Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Metal-Free Alkene Carbooxygenation Following Tandem Intramolecular Alkoxylation/Claisen Rearrangement: Stereospecific Access to Bridged [4.2.1] Lactones

Long Li, Xin-Qi Zhu, Ying-Qi Zhang, Hao-Zhen Bu, Peng Yuan, Jinyu Chen, Jingyi Su, Xianming Deng and Long-Wu Ye*

State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China E-mail: <u>longwuye@xmu.edu.cn</u>

Content	Page Number
General	2
More Reaction Condition, Scope and Mechanism Studies	3
Biological Tests	6
Preparation of Starting Materials	7
General Procedure: Brønsted Acid Catalysis	36
Crystal Data	64
HPLC Chromatograms	68
¹ H and ¹³ C NMR Spectra	77

General Information. Ethyl acetate (ACS grade), hexanes (ACS grade) and anhydrous 1,2-dichloroethane (ACS grade) were obtained commercially and used without further purification. Methylene chloride, tetrahydrofuran and diethyl ether were purified according to standard methods unless otherwise noted. Commercially available reagents were used without further purification. Ees are determined using HPLC on a chiral stationary phase. Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Flash column chromatography was performed over silica gel (300-400 mesh). Infrared spectra were recorded on a Nicolet AVATER FTIR330 spectrometer as thin film and are reported in reciprocal centimeter (cm⁻¹). Mass spectra were recorded with Micromass QTOF2 Quadrupole/Time-of-Flight Tandem mass spectrometer using electron spray ionization.

¹H NMR spectra were recorded on a Bruker AV-400 spectrometer and a Bruker AV-500 spectrometer in chloroform-d₃. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The data is being reported as (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, brs = broad singlet, coupling constant(s) in Hz, integration).

¹³C NMR spectra were recorded on a Bruker AV-400 spectrometer and a Bruker AV-500 spectrometer in chloroform-d₃. Chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard.

More Reaction Condition, Scope and Mechanism Studies

	$ \begin{array}{c} \text{Ms} \\ \text{N} \\ \text{V} \\ \text{Ts} \\ \text{Ts} \\ \text{Ta} \end{array} $	(20 mol %) conditions	чH +	N Ts	= 2aa
	Yield		l ^b (%)		
Entry	Catalyst	Reaction conditions	2a	2aa	1a
1	AgOTf	DCE, 40 ^o C, 48 h	<1	30	50
2	AgNTf ₂	DCE, 40 ^o C, 48 h	<1	<1	>95
2			- 4	- 4	-1

1. Other reaction condition studies on the cascade cyclization of indolyl ynamide $1a^{a}$

			Yield ^b (%)		
Entry	Catalyst	Reaction conditions	2a	2aa	1a
1	AgOTf	DCE, 40 ^o C, 48 h	<1	30	50
2	AgNTf ₂	DCE, 40 ^o C, 48 h	<1	<1	>95
3	CF ₃ CO ₂ H	DCE, 40 ^o C, 48 h	<1	<1	<1
4	MsOH	DCE, 40 ^o C, 48 h	<1	<1	<1
5	TsOH	DCE, 40 ^o C, 48 h	<1	<1	<1
6	HNTf ₂	toluene, 40 °C, 48 h	28	26	<1
7	HNTf ₂	PhCl, 40 °C, 48 h	69	<1	<1
8	HNTf ₂	THF, 40 °C, 48 h	<1	<1	<1
9	HNTf ₂	CH ₃ CN, 40 °C, 48 h	44	12	<1
10 ^c	HNTf ₂	DCE, 40 ^o C, 24 h	80	<1	<1
11 ^{<i>d</i>}	HNTf ₂	DCE, 40 ^o C, 24 h	74	<1	<1

^{*a*} Reaction conditions: **1a** (0.1 mmol), catalyst (20 mol %), solvent (2 mL), 40 °C, in vials. ^{*b*} Measured by ¹H NMR using diethyl phthalate as the internal standard. ^{*c*} The reaction was performed in a flame-dried vial with dry DCE as the solvent and 1 equiv of H₂O as an additive. ^{*d*} The reaction was performed in a flame-dried vial with dry DCE as the solvent and 2 equiv of H₂O as an additive.

2. Almost no desired product was formed by employing substrates with other PG groups such as Me, Boc, Ac and benzyl, as these kinds of substrates are too reactive and may undergo many side reactions such as hydration reaction, dimerization reaction and decomposition under the acidic conditions.

3. [3,3] rearrangement vs [1,3] rearrangement:

4. We tried various chiral Brønsted acids such as chiral phosphoric acids and chiral phosphoric amides (see as followed), but found that they failed to catalyze this cascade cyclization (most of substrates were recovered).

5. Notably, after the reaction was finished (1 h), significant epimerization was observed if prolonging the reaction time.

6. A possible molecular model of transition state to explain the chirality induction (**2a** as an example) has been proposed. Notably, the indole moiety has to occupy the axial

position but not the equatorial position as the indolyl group and oxygen are on the same side of the double bond. In addition, the second chiral center of product 2a should be induced by the first chiral center (*cis* configuration).

7. For the effects of other metal catalysts on catalyzing the convertion 2aa into 2a, see:

8. 2a could not be converted into 2ai in the presence of $HNTf_2$ and MeOH, and only 2a was recoveried. This result indicated that 2ai should come from 2aa but not 2a.

9. Significant incorporation of ¹⁸O (>85%) into the product **2a** was observed in the presence of ¹⁸O-labelled water (10 equiv), indicating that the oxygen atom on the carbonyl group of **2a** originates from water.

Cell Viability Assay.

The cytotoxic effects of the indole-fused lactone compounds on human cancer cells (MDA-MB-231, A375, MCF-7, SK-GT-4 and KYSE-450) were investigated using a commercially available proliferation assay kit (Promega, US). Briefly, the cells were plated in 96-well culture plates at an appropriate density in culture medium and allowed to attach overnight. After treatment of vehicle (0.1% DMSO as control) or test compounds for indicated times and concentrations, 20 μ L of MTS reaction solution (3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2- (4-sulfophenyl)-2H-tetrazolium, inner salt; MTS (a) and 100 μ g/mL phenazine methosulfate; PES) was added to each well. The absorbance values were read at 490 nm wavelength with a spectrophotometer (Varioskan Flash, Thermo, US) after 1 to 4 hours incubation. The cell viability was calculated as: cell survival = (ODcompd. - ODblank)/(ODcontrol - ODblank)*100%.

Table S1. The cytotoxic effects of the newly synthesized indole-fused lactone compounds against cancer cells

	Cell viability at 20 µM (%)				
	MDA-MB-231	A375	MCF-7	SK-GT-4	KYSE-450
2a	99.49	82.26	105.05	94.43	92.88
2b	100.43	87.91	109.52	93.46	85.22
2c	88.17	85.78	126.55	90.16	84.49
2d	90.54	95.18	127.82	91.23	80.40
2e	94.13	86.68	89.27	93.19	87.92
2f	98.84	86.09	124.54	90.07	80.71
2g	95.33	78.72	95.25	91.62	75.82
2h	114.83	99.59	92.34	101.12	83.63
2i	105.53	109.08	99.99	96.41	82.66
2j	112.04	92.08	71.80	102.95	79.56
2k	56.71	40.50	98.57	72.27	76.90
21	54.71	48.00	108.09	93.58	75.83
2m	86.96	87.76	121.30	93.12	97.55
2n	107.95	103.52	112.91	102.15	101.09
20	56.27	45.57	66.78	91.57	88.43
2t	95.42	86.75	119.05	97.59	99.96
2z	93.06	94.49	100.37	96.98	91.59
2ab	91.08	102.28	113.21	95.11	84.87
2ae	41.59	33.41	70.16	64.00	37.01
2af	91.12	96.02	32.77	91.72	88.98
2ah	88.27	91.21	103.63	91.85	90.31

Results are average of two experiments.

Experimental Section

Representative synthetic procedures for the preparation of indole-tethered vnamides 1:¹⁻³

N-((2-((allyloxy)methyl)-1-tosyl-1H-indol-3-yl)ethynyl)-N-

methylmethanesulfonamide (1a)

Pale yellow solid (mp 110-111 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 7.6 Hz, 1H), 7.44 – 7.32 (m, 1H), 7.32 – 7.24 (m, 1H), 7.18 (d, *J* = 8.0 Hz, 2H), 6.00 – 5.87 (m, 1H), 5.38 –5.27 (m, 1H), 5.21 (dd, *J* = 10.4, 1.2 Hz, 1H), 5.02 (s, 2H), 4.06 (dt, *J* = 5.6, 1.2 Hz, 2H), 3.33 (s, 3H), 3.14 (s, 3H), 2.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.0, 139.3, 135.8, 135.7, 134.6, 129.6, 129.1, 127.4, 126.0, 123.8, 120.2, 117.2, 114.7, 107.5, 89.2, 71.2, 62.6, 60.7, 39.3, 37.0, 21.5; IR (neat): 2923, 2850, 2239(s), 1357(s), 1160, 1108, 576; HRESIMS Calcd for [C₂₃H₂₄N₂NaO₅S₂]⁺ (M + Na⁺) 495.1019, found 495.1008.

N-((2-((allyloxy)methyl)-5-methyl-1-tosyl-1H-indol-3-yl)ethynyl)-N-

methylmethanesulfonamide (1b)

Pale yellow solid (mp 115-116 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.8 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 2H), 7.35 (s, 1H), 7.22 – 7.12 (m, 3H), 6.03 – 5.81 (m, 1H), 5.30 (d, *J* = 17.2 Hz, 1H), 5.19 (d, *J* = 10.4 Hz, 1H), 4.99 (s, 2H), 4.05 (d, *J* = 4.0 Hz, 2H), 3.34 (s, 3H), 3.14 (s, 3H), 2.42 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 139.4, 135.8, 134.6, 134.1, 133.6, 129.5, 129.3, 127.4, 127.3, 120.0, 117.1, 114.4, 107.3, 89.2, 71.1, 62.6, 60.9, 39.3, 37.0, 21.5, 21.2; IR (neat): 2924, 2850, 1774, 1612, 1491, 1362(s), 1147, 584; HRESIMS Calcd for [C₂₄H₂₆N₂NaO₅S₂]⁺ (M + Na⁺) 509.1175, found 509.1168.

N-((2-((allyloxy)methyl)-5-methoxy-1-tosyl-1*H*-indol-3-yl)ethynyl)-*N*-methylmethanesulfonamide (1c)

1c

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 9.2 Hz, 1H), 7.88 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.00 (d, J = 2.4 Hz, 1H), 6.96 (dd, J = 9.2, 2.8 Hz, 1H), 6.00 – 5.85 (m, 1H), 5.36 – 5.26 (m, 1H), 5.24 – 5.16 (m, 1H), 4.97 (s, 2H), 4.05 (dt, J = 5.6, 1.6 Hz, 2H), 3.83 (s, 3H), 3.33 (s, 3H), 3.13 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.8, 144.9, 139.6, 135.5, 134.5, 130.3, 130.2, 129.5, 127.2, 117.0,

115.6, 115.0, 107.5, 102.3, 89.4, 71.1, 62.5, 60.7, 55.6, 39.2, 36.9, 21.4; IR (neat): 2923, 2850, 2240(s), 1359(s), 1172, 1109, 999, 766; HRESIMS Calcd for $[C_{24}H_{26}N_2NaO_6S_2]^+$ (M + Na⁺) 525.1124, found 525.1122.

N-((2-((allyloxy)methyl)-5-fluoro-1-tosyl-1*H*-indol-3-yl)ethynyl)-*N*methylmethanesulfonamide (1d)

Pale yellow solid (mp 115-116 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, J = 9.2, 4.0 Hz, 1H), 7.90 (d, J = 8.4 Hz, 2H), 7.29 – 7.13 (m, 3H), 7.13 – 7.02 (m, 1H), 6.03 – 5.74 (m, 1H), 5.31 (dd, J = 17.6, 1.6 Hz, 1H), 5.21 (d, J = 10.4 Hz, 1H), 4.98 (s, 2H), 4.06 (d, J = 5.6 Hz, 2H), 3.33 (s, 3H), 3.13 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8 (d, J = 242.2 Hz), 145.2, 140.8, 135.3, 134.4, 132.0, 130.2 (d, J = 9.7 Hz), 129.6, 127.3, 117.2, 115.9 (d, J = 9.7 Hz), 113.9 (d, J = 25.3 Hz), 107.3 (d, J = 4.0 Hz), 105.7 (d, J = 24.3 Hz), 89.6, 71.2, 62.5, 60.0, 39.1, 37.0, 21.5; IR (neat): 2924, 2356(s), 1357(s), 1262, 1175, 760, 749; HRESIMS Calcd for [C₂₃H₂₃FN₂NaO₅S₂]⁺ (M + Na⁺) 513.0925, found 513.0909.

N-((2-((allyloxy)methyl)-5-chloro-1-tosyl-1*H*-indol-3-yl)ethynyl)-*N*methylmethanesulfonamide (1e)

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.8 Hz, 1H), 7.90 (d, *J* = 8.4 Hz, 2H), 7.53 (d, *J* = 2.0 Hz, 1H), 7.36 – 7.28 (m, 1H), 7.19 (d, *J* = 8.4 Hz, 2H), 5.99 – 5.85 (m, 1H), 5.37 – 5.26 (m, 1H), 5.21 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.98 (s, 2H), 4.05 (dt, *J* = 5.6, 1.2 Hz, 2H), 3.33 (s, 3H), 3.14 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 140.7, 135.4, 134.5, 134.2, 130.4, 129.8, 129.7, 127.4, 126.2, 119.8, 117.3, 115.9, 106.9, 89.6, 71.4, 62.5, 60.1, 39.3, 37.2, 21.6; IR (neat): 2926, 2238(s), 1360(s), 1265, 1175, 1111, 738; HRESIMS Calcd for [C₂₃H₂₃ClN₂NaO₅S₂]⁺ (M + Na⁺) 529.0629, found 529.0624.

N-((2-((allyloxy)methyl)-5-bromo-1-tosyl-1*H*-indol-3-yl)ethynyl)-*N*methylmethanesulfonamide (1f)

Pale yellow solid (mp 130-131 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.8 Hz, 1H), 7.90 (d, *J* = 8.4 Hz, 2H), 7.68 (d, *J* = 1.6 Hz, 1H), 7.44 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.03 – 5.78 (m, 1H), 5.31 (dd, *J* = 17.6, 1.6 Hz, 1H), 5.21 (d, *J* = 10.4 Hz, 1H), 4.98 (s, 2H), 4.05 (d, *J* = 5.2 Hz, 2H), 3.33 (s, 3H), 3.14 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 140.5, 135.3, 134.5, 134.4, 130.7, 129.7, 128.8, 127.3, 122.8, 117.3(4), 117.2(8), 116.1, 106.7, 89.5, 71.3, 62.4, 60.0, 39.2, 37.1, 21.5; IR (neat): 2927, 2240(s), 1444, 1360(s), 1175, 999, 688, 581; HRESIMS Calcd for [C₂₃H₂₃BrN₂NaO₅S₂]⁺ (M + Na⁺) 573.0124, found 573.0129.

N-((2-((allyloxy)methyl)-1-tosyl-5-(trifluoromethyl)-1*H*-indol-3-yl)ethynyl)-*N*methylmethanesulfonamide (1g)

Pale yellow solid (mp 150-151 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.8 Hz, 1H), 7.95 (d, *J* = 8.4 Hz, 2H), 7.85 (s, 1H), 7.60 (d, *J* = 8.8 Hz, 1H), 7.21 (d, *J* = 8.4 Hz, 2H), 6.08 – 5.90 (m, 1H), 5.31 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.22 (d, *J* = 10.4 Hz, 1H), 5.03 (s, 2H), 4.06 (d, *J* = 5.6 Hz, 2H), 3.35 (s, 3H), 3.15 (s, 3H), 2.35 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.5, 141.2, 137.2, 135.2, 134.3, 129.8, 128.8, 127.4, 126.2 (q, *J* = 32.5 Hz), 124.3 (q, *J* = 270.0 Hz), 122.5 (q, *J* = 3.5 Hz), 117.8 (q, *J* = 4.0 Hz), 117.4, 115.0, 107.4, 89.8, 71.3, 62.4, 59.8, 39.2, 37.2, 21.5; IR (neat): 2927, 2241(s), 1361, 1320(s), 1170, 1117, 665, 592; HRESIMS Calcd for [C₂₄H₂₃F₃N₂NaO₅S₂]⁺ (M + Na⁺) 563.0893, found 563.0888.

