98:2, 1 mL/min, λ = 280 nm, t_R = 58.679 min and t_R = 68.316 min].

Following the general procedure D. HPLC analysis of the crude residue indicated a ratio indole/18e of 12:88 and an enantiomeric excess of (-) 82 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 98:2, 1 mL/min, λ = 280 nm, t_R = 54.533 min and t_R = 61.299 min].

Following the general procedure E. HPLC analysis of the crude residue indicated a ratio indole/18e of 74:26 and an enantiomeric excess of (+) 8 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 98:2, 1 mL/min, λ = 280 nm, t_R = 56.049 min and t_R = 68.013 min].

Peak	Retention Time	Rel. Area
	min	%
1	56.049	45.9401
2	68.013	54.0599

f. HPLC chromatograms of compound (18f)

Racemic [Chiralpak IB column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 92:8, 1 mL/min, λ = 300 nm, t_R = 15.375 min and t_R = 19.436 min].

Indole [Chiralpak IB column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 92:8, 1 mL/min, λ = 300 nm, t_R = 8.736 min].

Following the general procedure A. HPLC analysis of the crude residue indicated a ratio indole/18f of 5:95 and an enantiomeric excess of (+) 36 [Chiralpak IB column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 92:8, 1 mL/min, λ = 300 nm, t_R = 15.744 min and t_R = 19.592 min].

Following the general procedure B. HPLC analysis of the crude residue indicated a ratio indole/18f of 1:99 and an enantiomeric excess of (+) 36 [Chiralpak IB column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 92:8, 1 mL/min, λ = 300 nm, t_R = 15.582 min and t_R = 19.088 min].

Following the general procedure C. HPLC analysis of the crude residue indicated a ratio indole/18f of 56:44 and an enantiomeric excess of (-) 14 [Chiralpak IB column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 92:8, 1 mL/min, λ = 300 nm, t_R = 15.703 min and t_R = 19.736 min].

Following the general procedure D. HPLC analysis of the crude residue indicated a ratio indole/18f of 1:99 and an enantiomeric excess of (-) 73 [Chiralpak IB column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 92:8, 1 mL/min, λ = 300 nm, t_R = 15.708 min and t_R = 19.308 min].

Following the general procedure E. HPLC analysis of the crude residue indicated a ratio indole/18f of 58:42 and an enantiomeric excess of (+) 13 [Chiralpak IB column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 92:8, 1 mL/min, λ = 300 nm, t_R = 15.879 min and t_R = 19.941 min].

Peak	Retention Time	Rel. Area
	min	%
1	15.879	43.4994
2	19.941	56.5006

g. HPLC chromatograms of compound (18g)

Racemic [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3,1 mL/min, λ = 280 nm, t_R = 34.221 min and t_R = 44.000 min].

Indole [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3,1 mL/min, λ = 280 nm, t_R = 12.395 min].

Following the general procedure A. HPLC analysis of the crude residue indicated a ratio indole/18g of 1:99 and an enantiomeric excess of (+) 43 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3,1 mL/min, λ = 280 nm, t_R = 38.225 min and t_R = 43.982 min].

Following the general procedure B. HPLC analysis of the crude residue indicated a ratio indole/18g of 10:90 and an enantiomeric excess of (+) 43 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3,1 mL/min, λ = 280 nm, t_R = 34.838 min and t_R = 46.129 min].

Following the general procedure C. HPLC analysis of the crude residue indicated a ratio indole/18g of 54:46 and an enantiomeric excess of (-) 4 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3,1 mL/min, λ = 280 nm, t_R = 36.447 min and t_R = 41.916 min].

Following the general procedure D. HPLC analysis of the crude residue indicated a ratio indole/18g of 19:81 and an enantiomeric excess of (-) 67 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3,1 mL/min, λ = 280 nm, t_R = 34.297 min and t_R = 46.508 min].

Following the general procedure E. HPLC analysis of the crude residue indicated a ratio indole/18g of 50:50 and an enantiomeric excess of (+) 20 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3,1 mL/min, λ = 280 nm, t_R = 37.651 min and t_R = 43.591 min].

Peak	Retention Time	Rel. Area
	min	%
1	37.651	40.1075
2	43.591	59.8925

h. HPLC chromatograms of compound (18h)

Racemic [Chiralpak IA column, 100 bar, T = 25 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 90:10, 1 mL/min, λ = 300 nm, t_R = 29.340 min and t_R = 34.167 min].

Indole [Chiralpak IA column, 100 bar, T = 25 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 90:10, 1 mL/min, λ = 300 nm, t_R = 19.767 min].

Following the general procedure A. HPLC analysis of the crude residue indicated a ratio indole/18h of 17:83 and an enantiomeric excess of (+) 37 [Chiralpak IA column, 100 bar, T = 25 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 90:10, 1 mL/min, λ = 300 nm, t_R = 29.600 min and t_R = 34.463 min].

