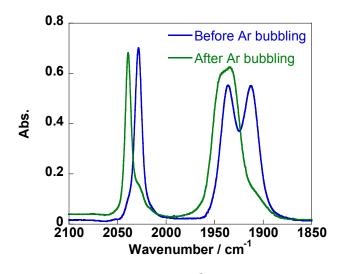
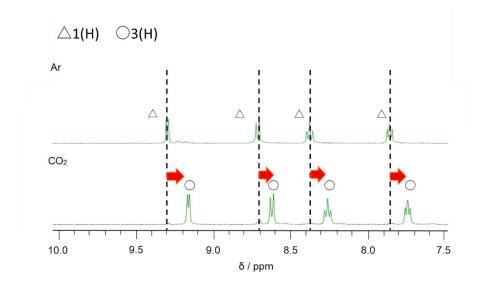
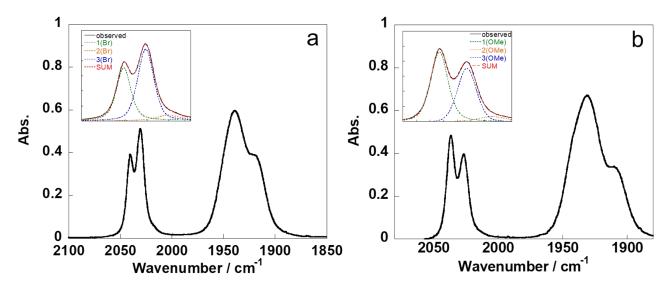

Figure S1. IR spectrum of fac-[Mn^I(bpy)(CO)₃(MeCN)]⁺ measured in a DMF solution containing 3.9 M TEOA (black line) and each peaks of 1(H) (green broken line) and 2(H) (orange broken line) and 3rd component (blue broken line) obtained by curve fitting for observed spectra. Summation of these peak is shown as a red broken line.

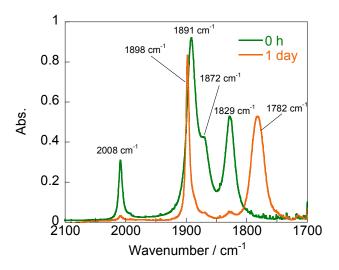
Figure S2. IR spectrum of *fac-*[Mn^I(bpy)(CO)₃(MeCN)]⁺ measured in a MeCN-TEOA mixed solution after several hours from solving (a) or a DMF-MeCN-TEOA mixed solution after 2h from solving (b).


Figure S3. IR spectrum of *fac*-[Mn^I(bpy)(CO)₃(MeCN)]⁺ measured in a DMF containing several concentrations of TEOA. *fac*-[Mn^I(bpy)(CO)₃(MeCN)]⁺ was dissolved into a DMF solution containing 1.3 M of TEOA. After the solution was kept for 60 min, additional TEOA or DMF was added into the solution, i.e., the concentration of TEOA in the solution changed from 1.3 M to 3.9 M or 0.65 M, respectively.


Figure S4. IR spectra of *fac*-[Mn^I(X₂bpy)(CO)₃(MeCN)]⁺ (X = Br (a) or OMe (b)) in a DMF solution containing 3.8 M under Ar and curve fitting results (inset).

Metal	Mn(I)			Re(I)		
Х	Н	Br	OMe	Н	Br	OMe
$_{V}$,	0.66	1.3	0.46	10	117	27.3
K_1 '	(±0.06)	(±0.02)	(±0.01)	19	(±11)	(±2.2)


Table S1. K_1 ' of the Mn(I) and Re(I) complexes.


Figure S5. IR spectra of *fac*- $[Mn^{I}(bpy)(CO)_{3}(MeCN)]^{+}$ in a CO₂ saturated DMF-TEOA measured before (blue line) and after Ar bubbling (green line).

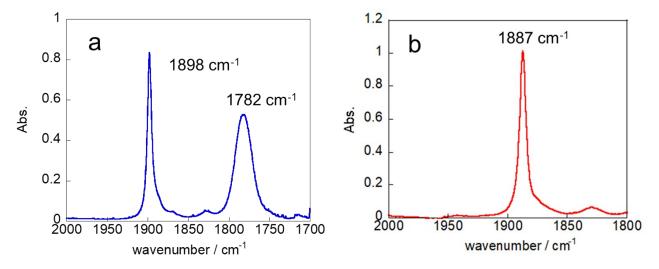

Figure S6. ¹H NMR spectra of *fac*-[Mn^I(bpy)(CO)₃(MeCN)]⁺ in DMSO-*d*₆ containing 1.3 M TEOA under Ar (a) and CO₂ (b). \triangle **1Mn-bpy**, \circ **4Mn-bpy**.

Figure S7. IR spectra of *fac*- $[Mn^{I}(X_{2}bpy)(CO)_{3}(MeCN)]^{+}(X = Br (a) or OMe (b))$ in a DMF-TEOA mixed solution containing 3.17 mM CO₂.

Figure S8. IR spectra of 4.9 mM [W(bpy)(CO)₄] in an acetonitrile solution before and after reflux for one day. v_{co} at 2008, 1891, 1872 and 1829 cm⁻¹ were of original species. After reflux, these peaks were almost completely disappeared and new bands at 1898 and 1782 cm⁻¹ attributed to [W(bpy)(CO)₃(MeCN)] were observed.