N-((2-((allyloxy)methyl)-5-cyano-1-tosyl-1*H*-indol-3-yl)ethynyl)-*N*methylmethanesulfonamide (1h)

1h

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (dd, J = 8.8, 0.8 Hz, 1H), 8.02 – 7.82 (m, 3H), 7.60 (dd, J = 8.8, 1.6 Hz, 1H), 7.22 (d, J = 8.4 Hz, 2H), 5.98 – 5.87 (m, 1H), 5.36 – 5.27 (m, 1H), 5.26 – 5.17 (m, 1H), 5.01 (s, 2H), 4.06 (dt, J = 5.6, 1.2 Hz, 2H), 3.35 (s, 3H), 3.15 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 141.5, 137.4, 135.1, 134.2, 129.8, 129.2, 128.7, 127.5, 125.1, 118.9, 117.4, 115.5, 107.4, 107.0, 90.1, 71.4, 62.3, 59.4, 39.1, 37.3, 21.5; IR (neat): 2922, 2851, 2358, 2238(s), 1659, 1632,

1361(s), 1176, 737; HRESIMS Calcd for $[C_{24}H_{23}N_3NaO_5S_2]^+$ (M + Na⁺) 520.0971, found 520.0972.

methyl 2-((allyloxy)methyl)-3-((*N*-methylmethylsulfonamido)ethynyl)-1-tosyl-1*H*indole-5-carboxylate (1i)

11

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 1.2 Hz, 1H), 8.16 (d, *J* = 8.8 Hz, 1H), 8.03 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 8.2 Hz, 2H), 5.85 – 5.98 (m, 1H), 5.36 – 5.27 (m, 1H), 5.20 (dd, *J* = 10.4, 1.2 Hz, 1H), 5.01 (s, 2H), 4.06 (dd, *J* = 4.4, 1.2 Hz, 2H), 3.93 (s, 3H), 3.35 (s, 3H), 3.15 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 145.3, 140.8, 138.2, 135.2, 134.3, 129.6, 128.8, 127.4, 126.9, 125.8, 122.3, 117.2, 114.4, 107.7, 89.6, 71.2, 62.4, 59.9, 52.1, 39.2, 37.0, 21.5; IR (neat): 2923, 2367, 2240(s), 1717(s), 1358(s), 1289, 1174, 758; HRESIMS Calcd for [C₂₅H₂₆N₂NaO₇S₂]⁺ (M + Na⁺) 553.1074, found 553.1075.

N-((2-((allyloxy)methyl)-6-methyl-1-tosyl-1H-indol-3-yl)ethynyl)-N-

methylmethanesulfonamide (1j)

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.87 (m, 3H), 7.45 (d, J = 8.0 Hz, 1H), 7.18 (d, J = 8.0 Hz, 2H), 7.10 (dd, J = 8.0, 0.8 Hz, 1H), 5.99 – 5.84 (m, 1H), 5.36 – 5.26 (m, 1H), 5.24 – 5.15 (m, 1H), 4.99 (s, 2H), 4.03 (dt, J = 5.6, 1.2 Hz, 2H), 3.33 (s,

3H), 3.13 (s, 3H), 2.49 (s, 3H), 2.34 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 144.8, 138.6, 136.2, 135.7, 134.5, 129.5, 127.2, 126.8, 125.3, 119.7, 117.0, 114.6, 107.5, 89.1, 71.0, 62.6, 60.8, 39.2, 36.9, 22.1, 21.5; IR (neat): 2927, 2241(s), 1361, 1326(s), 1176, 1117, 665, 592; HRESIMS Calcd for [C₂₄H₂₆N₂NaO₅S₂]⁺ (M + Na⁺) 509.1175, found 509.1173.

N-((2-((allyloxy)methyl)-6-methoxy-1-tosyl-1*H*-indol-3-yl)ethynyl)-*N*-methylmethanesulfonamide (1k)

Pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 8.0 Hz, 2H), 7.65 (d, *J* = 2.0 Hz, 1H), 7.44 (d, *J* = 9.0 Hz, 1H), 7.18 (d, *J* = 8.0 Hz, 2H), 6.90 (dd, *J* = 8.5, 2.0Hz, 1H), 5.99 – 5.83 (m, 1H), 5.34 – 5.26 (m, 1H), 5.19 (dd, *J* = 5.5, 1.5 Hz, 1H), 4.96 (s, 2H), 4.04 (dt, *J* = 5.5, 1.5 Hz, 2H), 3.88 (s, 3H), 3.32 (s, 3H), 3.13 (s, 3H), 2.33 (s, 3H); ¹³C NMR (125MHz, CDCl₃) δ 158.9, 144.9, 138.1, 136.9, 135.7, 134.6, 129.6, 127.3, 122.8, 120.7, 117.0, 113.0, 107.5, 99.0, 89.1, 71.0, 62.7, 60.9, 55.8, 39.2, 36.9, 21.5; IR (neat): 2927, 2240(s), 1445, 1360(s), 1176, 960, 582; HRESIMS Calcd for [C₂₄H₂₆N₂NaO₆S₂]⁺ (M + Na⁺) 525.1124, found 525.1118.

N-((2-((allyloxy)methyl)-6-fluoro-1-tosyl-1*H*-indol-3-yl)ethynyl)-*N*methylmethanesulfonamide (11)

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.4 Hz, 2H), 7.84 (dd, J = 10.0, 2.0 Hz, 1H), 7.50 (dd, J = 8.4, 5.2 Hz, 1H), 7.19 (d, J = 8.4 Hz, 2H), 7.11 – 6.86 (m, 1H), 6.01 – 5.80 (m, 1H), 5.35 – 5.27 (m, 1H), 5.24 – 5.17 (m, 1H), 4.96 (s, 2H), 4.04 (dt, J = 5.6, 1.2 Hz, 2H), 3.32 (s, 3H), 3.13 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.4 (d, J = 242.7 Hz), 145.2, 139.4 (d, J = 3.8 Hz), 135.8 (d, J = 12.7 Hz), 135.2, 134.4, 129.6, 127.3, 125.2, 121.1 (d, J = 10.0 Hz), 117.1, 112.2 (d, J = 24.4 Hz), 107.2, 102.0 (d, J = 29.3 Hz), 89.4, 71.0, 62.4, 60.2, 39.1, 36.9, 21.4; IR (neat): 2924, 2356(s), 1357(s), 1274, 1262, 1175, 764, 749; HRESIMS Calcd for [C₂₃H₂₃FN₂NaO₅S₂]⁺ (M + Na⁺) 513.0925, found 513.0923.

N-((2-((allyloxy)methyl)-6-chloro-1-tosyl-1*H*-indol-3-yl)ethynyl)-*N*methylmethanesulfonamide (1m)

Pale yellow solid (mp 110-111 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.8 Hz, 1H), 7.90 (d, *J* = 8.4 Hz, 2H), 7.53 (d, *J* = 2.0 Hz, 1H), 7.31 (dd, *J* = 9.2, 2.0 Hz, 1H), 7.19 (d, *J* = 8.4 Hz, 2H), 6.02 – 5.83 (m, 1H), 5.31 (dd, *J* = 17.2, 1.2 Hz, 1H), 5.21 (dd, *J* = 10.4, 1.2 Hz, 1H), 4.98 (s, 2H), 4.05 (d, *J*= 5.6 Hz, 2H), 3.33 (s, 3H), 3.14 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 140.7, 135.4, 134.4, 134.1, 130.3, 129.8, 129.7, 127.3, 126.2, 119.8, 117.3, 115.8, 106.8, 89.5, 71.3, 62.5, 60.0, 39.2, 37.1, 21.5; IR (neat): 2926, 2238(s), 1445, 1360(s), 1265, 1175, 1111, 1000, 738, 583; HRESIMS Calcd for [C₂₃H₂₃ClN₂NaO₅S₂]⁺ (M + Na⁺) 529.0629, found 529.0629.

N-((2-((allyloxy)methyl)-6-bromo-1-tosyl-1*H*-indol-3-yl)ethynyl)-*N*methylmethanesulfonamide (1n)

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.91 (d, *J* = 8.0 Hz, 2H), 7.46 – 7.35 (m, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 6.02 – 5.78 (m, 1H), 5.30 (d, *J* = 17.2 Hz, 1H), 5.20 (d, *J* = 10.4 Hz, 1H), 4.97 (s, 2H), 4.04 (d, *J* = 4.4 Hz, 2H), 3.33 (s, 3H), 3.13 (s, 3H), 2.35 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.3, 139.7, 136.4, 135.4, 134.4, 129.7, 127.9, 127.4, 127.2, 121.4, 119.7, 117.7, 117.3, 107.3, 89.5, 71.3, 62.5, 60.2, 39.2, 37.1, 21.6; IR (neat): 2927, 2240(s), 1444, 1360(s), 1266, 1175, 1112, 999, 581; HRESIMS Calcd for [C₂₃H₂₃BrN₂NaO₅S₂]⁺ (M + Na⁺) 573.0124, found 573.0127.

methyl 2-((allyloxy)methyl)-3-((*N*-methylmethylsulfonamido)ethynyl)-1-tosyl-1*H*indole-6-carboxylate (10)

10

Pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.82 (s, 1H), 8.05 – 7.90 (m, 3H), 7.61 (d, J = 8.5 Hz, 1H), 7.20 (d, J = 8.0 Hz, 2H), 5.99 – 5.86 (m, 1H), 5.31 (dd, J = 18.5, 1.0 Hz, 1H), 5.21 (d, J = 10.5 Hz, 1H), 5.02 (s, 2H), 4.06 (d, J = 5.5 Hz, 2H), 3.97 (s, 3H), 3.34 (s, 3H), 3.14 (s, 3H), 2.33 (s, 3H);¹³C NMR (125 MHz, CDCl₃) δ 167.0, 145.3, 142.0, 135.3, 135.2, 134.3, 132.6, 129.7, 127.7, 127.4, 124.8, 120.0, 117.3, 116.4, 107.2, 89.5, 71.3, 62.5, 60.1, 52.3, 39.2, 37.1, 21.5; IR (neat): 2923, 2240(s), 1717(s), 1358(s), 1174, 1161, 1089, 685; HRESIMS Calcd for [C₂₅H₂₆N₂NaO₇S₂]⁺ (M + Na⁺) 553.1074, found 553.1079.

N-((2-((allyloxy)methyl)-7-methyl-1-tosyl-1H-indol-3-yl)ethynyl)-N-

methylmethanesulfonamide (1p)

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 7.2 Hz, 1H), 7.23 – 7.09 (m, 4H), 6.00 – 5.82 (m, 1H), 5.29 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.17 (dd, *J* = 10.4, 0.8 Hz, 1H), 5.02 (s, 2H), 4.06 (d, *J* = 5.6 Hz, 2H), 3.32 (s, 3H), 3.13 (s, 3H), 2.51 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 142.0, 137.8, 136.1, 134.4, 131.7, 130.0, 129.3, 127.2, 126.6, 124.7, 117.9, 117.0, 110.3, 90.0, 71.3, 64.5, 60.7, 39.1, 36.9, 22.1, 21.4; IR (neat): 2930, 2245(s), 1440, 1368(s), 1260, 1182, 1122, 736, 585; HRESIMS Calcd for [C₂₄H₂₆N₂NaO₅S₂]⁺ (M + Na⁺) 509.1175, found 509.1173.

N-((2-((allyloxy)methyl)-1-((4-bromophenyl)sulfonyl)-1*H*-indol-3-yl)ethynyl)-*N*methylmethanesulfonamide (1q)

1q

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.8 Hz, 2H), 7.59 (d, J = 7.6 Hz, 1H), 7.52 (d, J = 8.8 Hz, 2H), 7.43 – 7.35 (m, 1H), 7.34 – 7.28 (m, 1H), 6.00 – 5.84 (m, 1H), 5.30 (dd, J = 17.6, 1.6 Hz, 1H), 5.22 (d, J = 10.4 Hz, 1H), 5.00 (s, 2H), 4.05 (d, J = 5.6 Hz, 2H), 3.34 (s, 3H), 3.14 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 139.0, 137.4, 135.7, 134.4, 132.3, 129.2, 129.1, 128.9, 126.2, 124.2, 120.4, 117.3, 114.5, 108.2, 89.5, 71.2, 62.5, 60.5, 39.2, 37.0; IR (neat): 2923, 2239(s),

1357(s), 1170, 1160, 1108, 996, 576; HRESIMS Calcd for $[C_{22}H_{21}BrN_2NaO_5S_2]^+$ (M + Na⁺) 558.9967, found 558.9974.

N-((2-((allyloxy)methyl)-1-(methylsulfonyl)-1*H*-indol-3-yl)ethynyl)-*N*methylmethanesulfonamide (1r)

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.4 Hz, 1H), 7.65 (d, J = 7.2 Hz, 1H), 7.42 – 7.30 (m, 2H), 6.04 – 5.87 (m, 1H), 5.33 (dd, J = 17.2, 1.6 Hz, 1H), 5.21 (dd, J = 10.4, 1.2 Hz, 1H), 4.93 (s, 2H), 4.12 (d, J = 5.6 Hz, 2H), 3.36 (s, 3H), 3.30 (s, 3H), 3.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.8, 136.0, 134.2, 128.8, 126.1, 123.9, 120.4, 117.6, 114.1, 106.6, 89.2, 71.5, 62.7, 60.4, 41.6, 39.2, 37.0; IR (neat): 32923, 2850, 2240(s), 1359(s), 1258, 1172, 1109, 999, 766; HRESIMS Calcd for [C₁₇H₂₀N₂NaO₅S₂]⁺ (M + Na⁺) 419.0706, found 419.0711.

N-((2-((but-3-en-2-yloxy)methyl)-1-tosyl-1*H*-indol-3-yl)ethynyl)-*N*methylmethanesulfonamide (1s)

Pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 8.5 Hz, 1H), 7.96 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 7.5 Hz, 1H), 7.35 – 7.30 (m, 1H), 7.29 – 7.23 (m, 1H), 7.18 (d, J = 8.0 Hz, 2H), 5.91 – 5.79 (m, 1H), 5.32 (d, J = 17.0 Hz, 1H), 5.19 (d, J = 10.5 Hz, 1H), 5.03 (d, J = 11.5 Hz, 1H), 4.84 (d, J = 11.5 Hz, 1H), 4.16 – 4.05 (m, 1H), 3.32 (s, 3H),

3.13 (s, 3H), 2.31 (s, 3H), 1.25 (d, J = 6.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 144.9, 140.0, 135.6(7), 135.6(5), 129.5, 129.1, 127.3, 125.8, 123.7, 120.1, 116.1, 114.5, 107.0, 89.1, 77.1, 60.8, 60.7, 39.2, 36.8, 21.5, 21.1; IR (neat): 2930, 2240(s), 1451, 1360(s), 1176, 1165, 997, 747, 578; HRESIMS Calcd for [C₂₄H₂₆N₂NaO₅S₂]⁺ (M + Na⁺) 509.1175, found 509.1168.

N-methyl-*N*-((2-(((2-phenylallyl)oxy)methyl)-1-tosyl-1*H*-indol-3-

yl)ethynyl)methanesulfonamide (1t)

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 7.6 Hz, 1H), 7.53 – 7.45 (m, 2H), 7.40 – 7.22 (m, 5H), 7.11 (d, J = 8.4 Hz, 2H), 5.57 (s, 1H), 5.42 (d, J = 1.2 Hz, 1H), 5.09 (s, 2H), 4.45 (s, 2H), 3.23 (s, 3H), 3.02 (s, 3H), 2.30 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 144.9, 143.9, 139.2, 138.8, 135.8, 135.5, 129.6, 129.1, 128.4, 127.8, 127.3, 126.0(4), 125.9(7), 123.8, 120.3, 114.7, 114.4, 107.7, 89.3, 72.1, 62.7, 60.7, 39.1, 36.8, 21.5; IR (neat): 2927, 2868, 2240(s), 1596, 1445, 1360(s), 1176, 577, 590; HRESIMS Calcd for [C₂₉H₂₈N₂NaO₅S₂]⁺ (M + Na⁺) 571.1332, found 571.1339.