Following the general procedure B. HPLC analysis of the crude residue indicated a ratio indole/18h of > 1:99 and an enantiomeric excess of (+) 29 [Chiralpak IA column, 100 bar, T = 25 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 90:10, 1 mL/min, λ = 300 nm, t_R = 29.600 min and t_R = 34.460 min].

Following the general procedure C. HPLC analysis of the crude residue indicated a ratio indole/18h of 29:71 and an enantiomeric excess of (-) 20 [Chiralpak IA column, 100 bar, T = 25 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 90:10, 1 mL/min, λ = 300 nm, t_R = 29.577 min and t_R = 34.457 min].

Following the general procedure D. HPLC analysis of the crude residue indicated a ratio indole/18h of 12:88 and an enantiomeric excess of (-) 70 [Chiralpak IA column, 100 bar, T = 25 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 90:10, 1 mL/min, λ = 300 nm, t_R = 29.550 min and t_R = 34.473 min].

Following the general procedure E. HPLC analysis of the crude residue indicated a ratio indole/18h of 47:53 and an enantiomeric excess of (-) 15 [Chiralpak IA column, 100 bar, T = 25 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 90:10, 1 mL/min, λ = 300 nm, t_R = 29.583 min and t_R = 34.480 min].

i. HPLC chromatograms of compound (18i)

Racemic [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3, 1 mL/min, λ = 280 nm, t_R = 45.925 min and t_R = 53.440 min].

Indole [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3, 1 mL/min, λ = 280 nm, t_R = 16.861 min].

Following the general procedure A. HPLC analysis of the crude residue indicated a ratio indole/18i of 13:87 and an enantiomeric excess of (+) 27 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3, 1 mL/min, λ = 280 nm, t_R = 47.126 min and t_R = 53.182 min].

Following the general procedure B. HPLC analysis of the crude residue indicated a ratio indole/18i of 32:68 and an enantiomeric excess of (+) 42 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3, 1 mL/min, λ = 280 nm, t_R = 46.659 min and t_R = 52.234 min].

Following the general procedure C. HPLC analysis of the crude residue indicated a ratio indole/18i of 85:15 and an enantiomeric excess of (-) 2 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3, 1 mL/min, λ = 280 nm, t_R = 45.585 min and t_R = 51.319 min].

Following the general procedure D. HPLC analysis of the crude residue indicated a ratio indole/18i of 61:39 and an enantiomeric excess of (-) 80 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3, 1 mL/min, λ = 280 nm, t_R = 46.312 min and t_R = 51.965 min].

Following the general procedure E. HPLC analysis of the crude residue indicated a ratio indole/18i of 87:13 and an enantiomeric excess of (+) 8 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 97:3, 1 mL/min, λ = 280 nm, t_R = 47.897 min and t_R = 54.957 min].

Peak	Retention Time	Rel. Area
	min	%
1	47.897	46.074
2	54.957	53.926

j. HPLC chromatograms of compound (18j)

Racemic [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 97:3, 1 mL/min, λ = 300 nm, t_R = 26.413 min and t_R = 32.027 min].

Indole [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 97:3, 1 mL/min, λ = 300 nm, t_R = 14.613 min].

Following the general procedure A. HPLC analysis of the crude residue indicated a ratio indole/18j of 31:69 and an enantiomeric excess of (+) 19 [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 97:3, 1 mL/min, λ = 300 nm, t_R = 27.137 min and t_R = 33.580 min].

Following the general procedure B. HPLC analysis of the crude residue indicated a ratio indole/18j of 53:47 and an enantiomeric excess of (+) 4 [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 97:3, 1 mL/min, λ = 300 nm, t_R = 27.190 min and t_R = 33.507 min].

Following the general procedure C. HPLC analysis of the crude residue indicated a ratio indole/18j of 89:11 and an enantiomeric excess of (+) 27 [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 97:3, 1 mL/min, λ = 300 nm, t_R = 27.287 min and t_R = 33.593 min].

Following the general procedure D. HPLC analysis of the crude residue indicated a ratio indole/18j of 68:32 and an enantiomeric excess of (-) 63 [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 97:3, 1 mL/min, λ = 300 nm, t_R = 27.233 min and t_R = 33.563 min].

Following the general procedure E. HPLC analysis of the crude residue indicated a ratio indole/18j of 95:5 and an enantiomeric excess of (+) 7 [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 97:3, 1 mL/min, λ = 300 nm, t_R = 27.243 min and t_R = 33.500 min].

k. HPLC chromatograms of compound (18k)

Racemic [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 97:3, 1 mL/min, λ = 300 nm, t_R = 27.153 min and t_R = 33.570 min].