Figure S9. IR spectra of $[W(bpy)(CO)_3(MeCN)]$ in an acetonitrile solution (a) or a DMF solution (b) In DMF, peak shift occurred to lower wavenumber than in MeCN most likely because MeCN on W(0) complex substituted to DMF.

Table S2. Selected bond lengths in the geometrically optimized structures for <i>fac</i> -Mn(I)(bpy)(CO) ₃ R	and <i>fac</i> -
Re(I)(bpy)(CO) ₃ R calculated at the def2-SVP/PBE1PBE level with PCM solvent model for DMF.	

$Mn(bpy) (CO)_3 R$								
		R						
	dmf	$OC_2H_4O(C_2H_5OH)_2$	OCOOC ₂ H ₄ O(C ₂ H ₅ OH) ₂	I (exp) ^a				
Mn-N1	2.056	2.055	2.058	2.03				
Mn-N2	2.056	2.059	2.056	2.05				
Mn-Oa	1.803	1.791	1.787	1.80				

Mn-Oe	1.804	1.791	1.798	1.77
Mn-Oe	1.807	1.795	1.806	1.80
COa	1.142	1.151	1.149	1.15
COe1	1.145	1.150	1.148	1.19
COe	1.144	1.148	1.147	1.14
M-O(R)	2.075	2.020	2.045	2.724

Re(bpy) (CO)₃R

			R	
	dmf	$OC_2H_4O(C_2H_5OH)_2$	OCOOC ₂ H ₄ O(C ₂ H ₅ OH) ₂	OCOOC ₅ H ₁₁ (exp) ^b
Re-N1	2.167	2.155	2.201	2.178
Re-N2	2.169	2.170	2.201	2.164
Re-Oa	1.903	1.904	1.911	1.898
Re-Oe	1.903	1.918	1.922	1.924
Re-Oe	1.925	1.928	1.926	1.921
COa	1.154	1.167	1.157	1.155
COe1	1.155	1.169	1.156	1.149
COe	1.159	1.168	1.154	1.146
M-O(R)	2.247	2.175	2.165	2.142

^{a.} G. J. Stor, D. J. Stufkens, P. Vernooijs, E. J. Baerends, J. Fraanje, and K. Goubitzs, Inorg. Chem., 34 (1995) 1588-1594

^b M. K. Mbagu, D. N. Kebulu, A. Winstead, S. K. Pramanik, H. N. Banerjee, M. O. Iwunze, J. M. Wachira, G. E. Greco, G. K. Haynes, A. Sehmer, F. H. Sarkar, D. M. Ho, R. D. Pike, S. K. Mandal, *Inorg. Chem. Commun.*, 21 (2012) 35–38.

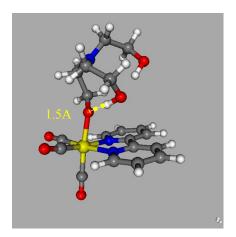
			. ,		0		,5
R=NCCH ₃		R=c	R=dmf		R=TEOA		TEOA
calcd	obsd	calcd	obsd	calcd	obsd	calcd	obsd
1989	1945	1976	1026	1950	1902	1963	1913
(+44)		(+40)	1936	(+48)		(+50)	
1998		1985	1042	1960	1010	1972	1026
		(+42)	1943	(+42)	1918	(+36)	1936
2077	2046	2071	2020	2050	2017	2061	2029
(+31)		(+32)	2039	(+33)	2017	(+33)	2028

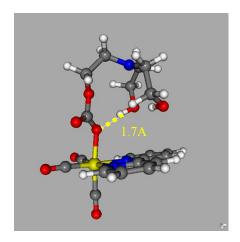
Table S3. Calculated and observed ν (CO) vibrational wavenumbers of *fac*-Mn(bpy)(CO)₃R

Values in parentheses denote the difference in frequency between the calculated and experimental.

Table S4. Calculated v(CO) vibrational wavenumbers of *fac*-Mn(bpy)(CO)₃ TEOA(NH+)

R=TEOA(NH+)	
calcd	
1961	
(+59)	
1966	
(+48)	
2057	
(+40)	


Values in parentheses denote the difference in frequency between the calculated and the observed species (1902, 1918, and 2017 cm⁻¹).


Table S5. Calculated and observed ν (CO) vibrational wavenumbers of *fac*-Re(bpy)(CO)₃R

				(15)()		
R=NCCH ₃		R=dmf		R=TEOA		TEOA
obsd	calcd	obsd	calcd	obsd	calcd	obsd
	1934 1912 1902	1001	1915	1002		
	(+21)	1913	(+21)	1881	(+23)	1892
1025	1938	1022	1913	1007	1928	1015
1935	(+16)	1922	(+16)	1897	(+13)	1915
2027	2047	2020	2025	2006	2038	2020
2037	(+18)	2029	(+19)	2006	(+18)	2020
-	-	obsd calcd 1934 (+21) 1935 1938 (+16) 2047	$\begin{array}{c cccc} \textbf{obsd} & \textbf{calcd} & \textbf{obsd} \\ \hline & 1934 & \\ & (+21) & \\ 1935 & 1938 & \\ & 1935 & (+16) & \\ 2047 & & \\ 2037 & & 2029 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Values in parentheses denote the difference in frequency between the calculated and experimental.

Figure S10. Molecular structures of *fac*-Mn(bpy)(CO)₃-TEOA(left) and *fac*-Mn(bpy)(CO)₃-CO₂-TEOA(right). The values in figures denote the length of hydrogen bonding.