N-methyl-*N*-((6-methyl-2-(((2-phenylallyl)oxy)methyl)-1-tosyl-1*H*-indol-3yl)ethynyl)methanesulfonamide (1u)

IU

18

Pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.95 (s, 1H), 7.90 (d, J = 8.5 Hz, 2H), 7.52 – 7.45 (m, 3H), 7.35 – 7.29 (m, 2H), 7.29 – 7.24 (m, 1H), 7.14 – 7.08 (m, 3H), 5.59 (d, J = 0.5 Hz, 1H), 5.43 (d, J = 1.0 Hz, 1H), 5.08 (s, 2H), 4.46 (s, 2H), 3.23 (s, 3H), 3.03 (s, 3H), 2.50 (s, 3H), 2.30 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 144.7, 143.8, 138.7, 138.5, 136.2, 135.6, 135.5, 129.5, 128.3, 127.7, 127.1, 126.8, 126.0, 125.3, 119.8, 114.6, 114.2, 107.6, 89.1, 71.9, 62.6, 60.7, 39.1, 36.7, 22.0, 21.4; IR (neat): 2923, 2239(s), 1446, 1360(s), 1175, 1111, 998, 579; HRESIMS Calcd for [C₃₀H₃₀N₂NaO₅S₂]⁺ (M + Na⁺) 585.1488, found 585.1491.

N-((5-chloro-2-(((2-phenylallyl)oxy)methyl)-1-tosyl-1*H*-indol-3-yl)ethynyl)-*N*methylmethanesulfonamide (1v)

1v

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.8 Hz, 1H), 7.86 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 2.0 Hz, 1H), 7.47 (d, J = 6.8 Hz, 2H), 7.35 – 7.20 (m, 4H), 7.10 (d, J = 8.0 Hz, 2H), 5.57 (s, 1H), 5.41 (s, 1H), 5.05 (s, 2H), 4.45 (s, 2H), 3.23 (s, 3H), 3.02 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 143.7, 140.5, 138.6, 135.1, 134.0, 130.3, 129.7, 129.6, 128.3, 127.8, 127.3, 126.1, 126.0, 119.8, 115.8, 114.5, 107.0, 89.5, 72.2, 62.5, 59.9, 39.1, 36.9, 21.5; IR (neat): 2926, 2238(s), 1445, 1359(s), 1175, 1113, 999, 584; HRESIMS Calcd for [C₂₉H₂₇ClN₂NaO₅S₂]⁺ (M + Na⁺) 605.0942, found 605.0956.

N-((6-bromo-2-(((2-phenylallyl)oxy)methyl)-1-tosyl-1*H*-indol-3-yl)ethynyl)-*N*methylmethanesulfonamide (1w)

Pale yellow solid (mp 120-121 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 9.0 Hz, 1H), 7.87 (d, *J* = 8.5 Hz, 2H), 7.70 (d, *J* = 1.5 Hz, 1H), 7.52 – 7.46 (m, 2H), 7.45 (dd, *J* = 9.0, 2.0 Hz, 1H), 7.35 – 7.23 (m, 3H), 7.11 (d, *J* = 8.0 Hz, 2H), 5.59 (s, 1H), 5.42 (d, *J* = 1.5 Hz, 1H), 5.07 (s, 2H), 4.46 (s, 2H), 3.24 (s, 3H), 3.03 (s, 3H), 2.30 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.2, 143.7, 140.4, 138.6, 135.2, 134.4, 130.8, 129.6, 128.8, 128.3, 127.8, 127.3, 126.0, 122.9, 117.3, 116.1, 114.5, 106.8, 89.6, 72.2, 62.5, 59.9, 39.1, 36.9, 21.5; IR (neat): 2927, 2240(s), 1596, 1445, 1360(s), 1176, 1113, 999, 667; HRESIMS Calcd for [C₂₉H₂₇BrN₂NaO₅S₂]⁺ (M + Na⁺) 649.0437, found 649.0451.

N-methyl-*N*-((2-(((2-(*p*-tolyl)allyl)oxy)methyl)-1-tosyl-1*H*-indol-3yl)ethynyl)methanesulfonamide (1x)

1x

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 8.4 Hz, 2H), 7.62 – 7.55 (m, 1H), 7.41 – 7.33 (m, 3H), 7.31 – 7.27 (m, 1H), 7.16 – 7.06 (m, 4H), 5.53 (s, 1H), 5.37 (d, *J* = 1.2 Hz, 1H), 5.08 (s, 2H), 4.43 (s, 2H), 3.23 (s, 3H), 3.03 (s, 3H), 2.32 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 143.7, 139.3, 137.5, 135.9, 135.8, 135.6, 129.5, 129.1, 129.0, 127.3, 125.9(3), 125.9(1), 123.8, 120.3, 114.7, 113.5, 107.6, 89.3, 72.1, 62.7, 60.7, 39.1, 36.8, 21.5, 21.1; IR (neat): 2923, 2240(s), 1446, 1365(s), 1170, 1111, 998, 580; HRESIMS Calcd for [C₃₀H₃₀N₂NaO₅S₂]⁺ (M + Na⁺) 585.1488, found 585.1491.

N-((2-(((2-(4-chlorophenyl)allyl)oxy)methyl)-1-tosyl-1*H*-indol-3-yl)ethynyl)-*N*methylmethanesulfonamide (1y)

1y

Pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, J = 7.5 Hz, 1H), 7.84 (d, J = 7.0 Hz, 2H), 7.57 (d, J = 7.0 Hz, 1H), 7.48 – 7.16 (m, 6H), 7.07 (d, J = 7.0 Hz, 2H), 5.55 (s, 1H), 5.41 (s, 1H), 5.05 (s, 2H), 4.43 (s, 2H), 3.25 (s, 3H), 3.06 (s, 3H), 2.28 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 144.9, 142.9, 139.1, 137.1, 135.8, 135.5, 133.5, 129.5, 129.0, 128.4, 127.5, 127.2, 126.0, 123.8, 120.2, 115.2, 114.7, 107.7, 89.4, 72.2, 62.7, 60.6, 39.1, 36.9, 21.5; IR (neat): 2932, 2250(s), 1443, 1370(s), 1260, 1182, 1122, 736, 575; HRESIMS Calcd for [C₂₉H₂₇ClN₂NaO₅S₂]⁺ (M + Na⁺) 605.0942, found 605.0956.

N-methyl-*N*-((2-(((2-methylallyl)oxy)methyl)-1-tosyl-1*H*-indol-3yl)ethynyl)methanesulfonamide (1z)

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.4 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 2H), 7.58 (dd, *J* = 7.6, 0.4 Hz, 1H), 7.39 – 7.33 (m, 1H), 7.31 – 7.27 (m, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 5.03 (d, *J* = 1.2 Hz, 1H), 5.00 (s, 2H), 4.93 (d, *J* = 0.4 Hz, 1H), 3.97 (s, 2H), 3.33 (s, 3H), 3.13 (s, 3H), 2.33 (s, 3H), 1.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 142.1, 139.5, 135.8, 135.7, 129.6, 129.2, 127.4, 125.9, 123.8, 120.2, 114.7, 112.1, 107.5, 89.2, 74.1, 62.6, 60.8, 39.2, 36.9, 21.5, 19.6; IR (neat): 2923, 2239(s), 1446,

1360(s), 1170, 1111, 1089, 998, 579; HRESIMS Calcd for $[C_{24}H_{26}N_2NaO_5S_2]^+$ (M + Na⁺) 509.1175, found 509.1182.

N-((2-((allyloxy)methyl)benzofuran-3-yl)ethynyl)-*N*-methylmethanesulfonamide (3a)

Compound **3a** was prepared according to the above known procedures.¹⁻³ Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.56 (m, 1H), 7.51 – 7.43 (m, 1H), 7.37 – 7.26 (m, 2H), 6.02 – 5.88 (m, 1H), 5.41 – 5.30 (m, 1H), 5.28 – 5.19 (m, 1H), 4.71 (s, 2H), 4.11 (dt, J = 5.6, 1.6 Hz, 2H), 3.35 (s, 3H), 3.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.3, 154.3, 134.1, 128.2, 125.5, 123.3, 120.3, 117.9, 111.6, 102.8, 88.8, 71.5, 62.7, 59.2, 39.3, 36.9; IR (neat): 2922, 2851, 2239(s), 1469, 1356(s), 1158, 945, 747; HRESIMS Calcd for [C₁₆H₁₇NNaO₄S]⁺ (M + Na⁺) 342.0770, found 342.0770.

N-((2-((allyloxy)methyl)-1-tosyl-1*H*-pyrrol-3-yl)ethynyl)-*N*methylmethanesulfonamide (3b)

Compound **3b** was prepared according to the above known procedures.¹⁻⁴ Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.4 Hz, 2H), 7.32 – 7.22 (m, 3H), 6.27 (d, *J* = 3.2 Hz, 1H), 5.84 – 5.69 (m, 1H), 5.25 – 5.08 (m, 2H), 4.72 (s, 2H), 3.84 (dt, *J* = 5.6, 1.2 Hz, 2H), 3.24 (s, 3H), 3.06 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 135.9, 134.5, 134.3, 129.6, 127.6, 123.2, 116.9, 114.0, 111.5, 85.7, 70.6, 62.3, 61.1, 39.1, 36.8, 21.5; IR (neat): 2926, 2238(s), 1445, 1360(s), 1265, 1175, 1111, 1000, 738, 583; HRESIMS Calcd for [C₁₉H₂₂N₂NaO₅S₂]⁺ (M + Na⁺) 445.0862, found 445.0863.

N-((2-((allyloxy)methyl)-4,5-dimethoxyphenyl)ethynyl)-N-

methylmethanesulfonamide (3c)

Compound **3c** was prepared according to the above known procedures.¹⁻³ Pale yellow solid (mp 100-101 °C). ¹H NMR (500 MHz, CDCl₃) δ 6.97 (s, 1H), 6.88 (s, 1H), 6.06 – 5.90 (m, 1H), 5.31 (dd, J = 17.5, 1.5 Hz, 1H), 5.20 (dd, J = 10.0, 1.0 Hz, 1H), 4.59 (s,

2H), 4.06 (t, J = 1.0 Hz, 2H), 3.90 (s, 3H), 3.86 (s, 3H), 3.29 (s, 3H), 3.12 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 149.4, 148.0, 134.8, 133.6, 117.1, 114.4, 113.1, 111.1, 85.7, 71.3, 70.1, 67.3, 56.0, 55.9, 39.2, 36.7; IR (neat): 2927, 2240, 1596, 1445, 1360(s), 1176, 1088, 960, 590; HRESIMS Calcd for $[C_{16}H_{21}NNaO_5S]^+$ (M + Na⁺) 362.1033, found 362.1035.

(*E*)-*N*-((2-((but-2-en-1-yloxy)methyl)-1-tosyl-1*H*-indol-3-yl)ethynyl)-*N*methylmethanesulfonamide (3d)

Compound **3d** was prepared according to the general procedures for the synthesis of ynamides **1**.¹⁻³ Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.4 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 2H), 7.66 – 7.51 (m, 1H), 7.41 – 7.32 (m, 1H), 7.30 – 7.24 (m, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 5.84 – 5.65 (m, 1H), 5.65 – 5.49 (m, 1H), 4.98 (s, 2H), 3.98 (d, *J* = 6.4 Hz, 2H), 3.33 (s, 3H), 3.13 (s, 3H), 2.32 (s, 3H), 1.72 (dd, *J* = 6.4, 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 139.4, 135.8, 135.7, 129.5(4), 129.4(6), 129.0, 127.3, 125.8, 123.7, 120.1, 114.6, 107.3, 89.2, 70.8, 62.3, 60.6, 39.2, 36.8, 21.4, 17.7; IR (neat): 2930, 2245(s), 1360, 1107, 1090, 748, 580; HRESIMS Calcd for [C₂₄H₂₆N₂NaO₅S₂]⁺ (M + Na⁺) 509.1175, found 509.1179.

N-allyl-*N*-((3-((*N*-methylmethylsulfonamido)ethynyl)-1-tosyl-1*H*-indol-2yl)methyl)methanesulfonamide (3e)

Compound **3e** was prepared according to the above known procedures.¹⁻³ Pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.57 (d, *J* = 7.5 Hz, 1H), 7.43 – 7.34 (m, 1H), 7.33 – 7.27 (m, 1H), 7.19 (d, *J* = 8.0 Hz, 2H), 5.83 – 5.67 (m, 1H), 5.14 (d, *J* = 17.0 Hz, 1H), 5.07 (d, *J* = 10.0 Hz, 1H), 4.98 (s, 2H), 3.90 (d, *J* = 6.5 Hz, 2H), 3.35 (s, 3H), 3.16 (s, 3H), 2.96 (s, 3H), 2.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.5, 136.9, 136.4, 134.8, 132.5, 130.1, 130.0, 126.5, 126.2, 124.5, 120.3, 118.9, 115.2, 109.2, 91.0, 60.2, 50.3, 44.0, 39.9, 39.2, 37.2, 21.5; IR (neat): 2926, 2235(s), 1440, 1363(s), 1265, 1175, 1111, 1000, 738, 585; HRESIMS Calcd for [C₂₄H₂₇N₃NaO₆S₃]⁺ (M + Na⁺) 572.0954, found 572.0956.

N-((2-((allylthio)methyl)-1-tosyl-1H-indol-3-yl)ethynyl)-N-

methylmethanesulfonamide (3f)

Compound **3f** was prepared according to the above known procedures.^{1-3 1}H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 8.5 Hz, 1H), 7.79 (d, *J* = 8.5 Hz, 2H), 7.53 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.34 – 7.23 (m, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 5.96 – 5.78 (m, 1H), 5.30 – 5.20 (m, 1H), 5.16 – 5.04 (m, 1H), 4.28 (s, 2H), 3.33 (s, 3H), 3.29 (d, *J* = 7.0 Hz, 2H), 3.15 (s, 3H), 2.31 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.1, 141.7, 135.8, 135.4, 134.2, 129.7, 129.4, 126.8, 125.4, 124.0, 119.7, 117.0, 114.7, 105.6, 89.6, 60.8, 39.2, 37.0, 35.3, 27.7, 21.4; IR (neat): 2930, 2250(s), 1365, 1127, 1090, 750, 590; HRESIMS Calcd for [C₂₃H₂₄N₂NaO₄S₃]⁺ (M + Na⁺) 511.0790, found 511.0796.

N-((2-(2-(allyloxy)ethyl)-1-tosyl-1*H*-indol-3-yl)ethynyl)-*N*methylmethanesulfonamide (3g)

3g

Compound **3g** was prepared according to the general procedures for the synthesis of ynamides **1**.¹⁻³ Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 6.8 Hz, 1H), 7.62 (d, *J* = 6.8 Hz, 2H), 7.53 (dd, *J* = 6.0, 0.4 Hz, 1H), 7.36 – 7.21 (m, 2H), 7.14 (d, *J* = 6.4 Hz, 2H), 5.96 – 5.80 (m, 1H), 5.32 – 5.22 (m, 1H), 5.14 (dd, *J* = 8.0, 1.2 Hz, 1H), 4.01 (dt, *J* = 4.4, 0.8 Hz, 2H), 3.81 (t, *J* = 5.6 Hz, 2H), 3.49 (t, *J* = 5.6 Hz, 2H), 3.29 (s, 3H), 3.12 (s, 3H), 2.27 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.1, 141.6, 136.0, 135.6, 134.8, 129.9(0), 129.8(6), 126.3, 125.1, 124.0, 119.5, 116.6, 114.8, 106.0, 89.0, 71.6, 69.4, 60.8, 39.3, 36.7, 28.8, 21.5; IR (neat): 2931, 2241(s), 1359, 1107, 1089, 748, 577; HRESIMS Calcd for [C₂₄H₂₆N₂NaO₅S₂]⁺ (M + Na⁺) 509.1175, found 509.1179.

N-((2-((allyloxy)methyl)phenyl)ethynyl)-*N*-methylmethanesulfonamide (3h)

Compound **3h** was prepared according to the general procedures for the synthesis of ynamides **1**.¹⁻³ Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, 1H, *J* = 7.6 Hz), 7.41 – 7.36 (m, 1H), 7.32 – 7.26 (m, 1H), 7.25 – 7.19 (m, 1H), 6.02 – 5.91 (m, 1H), 5.35 – 5.27 (m, 1H), 5.24 – 5.17 (m, 1H), 4.63 (s, 2H), 4.09 – 4.06 (m, 2H), 3.29 (s, 3H), 3.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.5, 134.7, 131.3, 127.9, 127.8, 127.2, 121.1, 116.9, 87.3, 71.3, 70.2, 67.4, 39.0, 36.7; IR (neat): 3016, 2931, 2856, 2235, 1360, 1163, 959, 779, 516; HRESIMS Calcd for [C₁₄H₁₇NNaO₃S]⁺ (M + Na⁺) 302.0821, found 302.0825.