Indole [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 97:3, 1 mL/min, λ = 300 nm, t_R = 14.877 min].

Following the general procedure A. HPLC analysis of the crude residue indicated a ratio indole/18k of 30:70 and an enantiomeric excess of (+) 16 [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 97:3, 1 mL/min, λ = 300 nm, t_R = 27.437 min and t_R = 33.980 min].

Following the general procedure B. HPLC analysis of the crude residue indicated a ratio indole/18k of 63:37 and an enantiomeric excess of (+) 20 [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 97:3, 1 mL/min, λ = 300 nm, t_R = 27.153 min and t_R = 33.583 min].

Following the general procedure C. HPLC analysis of the crude residue indicated a ratio indole/18k of 90:10 and an enantiomeric excess of (+) 11 [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 97:3, 1 mL/min, λ = 300 nm, t_R = 27.137 min and t_R = 33.657 min].

Following the general procedure D. HPLC analysis of the crude residue indicated a ratio indole/18k of 82:18 and an enantiomeric excess of (-) 54 [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 97:3, 1 mL/min, λ = 300 nm, t_R = 27.147 min and t_R = 33.623 min].

Following the general procedure E. HPLC analysis of the crude residue indicated a ratio indole/18k of 96:4 and an enantiomeric excess of (+) 19 [Chiralpak IA column, 100 bar, T = 20 °C, *n*-Heptane (+ 0.1% diethylamine)/EtOH (+ 0.1% diethylamine) = 97:3, 1 mL/min, λ = 300 nm, t_R = 27.117 min and t_R = 33.543 min].

I. HPLC chromatograms of compound (18l)

Racemic [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 95:5, 1 mL/min, λ = 280 nm, t_R = 51.429 min and t_R = 57.744 min].

Indole [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 95:5, 1 mL/min, λ = 280 nm, t_R = 24.381 min].

Following the general procedure A. HPLC analysis of the crude residue indicated a ratio indole/18l of 57:43 and an enantiomeric excess of (+) 23 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 95:5, 1 mL/min, λ = 280 nm, t_R = 51.608 min and t_R = 57.735 min].

Following the general procedure B. HPLC analysis of the crude residue indicated a ratio indole/18l of 76:24 and an enantiomeric excess of (+) 24 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 95:5, 1 mL/min, λ = 280 nm, t_R = 51.501 min and t_R = 57.730 min].

Following the general procedure C. HPLC analysis of the crude residue did not detect any product [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 95:5, 1 mL/min, λ = 280 nm].

Following the general procedure D. HPLC analysis of the crude residue indicated a ratio indole/18l of 91:9 and an enantiomeric excess of (-) 49 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 95:5, 1 mL/min, λ = 280 nm, t_R = 52.021 min and t_R = 58.393 min].

Following the general procedure E. HPLC analysis of the crude residue did not detect any product [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 95:5, 1 mL/min, λ = 280 nm].

m. HPLC chromatograms of compound (18m)

Racemic [Chiralpak IB column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 92:8, 1 mL/min, λ = 300 nm, t_R = 27.286 min and t_R = 34.958 min].

Indole [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 90:10, 1 mL/min, λ = 300 nm, t_R = 16.386 min].

Following the general procedure A. HPLC analysis of the crude residue indicated a ratio indole/18m of 5:95 and an enantiomeric excess of (+) 72 [Chiralpak IB column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 92:8, 1 mL/min, λ = 300 nm, t_R = 28.374 min and t_R = 37.377 min].

Following the general procedure B. HPLC analysis of the crude residue indicated a ratio indole/18m of 16:84 and an enantiomeric excess of (+) 72 [Chiralpak IB column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 92:8, 1 mL/min, λ = 300 nm, t_R = 28.261 min and t_R = 37.161 min].

Following the general procedure C. HPLC analysis of the crude residue did not detect any product [Chiralpak IB column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 92:8, 1 mL/min, λ = 300 nm].

Following the general procedure D. HPLC analysis of the crude residue indicated a ratio indole/18m of 53:47 and an enantiomeric excess of (-) 67 [Chiralpak IB column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 92:8, 1 mL/min, λ = 300 nm, t_R = 28.587 min and t_R = 37.376 min].

Following the general procedure E. HPLC analysis of the crude residue detected traces of 18m and an enantiomeric excess of (+) 4 [Chiralpak IB column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 92:8, 1 mL/min, λ = 300 nm, t_R = 28.552 min and t_R = 37.394 min].

Peak	Retention Time	Rel. Area
	min	%
1	28.552	52.0879
2	37.394	47.9121

n. HPLC chromatograms of compound (18n)

Racemic [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 90:10, 1 mL/min, $\lambda = 280$ nm, t_R = 29.559 min and t_R = 34.195 min].