(S) - N - ((2 - ((ally loxy) methyl) - 1 - tosyl - 1H - indol - 3 - yl) ethynyl) - N - (1 - 1) - (1 - 1) - N - (1 - 1) - (1 -

phenylethyl)methanesulfonamide (5a)

Compound **5a** was prepared according to the general procedures for the synthesis of ynamides **1**.¹⁻³ Pale yellow oil. $[\alpha]_D{}^{20} = -246.7 \circ (c = 1.0, CHCl_3)$. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.4 Hz, 2H), 7.56 – 7.47 (m, 3H), 7.44 – 7.33 (m, 4H), 7.33 – 7.25 (m, 1H), 7.19 (d, J = 8.0 Hz, 2H), 6.00 – 5.82 (m, 1H), 5.33 – 5.22 (m, 2H), 5.17 (dd, J = 10.8, 1.6 Hz, 1H), 5.00 (d, J = 0.8 Hz, 2H), 4.01 (dt, J = 5.6, 1.2 Hz, 2H), 2.81 (s, 3H), 2.34 (s, 3H), 1.80 (d, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 144.9, 139.6, 139.3, 135.9, 135.8, 134.6, 129.8, 129.3, 128.8, 128.7, 127.4, 127.0, 125.9, 123.8, 120.2, 117.0, 114.7, 107.8, 85.8, 71.2, 64.9, 62.8, 59.1, 39.1, 21.5,

19.9; IR (neat): 2925, 2854, 2239(s), 1451, 1361, 1166, 1094, 577; HRESIMS Calcd for $[C_{30}H_{30}N_2NaO_5S_2]^+$ (M + Na⁺) 585.1488, found 585.1491.

Representative synthetic procedures for the preparation of chiral ynamides 5b-5i:^{3f}

(S)-3-((2-((allyloxy)methyl)-1-tosyl-1*H*-indol-3-yl)ethynyl)-4-phenyloxazolidin-2-one (5b)

Pale yellow oil. $[\alpha]_D^{20} = -41.5$ °(c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 8.4 Hz, 2H), 7.58 – 7.37 (m, 5H), 7.36 – 7.22 (m, 2H), 7.21 – 7.08 (m, 3H), 5.93 – 5.66 (m, 1H), 5.33 – 5.07 (m, 3H), 4.94 – 4.70 (m, 3H), 4.34 (dd, *J* = 8.4, 7.6 Hz, 1H), 3.80 (d, *J* = 5.6 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.2, 144.9, 139.1, 135.9, 135.8, 135.7, 134.6, 129.7, 129.5, 129.4, 128.9, 127.4, 127.0, 125.8, 123.7, 120.3, 116.9, 114.5, 107.3, 84.3, 70.9, 70.8, 64.0, 62.5, 62.3, 21.5; IR (neat): 2920, 2257(s), 1779(s), 1374, 1176, 1087, 575; HRESIMS Calcd for $[C_{30}H_{26}N_2NaO_5S]^+$ (M + Na⁺) 549.1455, found 549.1458.

(S)-3-((2-((allyloxy)methyl)-1-tosyl-1*H*-indol-3-yl)ethynyl)-4-benzhydryloxazolidin-2-one (5c)

Pale yellow solid (mp 140-141°C). $[\alpha]_D^{20} = -30.5$ °(c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 1H), 7.97 (d, *J* = 8.4 Hz, 2H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.42 – 7.22 (m, 11H), 7.18 (d, *J* = 8.4 Hz, 2H), 7.15 – 7.04 (m, 1H), 6.05 – 5.86 (m, 1H), 5.33 (d, *J* = 17.2 Hz, 1H), 5.21 (d, *J* = 10.4 Hz, 1H), 5.11 – 4.83 (m, 3H), 4.56 (d, *J* = 5.2 Hz, 2H), 4.35 – 4.21 (m, 1H), 4.05 (d, *J* = 5.2 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 144.8, 139.2, 139.1, 138.4, 135.6, 135.5, 134.4, 129.4, 128.9, 128.7, 128.3, 128.1, 127.5, 127.3, 127.2, 125.7, 123.5, 120.4, 116.9, 114.3, 107.4, 84.6, 70.9, 66.5, 64.5, 62.4, 59.8, 53.2, 21.3; IR (neat): 2961, 2923, 2250(s), 1787(s), 1731, 1210, 1170, 580; HRESIMS Calcd for [C₃₇H₃₂N₂NaO₅S]⁺ (M + Na⁺) 639.1924, found 639.1925.

(S)-3-((2-((allyloxy)methyl)-1-tosyl-1H-indol-3-yl)ethynyl)-4-(*tert*-butyl)oxazolidin-2one (5d)

Pale yellow solid (mp 135-136°C). $[\alpha]_D^{20} = -20.7$ °(c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 8.4 Hz, 2H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.42 – 7.32 (m, 1H), 7.31 – 7.23 (m, 1H), 7.17 (d, *J* = 8.4 Hz, 2H), 6.02 – 5.85 (m, 1H), 5.30 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.19 (dd, *J* = 10.4, 1.2 Hz, 1H), 5.10 – 4.94 (m, 2H), 4.44 (t, *J* = 9.2 Hz, 1H), 4.27 (dd, *J* = 9.2, 5.2 Hz, 1H), 4.06 (d, *J* = 5.6 Hz, 2H), 3.88 (dd, *J* = 8.8, 5.2 Hz, 1H), 2.32 (s, 3H), 1.11 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 156.3, 144.9,

139.2, 135.8, 135.7, 134.6, 129.5, 129.1, 127.4, 125.9, 123.8, 120.3, 117.0, 114.6, 107.7, 86.6, 71.2, 66.2, 65.5, 63.3, 62.6, 34.9, 25.3, 21.5; IR (neat): 2967, 2256(s), 1773(s), 1371, 1187, 1137, 662, 584; HRESIMS Calcd for $[C_{28}H_{30}N_2NaO_5S]^+$ (M + Na⁺) 529.1768, found 529.1771.

(S)-3-((2-((allyloxy)methyl)-5-methyl-1-tosyl-1*H*-indol-3-yl)ethynyl)-4-(*tert*-butyl)oxazolidin-2-one (5e)

Pale yellow solid (mp 142-143°C). $[\alpha]_D^{20} = -10.5$ °(c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.4 Hz, 1H), 7.91 (d, *J* = 8.4 Hz, 2H), 7.37 (s, 1H), 7.16 (d, *J* = 8.4 Hz, 3H), 6.00 – 5.83 (m, 1H), 5.29 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.18 (d, *J* = 10.4 Hz, 1H), 5.00 (s, 2H), 4.44 (t, *J* = 9.2 Hz, 1H), 4.28 (dd, *J* = 9.2, 5.2 Hz, 1H), 4.05 (d, *J* = 5.6 Hz, 2H), 3.88 (dd, *J* = 8.8, 5.2 Hz, 1H), 2.41 (s, 3H), 2.32 (s, 3H), 1.11 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 156.3, 144.8, 139.3, 135.8, 134.6, 134.1, 133.5, 129.5, 129.3, 127.3, 120.1, 117.0, 114.3, 107.5, 86.5, 71.1, 66.3, 65.5, 63.4, 62.6, 34.9, 25.3, 21.5, 21.1; IR (neat): 2961, 2923, 2254(s), 1777(s), 1731, 1217, 1176, 580; HRESIMS Calcd for [C₂₉H₃₂N₂NaO₅S]⁺ (M + Na⁺) 543.1924, found 543.1926.

(S)-3-((2-((allyloxy)methyl)-6-chloro-1-tosyl-1*H*-indol-3-yl)ethynyl)-4-(*tert*-butyl)oxazolidin-2-one (5f)

Pale yellow solid (mp 150-151°C). $[\alpha]_D^{20} = -30.5$ °(c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 1.6 Hz, 1H), 7.92 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 1H), 7.24 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.20 (d, *J* = 8.4 Hz, 2H), 5.98 – 5.84 (m, 1H), 5.29 (dd, *J* = 17.6, 1.6 Hz, 1H), 5.19 (d, *J* = 10.4 Hz, 1H), 4.98 (d, *J* = 1.6 Hz, 2H), 4.44 (t, *J* = 8.8 Hz, 1H), 4.27 (dd, *J* = 9.2, 5.2 Hz, 1H), 4.04 (d, *J* = 5.6 Hz, 2H), 3.88 (dd, *J* = 8.8, 5.2 Hz, 1H), 2.34 (s, 3H), 1.10 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 145.2, 140.5, 135.4, 134.4, 134.1, 130.3, 129.7, 129.6, 127.3, 126.1, 119.9, 117.2, 115.8, 107.0, 87.0, 71.3, 66.2, 65.6, 62.6, 62.5, 34.9, 25.3, 21.5; IR (neat): 2967, 2261(s), 1174(s), 1371, 1179, 1137, 1071, 663, 585; HRESIMS Calcd for [C₂₈H₂₉ClN₂NaO₅S]⁺ (M + Na⁺) 563.1378, found 563.1375.

(S)-3-((2-((allyloxy)methyl)-5-bromo-1-tosyl-1*H*-indol-3-yl)ethynyl)-4-(*tert*-butyl)oxazolidin-2-one (5g)

Pale yellow solid (mp 170-171°C). $[\alpha]_D^{20} = -10.5$ °(c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.8 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 2H), 7.69 (s, 1H), 7.42 (d, *J* = 8.8 Hz, 1H), 7.16 (d, *J* = 8.4 Hz, 2H), 5.98 – 5.83 (m, 1H), 5.29 (d, *J* = 17.2 Hz, 1H), 5.18 (d, *J* = 10.4 Hz, 1H), 4.98 (s, 2H), 4.43 (t, *J* = 9.2 Hz, 1H), 4.26 (dd, *J* = 9.2, 5.2 Hz, 1H), 4.05 (d, *J* = 5.6 Hz, 2H), 3.88 (dd, *J* = 8.8, 5.2 Hz, 1H), 2.29 (s, 3H), 1.08 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 145.2, 140.2, 135.2, 134.4, 134.3, 130.7, 129.5, 128.6, 127.2, 122.9, 117.2, 117.1, 116.0, 106.8, 87.0, 71.2, 66.1, 65.5, 62.4, 62.3, 34.8, 25.2, 21.4; IR (neat): 2963, 2257(s), 1771(s), 1445, 1372, 1247, 1178, 581; HRESIMS Calcd for [C₂₈H₂₉BrN₂NaO₅S]⁺ (M + Na⁺) 607.0873, found 607.0879.

methyl (S)-2-((allyloxy)methyl)-3-((4-(*tert*-butyl)-2-oxooxazolidin-3-yl)ethynyl)-1tosyl-1*H*-indole-5-carboxylate (5h)

Pale yellow solid (mp 150-151°C). $[\alpha]_D^{20} = -31.5$ °(c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 1.2 Hz, 1H), 8.14 (d, *J* = 8.8 Hz, 1H), 8.01 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.92 (d, *J* = 8.4 Hz, 2H), 7.17 (d, *J* = 8.4 Hz, 2H), 5.99 – 5.80 (m, 1H), 5.29 (ddd, *J* = 17.2, 3.2, 1.6 Hz, 1H), 5.18 (dd, *J* = 10.4, 1.6 Hz, 1H), 5.08 – 4.93 (m, 2H), 4.45 (t, *J* = 9.0 Hz, 1H), 4.27 (dd, *J* = 9.2, 5.2 Hz, 1H), 4.05 (d, *J* = 5.6 Hz, 2H), 3.95 – 3.83 (m, 4H), 2.30 (s, 3H), 1.10 (s, 9H); δ^{13} C NMR (100 MHz, CDCl₃) δ 166.8, 156.2, 145.3, 140.6, 138.2, 135.2, 134.3, 129.6, 128.9, 127.4, 126.8, 125.8, 122.5, 117.2, 114.3, 107.9, 87.1, 71.3, 66.2, 65.6, 62.5, 62.4, 52.1, 34.9, 25.2, 21.4; IR (neat): 2951, 2933, 2255(s), 1790(s), 1780(s), 1731, 1218, 1175, 580; HRESIMS Calcd for [C₃₀H₃₂N₂NaO₇S]⁺ (M + Na⁺) 587.1822, found 587.1829.

(S)-3-((2-((allyloxy)methyl)-6-methyl-1-tosyl-1*H*-indol-3-yl)ethynyl)-4-(*tert*butyl)oxazolidin-2-one (5i)

Pale yellow solid (mp 130-131°C). $[\alpha]_D^{20} = -22.7$ °(c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.77 (m, 3H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 1H), 6.01 – 5.81 (m, 1H), 5.29 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.17 (dd, *J* = 10.4,

1.2 Hz, 1H), 5.08 - 4.88 (m, 2H), 4.43 (t, J = 9.2 Hz, 1H), 4.27 (dd, J = 9.2, 5.2 Hz, 1H), 4.04 (d, J = 5.6 Hz, 2H), 3.87 (dd, J = 8.8, 5.2 Hz, 1H), 2.48 (s, 3H), 2.32 (s, 3H), 1.11 (s, 9H); 13 C NMR (100 MHz, CDCl₃) δ 156.3, 144.8, 138.6, 136.2, 136.1, 135.8, 134.6, 129.5, 127.3, 126.8, 125.3, 119.9, 117.0, 114.7, 107.6, 86.5, 71.1, 66.2, 65.5, 63.4, 62.7, 34.9, 25.3, 22.1, 21.5; IR (neat): 2968, 2256(s), 1174(s), 1371, 1177, 662, 585; HRESIMS Calcd for [C₂₉H₃₂N₂NaO₅S]⁺ (M + Na⁺) 543.1924, found 543.1925.

N-((2-(((allyl-1,1-d₂)oxy)methyl)-1-tosyl-1H-indol-3-yl)ethynyl)-N-

methylmethanesulfonamide (1a')

1,1-dideuterioallyl alcohol:^{3b}

Under an argon atmosphere, LiAlD₄ (0.52 g, 12.5 mmol) and anhydrous ether (20 mL) were added into a 50 mL flame-dried flask fitted with magnetic stirrer bar at -10 °C. Then, a solution of acryloyl chloride (1.5 mL, 17.8 mmol) in ether was added dropwise over 10 min, The resulting mixture was warmed to rt slowly and stirred for 10 h. The mixture was cooled to -10 °C and H₂O (1.0 mL) was slowly added over a 5 min. period. After stirring for another 15 min, 15% aqueous NaOH solution (1.0 mL) and then H₂O (1.0 mL) were added. The resulting slurry was stirred for 1 h and then filtered. The filtrate was dried over Na₂SO₄. The solvent was removed carefuly on a rotary evaporator (atmospheric pressure, 37 °C) to afford a colorless liquid, which was used in the next step without further purification.

propargyl 1,1-dideuterioallyl ether:

NaH (18 mmol, 0.43 g) was added to a mixture of the 1,1-dideuterioallyl alcohol (15 mmol, 0.90 g) and DMF (15 mL) at rt. After stirring at rt for 1 h, propargyl bromide (18 mmol, 2.15 g) was added. The reaction mixture was stirred for another 5 h at rt then quenched with a saturated aqueous solution of NH₄Cl (30 mL). The resulting solution was extracted with EtOAc (2*30 mL) and washed with brine (2*30 mL). The combined organic layers were dried over anhydrous MgSO₄ and concentrated under reduced pressure, and the residue was purified by chromatography on silica gel (eluent:

hexanes/ethyl acetate) to afford the desired propargyl 1,1-dideuterioallyl ether in 60% yield (0.88 g).

Compound **1a'** was prepared according to the above known procedures.¹⁻³ Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.4 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 7.6 Hz, 1H), 7.44 – 7.32 (m, 1H), 7.31 – 7.24 (m, 1H), 7.18 (d, *J* = 8.0 Hz, 2H), 5.93 (dd, *J* = 17.2, 10.4 Hz, 1H), 5.31 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.21 (dd, *J* = 10.4, 1.6 Hz, 1H), 5.01 (s, 2H), 3.33 (s, 3H), 3.14 (s, 3H), 2.33 (s, 3H); IR (neat): 2927, 2240(s), 1450, 1358(s), 1176, 1109, 997, 764; HRESIMS Calcd for [C₂₃H₂₂D₂N₂NaO₅S₂]⁺ (M + Na⁺) 497.1144, found 497.1152.

2-deuterioallyl alcohol:^{3d}

Under an argon atmosphere, LiAlD₄ (0.52 g, 12.5 mmol) and anhydrous ether (20 mL) were added into a 50 mL flame-dried flask fitted with magnetic stirrer bar at -10 $^{\circ}$ C. Then,

a solution of allyl alcohol (1.0 g, 17.8 mmol) in ether was added dropwise over 10 min, The resulting mixture was warmed to rt slowly and stirred for 24 h. The mixture was cooled to -10 $^{\circ}$ C and H₂O (1.0 mL) was slowly added over a 5 min. period. After stirring for another 15 min, 15% aqueous NaOH solution (1.0 mL) and then H₂O (1.0 mL) were added. The resulting slurry was stirred for 1 h and then filtered. The filtrate was dried over Na₂SO₄. The solvent was removed carefuly on a rotary evaporator (atmospheric pressure, 37 $^{\circ}$ C) to afford a colorless liquid, which was used in the next step without further purification.

propargyl 2-deuterioallyl ether:

NaH (18 mmol, 0.43 g) was added to a mixture of the 2-deuterioallyl alcohol (15 mmol, 0.89 g) and DMF (15 mL) at rt. After stirring at rt for 1 h, propargyl bromide (18 mmol, 2.15 g) was added. The reaction mixture was stirred for another 5 h at rt then quenched with a saturated aqueous solution of NH₄Cl (30 mL). The resulting solution was extracted with EtOAc (2*30 mL) and washed with brine (2*30 mL). The combined organic layers were dried over anhydrous MgSO₄ and concentrated under reduced pressure, and the residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to afford the desired propargyl 2-deuterioallyl ether in 60% yield (0.87 g).

Compound **1a**" was prepared according to the above known procedures.¹⁻³ Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 7.6 Hz, 1H), 7.41 – 7.33 (m, 1H), 7.32 – 7.23 (m, 1H), 7.17 (d, *J* = 8.4 Hz, 2H), 6.00 – 5.87 (m, 0.1H), 5.31 (d, *J* = 1.6 Hz, 1H), 5.21 (s, 1H), 5.02 (s, 2H), 4.06 (s, 2H), 3.33 (s, 3H), 3.13 (s, 3H), 2.31 (s, 3H); IR (neat): 2920, 2230(s), 1359(s), 1275, 1260, 1176, 764, 749; HRESIMS Calcd for $[C_{23}H_{23}DN_2O_5S_2]^+$ (M + Na⁺) 496.1082, found 496.1079.

General procedure for the synthesis of indole-fused bridged [4.2.1] lactones 2:

HNTf₂ (0.04 mmol, 11.2 mg) was added to a mixture of the ynamide **1** (0.20 mmol) and DCE (4.0 mL) at room temperature. Then, the reaction mixture was stirred at 40 $^{\circ}$ C and the progress of the reaction was monitored by TLC. The reaction typically took 24 h. Upon completion, the mixture was concentrated and the residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to afford the desired indole-fused bridged [4.2.1] lactone **2**.

7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-b]indol-2(1H)-one (2a)

2a

Compound **2a** was prepared in 77% yield (58.7 mg) according to the general procedure (Table 2, entry 1). Pale yellow solid (mp 190-191 °C). ¹H NMR (400 MHz, CDCl₃) δ
8.23 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 8.4 Hz, 2H), 7.49 – 7.39 (m, 1H), 7.40 – 7.23 (m, 2H), 7.17 (d, J = 8.4 Hz, 2H), 5.09 (t, J = 7.2 Hz, 1H), 3.94 (dt, J = 17.2, 4.4 Hz, 1H), 3.84 (d, J = 8.0 Hz, 1H), 2.96 – 2.80 (m, 1H), 2.76 – 2.61 (m, 1H), 2.47 – 2.34 (m, 1H), 2.31 (s, 3H), 1.87 (d, J = 12.4 Hz, 1H), 1.84 – 1.75 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 175.5, 145.1, 136.7, 136.3, 135.8, 129.9, 128.5, 126.2, 124.9, 123.9, 121.4, 117.7, 115.4, 78.4, 37.0 35.9, 31.8, 21.6, 19.8; IR (neat): 2927, 1763(s), 1451, 1376, 1358, 1166, 1148, 974, 763; HRESIMS Calcd for [C₂₁H₁₉NNaO₄S]⁺ (M + Na⁺) 404.0927, found 404.0927.

4-allyl-9-tosyl-4,9-dihydropyrano[3,4-b]indol-3(1H)-one (2aa)

2aa

¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.0 Hz, 1H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.47 – 7.34 (m, 2H), 7.33 – 7.17 (m, 3H), 5.85 – 5.64 (m, 2H), 5.55 – 5.41 (m, 1H), 4.96 – 4.81 (m, 2H), 4.08 – 3.96 (m, 1H), 2.93 – 2.80 (m, 1H), 2.75 – 2.63 (m, 1H), 2.35 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.9, 145.6, 137.0, 134.7, 132.2, 130.1, 127.9, 127.3, 126.4, 125.5, 124.1, 119.5, 118.9, 116.3, 114.5, 67.0, 39.2, 36.7, 21.6; IR (neat): 2994, 1769(s), 1758, 1382, 1245, 1057, 913, 747; HRESIMS Calcd for $[C_{21}H_{19}NNaO_4S]^+$ (M + Na⁺) 404.0927, found 404.0927.

10-methyl-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-*b*]indol-2(1*H*)-one (2b)

Compound **2b** was prepared in 65% yield (51.4 mg) according to the general procedure (Table 2, entry 2). Pale yellow solid (mp 195-196 °C). ¹H NMR (400 MHz, CDCl₃) δ

8.10 (d, J = 8.4 Hz, 1H), 7.57 – 7.48 (m, 2H), 7.24 (s, 1H), 7.17 (d, J = 8.0 Hz, 2H), 7.13 (dd, J = 8.4, 1.2 Hz, 1H), 5.09 (t, J = 7.2 Hz, 1H), 3.93 (dt, J = 17.2, 4.4 Hz, 1H), 3.82 (d, J = 8.0 Hz, 1H), 2.90 – 2.80 (m, 1H), 2.78 – 2.63 (m, 1H), 2.42 (s, 3H), 2.41 – 2.36 (m, 1H), 2.33 (s, 3H), 1.87 (d, J = 12.4 Hz, 1H), 1.85 – 1.77 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 144.9, 136.8, 135.8, 134.6, 133.6, 129.9, 128.8, 126.2, 126.1, 121.4, 117.7, 115.2, 78.4, 36.9, 35.9, 31.8, 21.5, 21.2, 19.9; IR (neat): 2923, 2854, 1768(s), 1461, 1357, 1177, 1152, 1043, 744; HRESIMS Calcd for $[C_{22}H_{21}NNaO_4S]^+$ (M + Na⁺) 418.1083, found 418.1080.

10-methoxy-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-*b*]indol-2(1*H*)-one (2c)

Compound **2c** was prepared in 66% yield (54.3 mg) according to the general procedure (Table 2, entry 3). Pale yellow solid (mp 200-201 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 9.2 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.17 (d, *J* = 8.4 Hz, 2H), 6.92 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.87 (d, *J* = 2.4 Hz, 1H), 5.10 (t, *J* = 7.2 Hz, 1H), 3.92 (dt, *J* = 17.2, 4.4 Hz, 1H), 3.83 (s, 3H), 3.78 (d, *J* = 8.0 Hz, 1H), 2.93 – 2.77 (m, 1H), 2.76 – 2.65 (m, 1H), 2.47 – 2.35 (m, 1H), 2.33 (s, 3H), 1.87 (d, *J* = 12.0 Hz, 1H), 1.85 – 1.77 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 156.9, 145.0, 137.5, 135.6, 130.9, 129.8, 129.6, 126.1, 121.7, 116.5, 113.6, 100.4, 78.4, 55.6, 36.9, 36.0, 31.7, 21.5, 19.9; IR (neat): 2923, 2852, 1773(s), 1475, 1458, 1356, 1150, 1087, 1042, 763, 748; HRESIMS Calcd for [C₂₂H₂₁NNaO₅S]⁺ (M + Na⁺) 434.1033, found 434.1034.

10-fluoro-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-b]indol-2(1H)-one (2d)

Compound **2d** was prepared in 73% yield (58.3 mg) according to the general procedure (Table 2, entry 4). Pale yellow solid (mp 188-189 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.26 – 8.13 (m, 1H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 8.4 Hz, 2H), 7.11 (dd, *J* = 8.8, 2.8 Hz, 1H), 7.08 – 6.95 (m, 1H), 5.11 (t, *J* = 7.2 Hz, 1H), 3.93 (dt, *J* = 17.2, 4.0 Hz, 1H), 3.74 (d, *J* = 8.0 Hz, 1H), 2.99 – 2.79 (m, 1H), 2.77 – 2.63 (m, 1H), 2.48 – 2.37 (m, 1H), 2.35 (s, 3H), 1.89 (d, *J* = 12.4 Hz, 1H), 1.86 – 1.79 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 175.2, 160.0 (d, *J* = 241.7 Hz), 145.4, 138.5, 135.5, 132.5, 130.0, 129.7 (d, *J* = 9.6 Hz), 126.1, 121.2 (d, *J* = 3.9 Hz), 116.7 (d, *J* = 9.1 Hz), 112.7 (d, *J* = 25.0 Hz), 103.5 (d, *J* = 24.4 Hz), 78.4, 36.8, 36.0, 31.6, 21.6, 20.0; IR (neat): 2922, 1773(s), 1458, 1376, 1358, 1265, 1176, 1150, 704; HRESIMS Calcd for [C₂₁H₁₈FNNaO₄S]⁺ (M + Na⁺) 422.0833, found 422.0836.

10-chloro-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-b]indol-2(1H)-one (2e)

2e

Compound **2e** was prepared in 66% yield (54.7 mg) according to the general procedure (Table 2, entry 5). Pale yellow solid (mp 184-185 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 8.8 Hz, 1H), 7.54 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 2.0 Hz, 1H), 7.31 – 7.14 (m, 3H), 5.11 (t, J = 7.2 Hz, 1H), 3.93 (dt, J = 17.2, 4.4 Hz, 1H), 3.77 (d, J = 8.0 Hz, 1H), 2.92 – 2.78 (m, 1H), 2.77 – 2.67 (m, 1H), 2.46 – 2.36 (m, 1H), 2.35 (s, 3H), 1.88 (d, J = 12.4 Hz, 1H), 1.85 – 1.77 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.1, 145.4, 138.3, 135.6, 134.6, 130.1, 129.8(0), 129.7(5), 126.2, 125.0, 120.7, 117.5, 116.5, 78.3, 36.8,

35.9, 31.6, 21.6, 19.9; IR (neat): 2923, 2852, 1769(s), 1450, 1377, 1355, 1159, 1043, 587; HRESIMS Calcd for $[C_{21}H_{18}CINNaO_4S]^+$ (M + Na⁺) 438.0537, found 438.0539.

10-bromo-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-b]indol-2(1H)-one (2f)

Compound **2f** was prepared in 70% yield (67.5 mg) according to the general procedure (Table 2, entry 6). Pale yellow solid (mp 245-246 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.8 Hz, 1H), 7.60 (d, *J* = 1.6 Hz, 1H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.41 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 5.11 (t, *J* = 7.2 Hz, 1H), 3.93 (dt, *J* = 17.2, 4.4 Hz, 1H), 3.77 (d, *J* = 8.0 Hz, 1H), 2.92 – 2.77 (m, 1H), 2.76 – 2.66 (m, 1H), 2.46 – 2.37 (m, 1H), 2.35 (s, 3H), 1.87 (d, *J* = 12.4 Hz, 1H), 1.85 – 1.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.1, 145.5, 138.1, 135.6, 135.0, 130.2, 130.1, 127.7, 126.2, 120.6, 120.5, 117.4, 116.8, 78.3, 36.9, 35.9, 31.6, 21.6, 19.9; IR (neat): 2292, 2850, 1768(s), 1450, 1375, 1355, 1157, 1088, 663, 584; HRESIMS Calcd for [C₂₁H₁₈BrNNaO₄S]⁺ (M + Na⁺) 482.0032, found 482.0039.

7-tosyl-10-(trifluoromethyl)-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-*b*]indol-2(1*H*)-one (2g)

Compound **2g** was prepared in 78% yield (70.0 mg) according to the general procedure (Table 2, entry 7). Pale yellow solid (mp 190-191 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 8.8 Hz, 1H), 7.76 (s, 1H), 7.63 – 7.52 (m, 3H), 7.30 – 7.19 (m, 2H), 5.13 (t, *J* = 7.2 Hz, 1H), 3.96 (dt, *J* = 17.2, 4.4 Hz, 1H), 3.88 (d, *J* = 7.6 Hz, 1H), 2.94 – 2.82 (m,

1H), 2.81 - 2.68 (m, 1H), 2.50 - 2.39 (m, 1H), 2.36 (s, 3H), 1.91 (d, J = 12.4 Hz, 1H), 1.89 - 1.78 (m, 1H); ¹³C NMR (212.5 MHz, CDCl₃) δ 175.1, 145.7, 138.6, 137.7, 135.5, 130.2, 128.1, 126.3 (q, J = 31.6 Hz), 126.2, 124.4 (q, J = 270.3 Hz), 121.5 (q, J = 3.2 Hz), 120.9, 115.6, 115.3 (q, J = 3.9 Hz), 78.4, 36.9, 35.8, 31.5, 21.6, 19.8; IR (neat): 2922, 2850, 1770(s), 1379, 1325, 1168, 1122, 579; HRESIMS Calcd for [C₂₂H₁₈F₃NNaO₄S]⁺ (M + Na⁺) 472.0801, found 472.0799.

2-oxo-7-tosyl-1,2,4,5,6,7-hexahydro-1,4-methanooxocino[5,4-*b*]indole-10-carbonitrile (2h)

Compound **2h** was prepared in 60% yield (48.7 mg) according to the general procedure (Table 2, entry 8). Pale yellow solid (mp 225-226 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.35 (dd, *J* = 8.8, 0.8Hz, 1H), 7.82 (d, *J* = 1.2 Hz, 1H), 7.62 – 7.53 (m, 3H), 7.25 (d, *J* = 8.0 Hz, 2H), 5.13 (t, *J* = 7.2 Hz, 1H), 3.93 (dt, *J* = 17.2, 4.4 Hz, 1H), 3.83 (d, *J* = 7.6 Hz, 1H), 2.92 – 2.70 (m, 2H), 2.48 – 2.38 (m, 1H), 2.37 (s, 3H), 1.92 (d, *J* = 12.4 Hz, 1H), 1.91 – 1.80 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.8, 146.0, 139.2, 137.9, 135.4, 130.3, 128.4, 127.7, 126.3, 122.6, 120.4, 119.0, 116.1, 107.4, 78.3, 36.7, 35.8, 31.5, 21.6, 19.9; IR (neat): 2924, 2226(s), 1769(s), 1459, 1380, 1357, 1173, 1153, 1087, 956, 668; HRESIMS Calcd for [C₂₂H₁₈N₂NaO₄S]⁺ (M + Na⁺) 429.0879, found 429.0884.

methyl 2-oxo-7-tosyl-1,2,4,5,6,7-hexahydro-1,4-methanooxocino[5,4-*b*]indole-10carboxylate (2i)

Compound **2i** was prepared in 79% yield (69.4 mg) according to the general procedure (Table 2, entry 9). Pale yellow solid (mp 191-192 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 8.8 Hz, 1H), 8.20 (d, *J* = 0.8 Hz, 1H), 8.00 (dd, *J* = 8.8, 1.2 Hz, 1H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 5.11 (t, *J* = 6.8 Hz, 1H), 4.04 – 3.83 (m, 5H), 2.92 – 2.80 (m, 1H), 2.79 – 2.68 (m, 1H), 2.49 – 2.27 (m, 4H), 1.90 (d, *J* = 12.4 Hz, 1H), 1.89 – 1.77 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.1, 166.9, 145.5, 138.8, 138.1, 135.6, 130.1, 128.3, 126.2, 126.0, 125.8, 121.4, 119.9, 115.0, 78.3, 52.1, 36.9, 35.8, 31.6, 21.5, 19.8; IR (neat): 2924, 2851, 1773(s), 1718(s), 1274, 1160, 765; HRESIMS Calcd for [C₂₃H₂₁NNaO₆S]⁺ (M + Na⁺) 462.0982, found 462.0994.