Indole [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 90:10, 1 mL/min, λ = 280 nm, t_R = 14.237 min].

Following the general procedure A. HPLC analysis of the crude residue indicated a ratio indole/18n of 24:76 and an enantiomeric excess of (+) 79 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 90:10, 1 mL/min, λ = 280 nm, t_R = 30.642 min and t_R = 35.224 min].

Following the general procedure B. HPLC analysis of the crude residue indicated a ratio indole/18n of 23:77 and an enantiomeric excess of (+) 71 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 90:10, 1 mL/min, λ = 280 nm, t_R = 30.544 min and t_R = 35.111 min].

Following the general procedure C. HPLC analysis of the crude residue indicated a ratio indole/18n of 94:6 and an enantiomeric excess of (+) 8 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 90:10, 1 mL/min, λ = 280 nm, t_R = 29.938 min and t_R = 34.499 min].

Following the general procedure D. HPLC analysis of the crude residue indicated a ratio indole/18n of 50:50 and an enantiomeric excess of (-) 65 [Chiralpak IA column, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 90:10, 1 mL/min, λ = 280 nm, t_R = 30.433 min and t_R = 35.358 min].

Following the general procedure E. HPLC analysis of the crude residue indicated a ratio indole/18n of 87:13 and an enantiomeric excess of (+) 8 [Chiralpak IA, 250 bar, T = 30 °C, *n*-Hexane/*i*-PrOH = 90:10, 1 mL/min, λ = 280 nm, t_R = 30.138 min and t_R = 34.758 min].

Peak	Retention Time	Rel. Area
	min	%
1	30.138	45.8069
2	34.758	54.1931

o. HPLC chromatograms of compound (18o)

Racemic [Chiralpak IB column, 250 bar, T = 15 °C, *n*-Hexane/*i*-PrOH = 98:2, 0.8 mL/min, $\lambda = 230$ nm, t_R = 21.430 min and t_R = 25.843 min].

Indole [Chiralpak IB column, 250 bar, T = 15 °C, *n*-Hexane/*i*-PrOH = 98:2, 0.8 mL/min, λ = 230 nm, t_R = 14.091].

Following the general procedure A. HPLC analysis of the crude residue indicated a ratio indole/180 of > 1:99 and an enantiomeric excess of (+) 3 [Chiralpak IB column, 250 bar, T = 15 °C, *n*-Hexane/*i*-PrOH = 98:2, 0.8 mL/min, λ = 230 nm, t_R = 21.993 min and t_R = 26.590 min].

Following the general procedure B. HPLC analysis of the crude residue indicated a ratio indole/180 of > 1:99 and an enantiomeric excess of (-) 36 [Chiralpak IB column, 250 bar, T = 15 °C, *n*-Hexane/*i*-PrOH = 98:2, 0.8 mL/min, λ = 230 nm, t_R = 22.720 min and t_R = 27.274 min].

Following the general procedure C. HPLC analysis of the crude residue detected traces of 180 and an enantiomeric excess of 0 [Chiralpak IB column, 250 bar, T = 15 °C, *n*-Hexane/*i*-PrOH = 98:2, 0.8 mL/min, $\lambda = 230$ nm, t_R = 22.396 min and t_R = 27.132 min]. *Presence of by-products*.

Following the general procedure D. HPLC analysis of the crude residue indicated a ratio indole/180 of > 1:99 and an enantiomeric excess of (+) 61 [Chiralpak IB column, 250 bar, T = 15 °C, *n*-Hexane/*i*-PrOH = 98:2, 0.8 mL/min, λ = 230 nm, t_R = 21.786 min and t_R = 26.369 min].

Following the general procedure E. HPLC analysis of the crude residue detected traces of 180 and an enantiomeric excess of (-) 4 [Chiralpak IB column, 250 bar, T = 15 °C, *n*-Hexane/*i*-PrOH = 98:2, 0.8 mL/min, λ = 230 nm, t_R = 23.152 min and t_R = 27.804 min]. *Presence of by-products*.

Peak	Retention Time	Rel. Area
	min	%
1	23.152	47.8492
2	27.804	52.1508

References

- 1 Della Ciana, L.; Hamachi, I.; Meyer, T. 1989, 54, 1731-1735.
- 2 Kumar, P.; Shaikh, K. I.; Jørgensen, A. S.; Kumar, S.; Nielsen, P. J. Org. Chem. 2012, 77, 9562-9573.
- 3 García-Fernández, A.; Megens, R. P.; Villarino, L.; Roelfes, J. Am. Chem. Soc. 2016, 138, 16308-16314.
- 4 Charles, M. D.; Schultz, P.; Buchwald, S. L. Org. Lett. 2005, 7, 3965-3968.