9-methyl-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-b]indol-2(1H)-one (2j)

Compound **2j** was prepared in 86% yield (68.0 mg) according to the general procedure (Table 2, entry 10). Pale yellow solid (mp 196-197 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 1H), 5.09 (t, *J* = 7.2 Hz, 1H), 3.90 (dt, *J* = 17.2, 4.4 Hz, 1H), 3.81 (d, *J* = 7.6 Hz, 1H), 2.89 – 2.77 (m, 1H), 2.75 – 2.63 (m, 1H), 2.49 (s, 3H), 2.44 – 2.37 (m, 1H), 2.34 (s, 3H), 1.87 (d, *J* = 12.4 Hz, 1H), 1.86 – 1.76 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 175.5, 145.0, 136.8, 135.9(3), 135.8(6), 135.0, 129.9, 126.3, 126.1, 125.3, 121.4, 117.3, 115.6, 78.4, 36.9, 35.9, 31.8, 22.0, 21.5, 19.8; IR (neat): 2923, 2854, 1768(s), 1461, 1357, 1177, 1152, 1043, 744; HRESIMS Calcd for [C₂₂H₂₁NNaO₄S]⁺ (M + Na⁺) 418.1083, found 418.1080.

9-methoxy-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-*b*]indol-2(1*H*)-one (2k)

Compound **2k** was prepared in 80% yield (65.8 mg) according to the general procedure (Table 2, entry 11). Pale yellow solid (mp 198-199 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 2.0 Hz, 1H), 7.53 (d, *J* = 8.5 Hz, 2H), 7.32 (d, *J* = 8.5 Hz, 1H), 7.19 (d, *J* = 8.5 Hz, 2H), 6.92 (dd, *J* = 8.5, 2.0 Hz, 1H), 5.09 (t, *J* = 7.0 Hz, 1H), 3.94 – 3.81 (m, 4H), 3.78 (d, *J* = 8.0 Hz, 1H), 2.86 – 2.78 (m, 1H), 2.74 – 2.66 (m, 1H), 2.44 – 2.36 (m, 1H), 2.35 (m, 3H), 1.88 (d, *J* = 12.5 Hz, 1H), 1.84 – 1.76 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 175.5, 158.1, 145.1, 137.4, 135.8, 135.2, 129.9, 126.1, 122.5, 121.4, 118.2, 112.8, 100.1, 78.5, 55.8, 36.9, 36.0, 31.8, 21.6, 19.9; IR (neat): 2924, 2852, 1774(s), 1612, 1491, 1362, 1270, 1042, 992, 584; HRESIMS Calcd for [C₂₂H₂₁NaO₅S]⁺ (M + Na⁺) 434.1033, found 434.1034.

9-fluoro-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-b]indol-2(1H)-one (2l)

Compound **2l** was prepared in 70% yield (55.9 mg) according to the general procedure (Table 2, entry 12). Pale yellow solid (mp 197-198 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, J = 10.4, 2.0 Hz, 1H), 7.63 – 7.51 (m, 2H), 7.45 – 7.32 (m, 1H), 7.22 (d, J = 8.0 Hz, 2H), 7.12 – 6.99 (m, 1H), 5.11 (t, J = 7.2 Hz, 1H), 3.91 (dt, J = 17.2, 4.0 Hz, 1H), 3.80 (d, J = 7.6 Hz, 1H), 2.95 – 2.78 (m, 1H), 2.77 – 2.65 (m, 1H), 2.46 – 2.35 (m, 1H), 2.36 (s, 3H), 1.90 (d, J = 12.0 Hz, 1H), 1.89 – 1.78 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 175.3, 161.0 (d, J = 241.4 Hz), 145.4, 136.8 (d, J = 4.1 Hz), 136.4 (d, J = 12.6 Hz), 135.6, 130.1, 126.2, 124.8, 120.8, 118.4 (d, J = 9.9 Hz), 112.1 (d, J = 24.4 Hz), 102.9 (d, J = 29.4 Hz), 78.4, 36.8, 36.0, 31.7, 21.6, 19.9; IR (neat): 2824, 1773(s), 1363, 1275,

1261, 993, 749; HRESIMS Calcd for $[C_{21}H_{18}FNNaO_4S]^+$ (M + Na⁺) 422.0833, found 422.0836.

9-chloro-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-b]indol-2(1H)-one (2m)

Compound **2m** was prepared in 81% yield (67.2 mg) according to the general procedure (Table 2, entry 13). Pale yellow solid (mp 200-201 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.8 Hz, 1H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 2.0 Hz, 1H), 7.30 – 7.25 (m, 1H), 7.20 (d, *J* = 8.0 Hz, 2H), 5.11 (t, *J* = 7.2 Hz, 1H), 3.93 (dt, *J* = 17.2, 4.0 Hz, 1H), 3.77 (d, *J* = 8.0 Hz, 1H), 2.90 – 2.79 (m, 1H), 2.76 – 2.67 (m, 1H), 2.46 – 2.37 (m, 1H), 2.35 (m, 3H), 1.88 (d, *J* = 12.4 Hz, 1H), 1.87 – 1.77 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.1, 145.5, 138.3, 135.6, 134.6, 130.1, 129.8(1), 129.7(5), 126.2, 125.0, 120.7, 117.5, 116.5, 78.3, 36.9, 35.9, 31.6, 21.6, 19.9; IR (neat): 2924, 1770(s), 1450, 1377, 1355, 1275, 1260, 764, 749; HRESIMS Calcd for [C₂₁H₁₈CINaO₄S]⁺ (M + Na⁺) 438.0537, found 438.0539.

9-bromo-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-b]indol-2(1H)-one (2n)

Compound **2n** was prepared in 80% yield (73.4 mg) according to the general procedure (Table 2, entry 14). Pale yellow solid (mp 245-246 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 1.2 Hz, 1H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.40 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.32 (d, *J* = 8.4 Hz, 1H), 7.23 (d, *J* = 8.0 Hz, 2H), 5.10 (t, *J* = 7.2 Hz, 1H), 3.89 (dt, *J* = 17.2, 4.4 Hz, 1H), 3.79 (d, *J* = 8.0 Hz, 1H), 2.87 – 2.67 (m, 2H), 2.46 – 2.37 (m, 1H), 2.36 (s, 3H),

1.89 (d, J = 12.4 Hz, 1H), 1.88 – 1.77 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 145.5, 137.2, 136.9, 135.7, 130.1, 127.3, 127.1, 126.2, 120.9, 118.8, 118.5, 118.3, 78.4, 36.8, 35.9, 31.6, 21.6, 19.9; IR (neat): 2921, 2848, 1768(s), 1450, 1370, 1355, 1155, 584; HRESIMS Calcd for $[C_{21}H_{18}BrNNaO_4S]^+$ (M + Na⁺) 482.0032, found 482.0039.

methyl 2-oxo-7-tosyl-1,2,4,5,6,7-hexahydro-1,4-methanooxocino[5,4-*b*]indole-9carboxylate (20)

Compound **20** was prepared in 70% yield (61.5 mg) according to the general procedure (Table 2, entry 15). Pale yellow solid (mp 187-188 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 7.97 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 1H), 7.20 (d, *J* = 8.0 Hz, 2H), 5.11 (t, *J* = 7.2 Hz, 1H), 4.02 – 3.96 (m, 1H), 3.95 (s, 3H), 3.86 (d, *J* = 8.0 Hz, 1H), 2.93 – 2.80 (m, 1H), 2.78 – 2.68 (m, 1H), 2.48 – 2.37 (m, 1H), 2.33 (s, 3H), 1.90 (d, *J* = 12.4 Hz, 1H), 1.89 – 1.79 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 167.2, 145.5, 140.0, 135.6(4), 135.5(5), 131.9, 130.1, 126.6, 126.2, 125.0, 121.0, 117.4, 117.0, 78.3, 52.2, 36.8, 35.9, 31.5, 21.5, 20.0; IR (neat): 2952, 1777(s), 1716(s), 1435, 1423, 1166, 1090, 995, 736, 579; HRESIMS Calcd for [C₂₃H₂₁NNaO₆S]⁺ (M + Na⁺) 462.0982, found 462.0994.

8-methyl-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-*b*]indol-2(1*H*)-one (2p)

Compound **2p** was prepared in 72% yield (56.9 mg) according to the general procedure (Table 2, entry 16). Pale yellow solid (mp 188-189 °C). ¹H NMR (400 MHz, CDCl₃) δ

7.23 - 7.17 (m, 1H), 7.17 - 7.09 (m, 4H), 7.07 (d, J = 8.0 Hz, 2H), 5.05 (t, J = 7.2 Hz, 1H), 3.63 – 3.48 (m, 2H), 2.95 – 2.81 (m, 1H), 2.70 (s, 3H), 2.68 – 2.54 (m, 1H), 2.40 – 2.33 (m, 1H), 2.32 (s, 3H), 1.76 - 1.67 (m, 1H), 1.65 (d, J = 12.4 Hz, 1H); 13 C NMR (100 MHz, CDCl₃) δ 174.8, 144.7, 140.9, 139.4, 133.2, 133.0, 130.2, 129.1, 128.9, 127.1, 126.3, 125.5, 115.4, 78.4, 36.6, 35.8, 31.5, 22.5, 21.6, 21.5; IR (neat): 2923, 2854, 1770(s), 1462, 1357, 1180, 1152, 1043, 754; HRESIMS Calcd for $[C_{22}H_{21}NNaO_{4}S]^{+}$ (M + Na⁺) 418.1083, found 418.1080.

7-((4-bromophenyl)sulfonyl)-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-b]indol-2(1H)-one (2q)

Compound 2q was prepared in 83% yield (73.8 mg) according to the general procedure (Table 2, entry 17). Pale yellow solid (mp 201-202 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (dd, J = 7.2, 1.2 Hz, 1H), 7.57 – 7.44 (m, 5H), 7.37 – 7.27 (m, 2H), 5.12 (t, J = 7.2Hz, 1H), 3.92 (dt, J = 17.2, 4.4 Hz, 1H), 3.86 (d, J = 7.6 Hz, 1H), 2.97 - 2.83 (m, 1H), 2.80 – 2.67 (m, 1H), 2.51 – 2.37 (m, 1H), 1.90 (d, *J* = 12.4 Hz, 1H), 1.88 – 1.79 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.3, 137.4, 136.6, 136.2, 132.6, 129.2, 128.7, 127.5, 125.2, 124.3, 122.3, 117.9, 115.4, 78.3, 36.8, 35.9, 31.7, 19.9; IR (neat): 2921, 2850, 1768(s), 1450, 1375, 1355, 1157, 1088, 584; HRESIMS Calcd for $[C_{20}H_{16}BrNNaO_4S]^+$ $(M + Na^{+})$ 467.9876, found 467.9880.

7-(methylsulfonyl)-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-b]indol-2(1H)-one (2r)


```
46
```

Compound **2r** was prepared in 80% yield (48.8 mg) according to the general procedure (Table 2, entry 18). Pale yellow solid (mp 171-172 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 7.99 (m, 1H), 7.60 – 7.51 (m, 1H), 7.38 – 7.29 (m, 2H), 5.16 (t, *J* = 7.2 Hz, 1H), 3.98 – 3.86 (m, 2H), 3.05 – 2.94 (m, 4H), 2.85 – 2.72 (m, 1H), 2.52 – 2.41 (m, 1H), 2.00 (d, *J* = 12.0 Hz, 1H), 1.99 – 1.89 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 136.6, 135.8, 128.4, 125.0, 124.0, 121.1, 117.9, 114.7, 78.5, 41.2, 36.8, 35.9, 31.7, 19.5; IR (neat): 2927, 2853, 1763(s), 1451, 1358, 1204, 1148, 974, 747; HRESIMS Calcd for [C₁₅H₁₅NNaO₄S]⁺ (M + Na⁺) 328.0614, found 328.0618.

5-methyl-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-*b*]indol-2(1*H*)-one (2s)

Compound **2s** was prepared in 63% yield (49.8 mg; dr = 4:1) according to the general procedure (Table 2, entry 19). Pale yellow solid (mp 185-186 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.23 (d, *J* = 8.0 Hz, 1H), 7.54 (d, *J* = 8.5 Hz, 2H), 7.44 (d, *J* = 7.5 Hz, 1H), 7.37 – 7.24 (m, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 4.80 (d, *J* = 8.0 Hz, 1H), 3.91 (dd, *J* = 17.0, 4.0 Hz, 1H), 3.81 (d, *J* = 7.5 Hz, 1H), 2.78 – 2.68 (m, 1H), 2.66 – 2.56 (m, 1H), 2.34 (s, 3H), 2.08 – 1.96 (m, 1H), 1.88 (d, *J* = 12.5 Hz, 1H), 1.25 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.6, 145.1, 136.2, 135.7, 135.4, 129.9, 128.4, 126.1, 124.9, 123.9, 121.9, 117.6, 115.5, 84.3, 37.9, 37.5, 35.4, 27.7, 21.5(4), 21.4(9); IR (neat): 2923, 2850, 1766(s), 1451, 1364, 1170, 1106, 1088, 747, 579; HRESIMS Calcd for [C₂₂H₂₁NNaO₄S]⁺ (M + Na⁺) 418.1083, found 418.1083.

4-phenyl-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-b]indol-2(1H)-one (2t)

Compound **2t** was prepared in 68% yield (62.2 mg) according to the general procedure (Table 2, entry 20). Pale yellow solid (mp 170-171 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 8.0 Hz, 1H), 7.58 (d, *J* = 7.6 Hz, 2H), 7.48 (d, *J* = 7.2 Hz, 1H), 7.45 – 7.27 (m, 7H), 7.20 (d, *J* = 8.4 Hz, 2H), 4.19 – 3.93 (m, 2H), 3.05 – 2.86 (m, 1H), 2.80 – 2.65 (m, 1H), 2.50 – 2.30 (m, 5H), 2.25 – 2.13 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 145.2, 136.2, 135.8, 129.9, 128.8, 128.5, 127.8, 126.2, 124.9, 123.9, 123.5, 121.3, 117.6, 115.4, 88.3, 43.3, 39.7, 37.7, 21.5, 21.0; IR (neat): 2922, 1774(s), 1449, 1363, 1192, 1171, 1090, 748; HRESIMS Calcd for [C₂₇H₂₃NNaO₄S]⁺ (M + Na⁺) 480.1240, found 480.1244.

9-methyl-4-phenyl-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-*b*]indol-2(1*H*)one (2u)

Compound **2u** was prepared in 75% yield (70.7 mg) according to the general procedure (Table 2, entry 21). Pale yellow solid (mp 205-206 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.09 (s, 1H), 7.57 (d, *J* = 8.5 Hz, 2H), 7.44 – 7.29 (m, 6H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 1H), 4.08 – 3.98 (m, 2H), 3.00 – 2.81 (m, 1H), 2.77 – 2.63 (m, 1H), 2.51 (s, 3H), 2.42 – 2.35 (m, 4H), 2.32 (d, *J* = 12.5 Hz, 1H), 2.20 – 2.11 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 174.5, 145.2, 145.0, 136.7, 136.0, 135.4, 135.1, 129.9, 128.7, 127.7, 126.3, 126.1, 125.3, 123.5, 121.3, 117.2, 115.6, 88.3, 43.3, 39.8, 37.8, 22.0, 21.5, 21.0; IR (neat): 2921, 1775(s), 1448, 1363, 1171, 1148, 1090, 701, 582; HRESIMS Calcd for [C₂₈H₂₅NNaO₄S]⁺ (M + Na⁺) 494.1397, found 494.1400.

10-chloro-4-phenyl-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-*b*]indol-2(1*H*)-one (2v)

Compound **2v** was prepared in 60% yield (58.9 mg) according to the general procedure (Table 2, entry 22). Pale yellow solid (mp 188-189 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, *J* = 9.0 Hz, 1H), 7.57 (d, *J* = 8.5 Hz, 2H), 7.46 (d, *J* = 2.0 Hz, 1H), 7.43 – 7.31 (m, 5H), 7.30 (dd, *J* = 9.0, 2.0 Hz, 1H), 7.23 (d, *J* = 8.0 Hz, 2H), 4.07 (dt, *J* = 17.0, 4.0 Hz, 1H), 3.99 (d, *J* = 8.0 Hz, 1H), 2.98 – 2.88 (m, 1H), 2.76 – 2.68 (m, 1H), 2.45 – 2.38 (m, 1H), 2.37 (s, 3H), 2.33 (d, *J* = 12.0 Hz, 1H), 2.23 – 2.13 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 174.1, 145.5, 145.0, 137.8, 135.5, 134.5, 130.1, 129.8, 129.7, 128.8, 127.9, 126.2, 125.0, 123.4, 120.5, 117.5, 116.5, 88.3, 43.2, 39.6, 37.7, 21.6, 21.1; IR (neat): 2922, 1777(s), 1451, 1364, 1171, 1090, 574; HRESIMS Calcd for [C₂₇H₂₂ClNNaO₄S]⁺ (M + Na⁺) 514.0850, found 514.0853.

10-bromo-4-phenyl-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4 *b*]indol-2(1*H*)-one (2w)

Compound **2w** was prepared in 66% yield (70.6 mg) according to the general procedure (Table 2, entry 23). Pale yellow solid (mp 230-231 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, *J* = 9.0 Hz, 1H), 7.62 (d, *J* = 2.0 Hz, 1H), 7.57 (d, *J* = 8.5 Hz, 2H), 7.46 – 7.30 (m, 6H), 7.23 (d, *J* = 8.5 Hz, 2H), 4.07 (dt, *J* = 17.0, 4.0 Hz, 1H), 3.99 (d, *J* = 8.0 Hz, 1H), 2.97 – 2.87 (m, 1H), 2.75 –2.68 (m, 1H), 2.46 – 2.38 (m, 1H), 2.37 (s, 3H), 2.33 (d, *J* = 12.5 Hz, 1H), 2.22 – 2.14 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 174.0, 145.5, 145.0, 137.7, 135.6, 135.0, 130.1, 128.8, 127.9, 127.7, 126.2, 123.4, 120.5, 120.4, 117.5, 116.9, 88.3, 43.3, 39.6, 37.7, 21.6, 21.1; IR (neat): 2291, 1777(s), 1450, 1378, 1359, 1192, 1168,

1090, 590; HRESIMS Calcd for $[C_{27}H_{22}BrNNaO_4S]^+$ (M + Na⁺) 558.0345, found 558.0356.

4-(p-tolyl)-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-b]indol-2(1H)-one (2x)

Compound **2x** was prepared in 64% yield (60.3 mg) according to the general procedure (Table 2, entry 24). Pale yellow solid (mp 200-201 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.53 – 7.44 (m, 1H), 7.40 – 7.12 (m, 8H), 4.16 – 3.98 (m, 2H), 3.03 – 2.87 (m, 1H), 2.78 – 2.64 (m, 1H), 2.49 – 2.27 (m, 8H), 2.22 – 2.07 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 145.1, 142.4, 137.5, 136.3, 135.8, 129.9, 129.4, 128.5, 126.2, 125.0, 123.9, 123.5, 121.4, 117.7, 115.5, 88.4, 43.4, 39.8, 37.8, 21.5, 21.0; IR (neat): 2921, 1770(s), 1450, 1365, 1171, 1150, 1090, 701, 575; HRESIMS Calcd for [C₂₈H₂₅NNaO₄S]⁺ (M + Na⁺) 494.1397, found 494.1400.

4-(4-chlorophenyl)-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-*b*]indol-2(1*H*)-one (2y)

Compound **2y** was prepared in 61% yield (59.9 mg) according to the general procedure (Table 2, entry 25). Pale yellow solid (mp 190-191 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (dd, *J* = 7.2, 0.4 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.51 – 7.44 (m, 1H), 7.40 – 7.28 (m, 6H), 7.20 (d, *J* = 8.0 Hz, 2H), 4.15 – 4.01 (m, 2H), 3.02 – 2.82 (m, 1H), 2.74 – 2.60 (m, 1H), 2.43 – 2.26 (m, 5H), 2.23 – 2.07 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 145.2, 143.6, 136.2, 136.1, 135.8, 133.7, 130.0, 129.0, 128.4, 126.2, 125.0, 123.9, 121.1,

117.6, 115.5, 87.8, 43.3, 39.6, 37.7, 21.6, 20.9; IR (neat): 2930, 1780(s), 1450, 1360, 1171, 1090, 585; HRESIMS Calcd for $[C_{27}H_{22}CINNaO_4S]^+$ (M + Na⁺) 514.0850, found 514.0853.

4-methyl-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-b]indol-2(1H)-one (2z)

Compound **2z** was prepared in 67% yield (52.9 mg) according to the general procedure (Table 2, entry 26). Pale yellow solid (mp 221-222 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 7.6 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 7.2 Hz, 1H), 7.38 – 7.25 (m, 2H), 7.20 (d, *J* = 8.4 Hz, 2H), 4.06 – 3.93 (m, 2H), 2.90 – 2.78 (m, 1H), 2.50 – 2.40 (m, 1H), 2.35 (s, 3H), 2.30 – 2.22 (m, 1H), 1.93 (d, *J* = 12.4 Hz, 1H), 1.88 – 1.77 (m, 1H), 1.59 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.0, 145.1, 136.3, 136.2, 135.7, 129.9, 128.5, 126.2, 124.8, 123.8, 121.3, 117.6, 115.4, 86.0, 43.1, 38.2, 38.1, 29.1, 21.6, 20.8; IR (neat): 2923, 2851, 1768(s), 1451, 1364, 1170, 1106, 1088, 748, 579; HRESIMS Calcd for [C₂₂H₂₁NNaO₄S]⁺ (M + Na⁺) 418.1083, found 418.1080.

1,4,5,6-tetrahydro-2*H*-1,4-methanooxocino[5,4-*b*]benzofuran-2-one (4a)

4a

Compound **4a** was prepared in 61% yield (27.8 mg) according to the general procedure. Pale yellow solid (mp 154-155 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.47 (m, 1H), 7.44 – 7.36 (m, 1H), 7.32 – 7.17 (m, 2H), 5.15 (t, *J* = 7.2 Hz, 1H), 3.81 (d, *J* = 7.6 Hz, 1H), 3.18 – 2.98 (m, 2H), 2.87 – 2.76 (m, 1H), 2.51 – 2.40 (m, 1H), 2.03 (d, *J* = 12.4 Hz, 1H), 2.00 – 1.89 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 154.5, 153.4, 127.6, 123.9, 122.8, 118.1, 115.2, 110.9, 78.3, 37.2, 34.9, 30.0, 22.0; IR (neat): 2948, 1768(s), 1453, 1274, 1258, 1155, 1040, 749; HRESIMS Calcd for $[C_{14}H_{12}NaO_3]^+$ (M + Na⁺) 251.0679, found 251.0679.

1-tosyl-4,7,8,9-tetrahydro-4,7-methanooxocino[5,4-b]pyrrol-5(1H)-one (4b)

Compound **4b** was prepared in 66% yield (43.7 mg) according to the general procedure. Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 3.2 Hz, 1H), 6.16 (d, *J* = 3.6 Hz, 1H), 5.01 (t, *J* = 7.2 Hz, 1H), 3.55 – 3.38 (m, 2H), 2.67 – 2.56 (m, 1H), 2.53 – 2.39 (m, 4H), 2.34 – 2.23 (m, 1H), 1.88 (d, *J* = 12.4 Hz, 1H), 1.79 – 1.66 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 145.3, 135.9, 130.2, 129.7, 126.8, 125.8, 121.3, 111.9, 78.4, 39.3, 37.4, 31.6, 21.6, 18.9; IR (neat):

2923, 2851, 1768(s), 1451, 1364, 1170, 1106, 1088, 748, 579; HRESIMS Calcd for $[C_{17}H_{17}NNaO_4S]^+$ (M + Na⁺) 354.0770, found 354.0779.

8,9-dimethoxy-1,4,5,6-tetrahydro-2*H*-1,4-methanobenzo[*d*]oxocin-2-one (4c)

Compound **4c** was prepared in 54% yield (26.8 mg) according to the general procedure. Pale yellow solid (mp 241-242 °C). ¹H NMR (400 MHz, CDCl₃) δ 6.69 (s, 1H), 6.68 (s, 1H), 5.06 (t, *J* = 7.2 Hz, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.54 (d, *J* = 8.8 Hz, 1H), 3.18 – 3.06 (m, 1H), 2.78 – 2.60 (m, 2H), 2.40 – 2.29 (m, 1H), 1.92 (d, *J* = 12.4 Hz, 1H), 1.90– 1.80 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.3, 147.5, 147.2, 131.3, 131.1, 114.7, 113.5, 78.7, 56.0, 55.9, 46.9, 38.2, 33.4, 29.1; IR (neat): 2936, 1766(s), 1515, 1453, 1276, 1252, 1103, 749; HRESIMS Calcd for $[C_{14}H_{16}NaO_4]^+$ (M + Na⁺) 271.0941, found 271.0943.

General procedure for the synthesis of chiral bridged [4.2.1] lactones 2-ent:

HNTf₂ (0.06 mmol, 16.8 mg) was added to a mixture of the chiral ynamide **5** (0.20 mmol), water (0.30 mmol, 5.4 uL) and dry DCE (2.0 mL) at room temperature. Then, the reaction mixture was stirred at 30 °C and the progress of the reaction was monitored by TLC. The reaction typically took 1 h. Upon completion, the mixture was concentrated and the residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to afford the desired chiral bridged [4.2.1] lactone **2**-ent.

(1S,4S)-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-b]indol-2(1H)-one (2a-ent)

2a-ent

Compound **2a**-*ent* was prepared in 55% yield (41.9 mg) according to the general procedure (Table 3, emtry 1). 95% ee (determined by HPLC: Chiralcel OD-H Column, 10/90 *i*-PrOH/hexane, 1.0 mL/min, 200 nm; TR = 27.21 min (minor), 33.53 min (major)).

(1*S*,4*S*)-10-methyl-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-*b*]indol-2(1*H*)one (2b-*ent*)

Compound **2b**-*ent* was prepared in 50% yield (35.9 mg) according to the general procedure (Table 3, emtry 2). 99% ee (determined by HPLC: Chiralcel OD-H Column, 15/85 *i*-PrOH/hexane, 1.3 mL/min, 200 nm; TR = 15.57 min (major), 21.21 min (minor)).

(1*S*,4*S*)-10-chloro-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-*b*]indol-2(1*H*)one (2e-*ent*)

2e-ent

Compound **2c**-*ent* was prepared in 52% yield (43.2 mg) according to the general procedure (Table 3, emtry 3). 91% ee (determined by HPLC: Chiralcel OD-H Column, 5/95 *i*-PrOH/hexane, 1.3 mL/min, 200 nm; TR = 33.00 min (minor), 36.73 min (major)).

(1*S*,4*S*)-10-bromo-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-*b*]indol-2(1*H*)one (2f-*ent*)

Compound **2f**-*ent* was prepared in 53% yield (48.6 mg) according to the general procedure (Table 3, emtry 4). 98% ee (determined by HPLC: Chiralcel OD-H Column, 5/95 *i*-PrOH/hexane, 1.3 mL/min, 200 nm; TR = 34.94 min (minor), 39.54 min (major)).

methyl (1*S*,4*S*)-2-oxo-7-tosyl-1,2,4,5,6,7-hexahydro-1,4-methanooxocino[5,4-

b]indole-10-carboxylate (2i-ent)

2i-ent

Compound **2i**-ent was prepared in 51% yield (44.8 mg) according to the general procedure (Table 3, emtry 5). $[\alpha]_D^{20} = -40.7 \,^{\circ}(c = 1.0, CHCl_3)$. 92% ee (determined by HPLC: Chiralcel IA Column, 10/90 *i*-PrOH/hexane, 2.0 mL/min, 200 nm; TR = 17.49 min (minor), 21.05 min (major)).

(1*S*,4*S*)-9-methyl-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-*b*]indol-2(1*H*)one (2j-*ent*)

2j-ent

Compound **2***j*-*ent* was prepared in 42% yield (33.2 mg) according to the general procedure (Table 3, emtry 6). 98% ee (determined by HPLC: Chiralcel OD-H Column, 15/85 *i*-PrOH/hexane, 1.3 mL/min, 200 nm; TR = 31.00 min (minor), 34.39 min (major)).

(1*R*,4*R*)-10-methyl-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-*b*]indol-2(1*H*)one (2a-*ent*')

Compound **2a**-*ent*' was prepared in 56% yield (42.7 mg) according to the general procedure (Table 3, emtry 7). $[\alpha]_D^{20} = +10.7 \circ (c = 1.0, CHCl_3)$. 96% ee (determined by HPLC: Chiralcel OD-H Column, 10/90 *i*-PrOH/hexane, 1.0 mL/min, 200 nm; TR = 25.17 min (major), 32.09 min (minor)).

4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-*b*]indol-2(1*H*)-one (2ab)

Compound **2ab** was prepared in 75% yield (34.1 mg) according to the known procedures (0.2 mmol scale).⁵ Pale yellow solid (mp 143-144 °C). ¹H NMR (400 MHz, DMSO) δ 11.04 (s, 1H), 7.54 (d, *J* = 7.2 Hz, 1H), 7.31 – 7.25 (m, 1H), 7.12 – 6.67 (m, 2H), 5.14 (t, *J* = 7.2 Hz, 1H), 3.95 (d, *J* = 7.6 Hz, 1H), 3.00 – 2.69 (m, 3H), 2.39 – 2.26 (m, 1H), 1.99 – 1.91 (m, 1H), 1.89 (d, *J* = 12.4 Hz, 1H); ¹³C NMR (125 MHz, DMSO) δ 177.7, 136.7, 135.1, 127.9, 121.6, 119.8, 118.1, 111.7, 111.6, 79.2, 38.1, 36.5, 31.7, 22.3; IR (neat):3270, 2923, 2851, 1760(s), 1515, 1455, 1360, 1172, 952, 742; HRESIMS Calcd for [C₁₄H₁₃NNaO₂]⁺ (M + Na⁺) 250.0838, found 250.0839.

7-tosyl-1,2,4,5,6,7-hexahydro-1,4-methanooxocino[5,4-*b*]indol-2-ol (2ac)

Compound **2ac** was prepared in 91% yield (69.7 mg; dr > 10/1) according to the known procedures (0.2 mmol scale).⁶ Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 2H), 7.48 - 7.41 (m, 1H), 7.34 - 7.22 (m, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 5.24 (d, *J* = 2.8 Hz, 1H), 4.87 (t, *J* = 7.2 Hz, 1H), 3.62 (dt, *J* =

17.2, 4.4 Hz, 1H), 3.46 (d, J = 6.4 Hz, 1H), 3.12 (s, 1H), 3.05 – 2.90 (m, 1H), 2.72 – 2.59 (m, 1H), 2.33 (s, 3H), 2.23 – 2.09 (m, 1H), 1.67 (d, J = 12.0 Hz, 1H), 1.60 – 1.48 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 137.2, 136.5, 136.1, 129.7, 129.6, 126.2, 124.4, 123.6, 123.3, 117.7, 115.5, 102.9, 78.6, 41.3, 35.6, 32.2, 21.5, 20.9; IR (neat): 2930, 2851, 1750(s), 1450, 1250, 1170, 568; HRESIMS Calcd for [C₂₁H₂₁NNaO₄S]⁺ (M + Na⁺) 406.1083, found 406.1095.

7-tosyl-1,2,4,5,6,7-hexahydro-1,4-methanooxocino[5,4-*b*]indole (2ad)

Compound **2ad** was prepared in 99% yield (72.7 mg) according to the known procedures (0.2 mmol scale).⁷ Pale yellow solid (mp 150-151 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.24 (dd, *J* = 7.2, 1.6 Hz, 1H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.43 – 7.36 (m, 1H), 7.32 – 7.20 (m, 2H), 7.14 (d, *J* = 8.4 Hz, 2H), 4.69 (t, *J* = 7.6 Hz, 1H), 4.12 (dd, *J* = 7.6, 5.6 Hz, 1H), 3.86 (d, *J* = 7.6 Hz, 1H), 3.65 (dt, *J* = 16.8, 4.4 Hz, 1H), 3.56 (t, *J* = 6.0 Hz, 1H), 3.13 – 2.95 (m, 1H), 2.41 – 2.22 (m, 4H), 2.19 – 2.08 (m, 1H), 1.73 (d, *J* = 11.6 Hz, 1H), 1.58 – 1.43 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 137.0, 136.3, 136.0, 129.6, 129.5, 127.1, 126.1, 124.0, 123.4, 117.3, 115.5, 77.2, 75.6, 38.7, 34.0, 32.1, 21.4, 20.7; IR (neat): 2923, 1451, 1376, 1361, 1176, 1089, 1060, 748, 579; HRESIMS Calcd for [C₂₁H₂₁NNaO₃S]⁺ (M + Na⁺) 390.1134, found 390.1141.

7-tosyl-4,7-dihydro-1,4-methanooxocino[5,4-b]indol-2(1H)-one (2ae)

Compound **2ae** was prepared in 95% yield (72.0 mg) according to the known procedures (0.2 mmol scale).⁸ Pale yellow solid (mp 187-188 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.4 Hz, 1H), 7.73 (dd, *J* = 12.0, 0.8 Hz, 1H), 7.68 – 7.48 (m, 3H), 7.46 – 7.29 (m, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 6.45 – 6.22 (m, 1H), 5.09 (t, *J* = 7.2 Hz, 1H), 4.07 (d, *J* = 7.2 Hz, 1H), 2.85 – 2.67 (m, 1H), 2.31 (s, 3H), 2.14 – 1.97 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 145.2, 137.1, 135.0, 132.9, 129.8, 128.9, 128.5, 126.7, 126.3, 124.6, 123.3, 122.9, 119.0, 115.8, 73.7, 36.1, 27.0, 21.5; IR (neat): 2922, 1763(s), 1449, 1364, 1275, 1261, 1172, 764, 749; HRESIMS Calcd for [C₂₁H₁₇NNaO₄S]⁺ (M + Na⁺) 402.0770, found 402.0777.

(7-hydroxy-5-tosyl-5,6,7,8,9,10-hexahydrocyclohepta[*b*]indol-10yl)(phenyl)methanone (2af)

PhLi (0.24 mmol, 1.2 qeuiv) was slowly added to the mixture of **2a** (0.20 mmol, 76.3 mg) in dry THF (4.0 mL) under N₂ at -40 °C. The mixture was stired at -40 °C for 2 h, and then stired at -20 °C for amother 10 h. Upon completion, the mixture was quenched by the saturated ammonium chloride and extracted with EtOAc (3×10 mL). The combined extracts were dried with MgSO₄, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to afford the desired **2af** in 60% yield (55.1 mg). Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.4 Hz, 1H), 8.08 – 7.93 (m, 2H), 7.65 – 7.54 (m, 3H), 7.51 – 7.41 (m, 2H), 7.26 – 7.13 (m, 5H), 5.11 (dd, *J* = 5.2, 4.0 Hz, 1H), 4.07 – 3.93 (m, 1H), 3.75 – 3.63 (m, 1H), 3.19 – 3.00 (m, 1H), 2.60 – 2.49 (m, 1H), 2.34 (s, 3H), 2.26 – 2.12 (m, 1H), 2.03 – 1.88 (m, 1H), 1.60 – 1.47 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 199.0, 144.6, 141.0, 136.3, 136.1(2), 136.0(8), 133.3, 129.9, 129.8, 128.9, 128.3, 126.2, 124.2, 123.5, 119.9, 117.4, 115.6, 69.5, 40.4, 37.7, 35.6, 21.6, 21.3; IR (neat): 2924, 2853, 1774(s),

1612, 1491, 1362, 1170, 1042, 662, 584; HRESIMS Calcd for $[C_{27}H_{25}NNaO_4S]^+$ (M + Na⁺) 482.1397, found 482.1396.

(8*S*,10*S*)-10-(hydroxymethyl)-5-tosyl-5,6,7,8,9,10-hexahydrocyclohepta[*b*]indol-8-ol (2ag)

Compound **2ag** was prepared in 68% yield (52.4 mg) according to the above procedure (0.2 mmol scale). $[\alpha]_D{}^{20} = -80.5 \circ (c = 1.0, CHCl_3)$. 97% ee (determined by HPLC: Chiralcel AD-H Column, 5/95 *i*-PrOH/hexane, 2.0 mL/min, 200 nm; TR = 37.54 min (minor), 40.93 min (major)). Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 7.6 Hz, 1H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.41 – 7.32 (m, 1H), 7.31 – 7.20 (m, 2H), 7.17 (d, *J* = 8.4 Hz, 2H), 4.34 – 4.20 (m, 1H), 3.82 (d, *J* = 6.4 Hz, 2H), 3.47 (s, 1H), 3.41 – 3.27 (m, 2H), 3.24 – 3.09 (m, 1H), 2.38 – 2.22 (m, 4H), 2.06 – 1.92 (m, 2H), 1.91 – 1.75 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.6, 139.3, 136.5, 136.1, 130.3, 129.7, 126.2, 124.2, 123.6, 122.2, 117.7, 115.4, 69.9, 65.1, 36.0, 35.1, 34.0, 21.5, 21.0; IR (neat): 3300, 2933, 1530, 1218, 1175, 580; HRESIMS Calcd for $[C_{21}H_{23}NNaO_4S]^+$ (M + Na⁺) 408.1240, found 408.1242.

(S)-(8-oxo-5-tosyl-5,6,7,8,9,10-hexahydrocyclohepta[*b*]indol-10-yl)methyl nitrobenzoate (2ah)

4-

Compound **2ah** was prepared in 46% yield (24.5 mg, 2 steps) according to the above procedure (0.1 mmol scale). $[\alpha]_D{}^{20} = -65.5 \,^{\circ}$ (c = 1.0, CHCl₃). 97% ee (determined by HPLC: Chiralcel OD-H Column, 20/80 *i*-PrOH/hexane, 2.0 mL/min, 200 nm; TR = 25.95 min (minor), 31.98 min (major)). Pale yellow solid (mp 201-202 $^{\circ}$ C). ¹H NMR (400 MHz, CDCl₃) δ 8.32 – 8.17 (m, 3H), 8.11 – 7.98 (m, 2H), 7.62 – 7.53 (m, 3H), 7.42 – 7.26 (m, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 4.67 (dd, *J* = 11.2, 5.6 Hz, 1H), 4.25 (dd, *J* = 11.2, 8.8 Hz, 1H), 3.87 – 3.78 (m, 1H), 3.69 – 3.57 (m, 1H), 3.52 – 3.40 (m, 1H), 3.12 – 2.94 (m, 2H), 2.81 – 2.69 (m, 1H), 2.68 – 2.56 (m, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 209.5, 164.4, 150.6, 145.1, 137.2, 136.5, 136.0, 135.0, 130.7, 129.9, 129.5, 126.2, 125.1, 123.9, 123.5, 119.1, 118.2, 115.5, 67.1, 43.2(4), 43.1(5), 32.3, 21.6, 21.5; IR (neat): 2933, 1750(s), 1738(s), 1520(s), 1325, 1215, 1120, 586; HRESIMS Calcd for [C₂₈H₂₄N₂NaO₇S]⁺ (M + Na⁺) 555.1196, found 555.1199.

methyl 7-methoxy-5-tosyl-5,6,7,8,9,10-hexahydrocyclohepta[*b*]indole-10-carboxylate (2ai)

Compound **2ai** was prepared in 20% yield (17.1 mg; d.r. > 20:1) according to the general procedure. Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (dd, *J* = 7.2, 0.8 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.36 – 7.30 (m, 1H), 7.29 – 7.22 (m, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 4.10 (dd, *J* = 5.2, 3.2 Hz, 1H), 3.67 – 3.61 (m, 4H), 3.59 – 3.50 (m, 1H), 3.38 (s, 3H), 3.02 – 2.91 (m, 1H), 2.74 – 2.62 (m, 1H), 2.34 (s, 3H), 2.17 – 2.06 (m, 1H), 1.72 – 1.58 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 172.8, 144.7, 139.7, 136.2, 130.2, 129.8, 126.3, 124.3, 123.6, 119.4, 117.7, 115.3, 78.8, 56.2, 52.1, 37.7, 34.4, 31.2, 21.6, 21.3; IR (neat): 2994, 1769(s), 1758, 1375, 1245, 1056, 913, 743; HRESIMS Calcd for [C₂₃H₂₅NNaO₅S]⁺ (M + Na⁺) 450.1346, found 548.0153.

7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-b]indol-2(1H)-one-5,5-d2 (2a')

Compound **2a'** was prepared in 74% yield (56.7 mg) according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.0 Hz, 1H), 7.55 (d, *J* = 8.4 Hz, 2H), 7.49 – 7.42 (m, 1H), 7.36 – 7.24 (m, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 5.09 (d, *J* = 8.0 Hz, 1H), 3.94 (d, *J* = 17.2 Hz, 1H), 3.85 (d, *J* = 8.0 Hz, 1H), 2.85 (d, *J* = 17.2 Hz, 1H), 2.78 – 2.65 (m, 1H), 2.33 (s, 3H), 1.88 (d, *J* = 12.4 Hz, 1H); IR (neat): 2922, 1785(s), 1449, 1363, 1274, 1261, 764, 749; HRESIMS Calcd for $[C_{21}H_{17}D_2NNaO_4S]^+$ (M + Na⁺) 406.1053, found 406.1055.

7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-b]indol-2(1H)-one-4-d (2a")

Compound **2a**" was prepared in 72% yield (55.0 mg) according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 7.6 Hz, 1H), 7.55 (d, *J* = 8.4 Hz, 2H), 7.49 – 7.42 (m, 1H), 7.36 – 7.25 (m, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 5.11 (t, *J* = 7.2 Hz, 0.1H), 3.96 (dt, *J* = 17.2, 4.4 Hz, 1H), 3.85 (d, *J* = 8.0 Hz, 1H), 2.95 – 2.79 (m, 1H), 2.77 – 2.65 (m, 1H), 2.47 – 2.36 (m, 1H), 2.33 (s, 3H), 1.88 (d, *J* = 12.0 Hz, 1H), 1.85 – 1.76 (m, 1H); IR (neat): 2922, 2851, 1773(s), 1449, 1363, 1275, 1171, 763, 749; HRESIMS Calcd for [C₂₁H₁₈DNNaO₄S]⁺ (M + Na⁺) 405.0990, found 405.0996.

1-allyl-6-tosyl-1,4,5,6-tetrahydro-2*H*-oxepino[4,5-*b*]indol-2-one (4ga)

Compound **4ga** was prepared in 42% yield (33.2 mg) according to the general procedure. Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.60 (d, *J* = 8.4, 2H), 7.40 – 7.31 (m, 2H), 7.29 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.20 (d, *J* = 8.0, 2H), 6.00 – 5.80 (m, 1H), 5.24 – 5.07 (m, 2H), 4.85 (td, *J* = 12.8, 1.6 Hz, 1H), 4.53 (dt, *J* = 12.8, 4.0 Hz, 1H), 4.30 (dd, *J* = 9.6, 6.4 Hz, 1H), 3.66 (dd, *J* = 18.8, 2.0 Hz, 1H), 3.43 – 3.25 (m, 1H), 2.87 – 2.62 (m, 2H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 145.3, 136.4, 135.6, 133.8, 133.6, 130.1, 128.9, 126.3, 125.2, 123.8, 118.4, 118.1, 115.6, 114.8, 64.5, 45.2, 38.9, 29.3, 21.5; IR (neat): 2924, 1732(s), 1454, 1358, 1173, 1151, 1089, 575; HRESIMS Calcd for [C₂₂H₂₁NNaO₄S]⁺ (M + Na⁺) 418.1083, found 418.1083.

4-allylisochroman-3-one (4ha)

4ha

Compound **4ha** was prepared in 85% yield (32.0 mg) according to the general procedure. Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.20 (m, 4H), 5.93 – 5.81 (m, 1H), 5.41 (d, 1H, *J* = 14.0 Hz), 5.28 (d, 1H, *J* = 14.0 Hz), 5.17 – 5.09 (m, 2H), 3.70 (t, 1H, *J* = 6.8 Hz), 2.87 – 2.66 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 134.2, 134.0, 131.4, 128.6, 127.2, 126.6, 124.6, 118.1, 69.5, 45.3, 34.2; IR (neat): 3076, 2924, 1744 (s), 1641, 1489, 1462, 1385, 1234, 1146, 1047, 913, 747; HRESIMS Calcd for [C₁₂H₁₂NaO₂]⁺ (M + Na⁺) 211.0730, found 211.0732.

Reference:

a) J. Zheng, Z. Li, W. Wu, H. Jiang, Org. Lett. 2016, 18, 6232; b) A. Arcadi, G. Bianchi, F. Marinelli, Synthesis 2004, 4, 610.

a) C. Shu, L. Li, X.-Y. Xiao, Y.-F. Yu, Y.-F. Ping, J.-M. Zhou, L.-W. Ye, *Chem. Commun.* 2014, *50*, 8689; b) F. Pan, S. Liu, C. Shu, R.-K. Lin, Y.-F. Yu, J.-M. Zhou, L.-W. Ye, *Chem. Commun.* 2014, *50*, 10726; c) N. S. Kumar, E. M. Dullaghan, B. B. Finlay, H. Gong, N. E. Reiner, J. J. P. Selvam, L. M. Thorson, S. Campbell, N. Vitko, A. R. Richardson, R. Zoraghi, R. N. Young, *Bioorg. Med. Chem.* 2014, *22*, 1708; d) M. Yu, Y. Xie, C. Xie, Y. Zhang, *Org. Lett.* 2012, *14*, 2164; e) M. Garzon, P. W. Davies, *Org. Lett.* 2014, *16*, 4850; f) Y. Pan, G.-W. Chen, C.-H. Shen, W. He, L.-W. Ye, *Org. Chem. Front.* 2016, *3*, 491.

- 3. a) X. Wu, Z. Chen, Y.-B. Bai, V. M. Dong, J. Am. Chem. Soc. 2016, 138, 12013; b) L.-
- L. Mao, C.-C. Li, Q. Yang, M.-X. Cheng, S.-D. Yang, Chem. Commun, 2017, 53, 4473; c)
- S. Hirano, R. Tanaka, H. Urabe, F. Sato, Org. Lett. 2004, 6, 727; d) C. Gryparis, C. Efe,
- C. Raptis, I. N. Lykakis, M. Stratakis, Org. Lett. 2012, 14, 2956.
- 4. J. Liu, Z. Fang, Q. Zhang, Q. Liu, X. Bi, Angew. Chem. Int. Ed. 2013, 52, 6953.
- 5. C. Zheng, J. J. Chen, R. Fan, Org. Lett. 2014, 16, 816.
- K. Miyashita, T. Tsunemi, T. Hosokawa, M. Ikejiri, T. Imanishi, J. Org. Chem. 2008, 73, 5360.
- 7. N. Sakai, T. Moriya, K. Fujii, T. Konakahara, Synthesis 2008, 21, 3533.
- L. Li, X.-M. Chen, Z.-S. Wang, B. Zhou, X. Liu, X. Lu, L.-W. Ye, ACS Catal. 2017, 7, 4004.

7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-*b*]indol-2(1*H*)-one (2a). CCDC Number = 1831051

5-methyl-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-*b*]indol-2(1*H*)-one (2s). CCDC Number = 1831053

9-methyl-4-phenyl-7-tosyl-4,5,6,7-tetrahydro-1,4-methanooxocino[5,4-*b*]indol-2(1*H*)one (2u). CCDC Number = 1831054

Bond precision: C-C = 0.0080 A Wavelength=1.54184 Cell: a=9.68936(19) b=16.6569(4) c=15.2343(3) alpha=90 beta=94.933(2) gamma=90 Temperature: 100 K Calculated Reported Volume 2449.63(9) 2449.63(9) P 1 21 1 Space group P 21 Hall group P 2yb P 2yb Moiety formula C28 H24 N2 O7 S C28 H24 N2 O7 S Sum formula C28 H24 N2 O7 S C28 H24 N2 O7 S Mr 532.55 532.55 1.444 1.444 Dx,g cm-3 Ζ 4 4 Mu (mm-1) 1.629 1.629 F000 1112.0 1112.0 F000′ 1116.84 h,k,lmax 11,19,18 11,19,18 Nref 8746 [4539] 6188 0.532,1.000 Tmin, Tmax Tmin' Correction method= # Reported T Limits: Tmin=0.532 Tmax=1.000 AbsCorr = MULTI-SCAN Data completeness= 1.36/0.71 Theta(max) = 67.079 R(reflections) = 0.0570(5742)wR2(reflections) = 0.1593(6188) S = 1.026Npar= 687

Compound 2a-ent

	No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
		min		mAU	mAU*min	%	n.a.	
	1	28.06	n.a.	1361.953	2376.246	49.84	n.a.	BMB*
	2	34.45	n.a.	1204.479	2391.764	50.16	n.a.	BMB*
ļ	Total:			2566.432	4768.011	100.00	0.000	

NO.	Ret. Lime	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%	n.a.	
1	27.21	n.a.	23.780	22.429	2.46	n.a.	BMB*
2	33.53	n.a.	583.165	888.492	97.54	n.a.	BMB*
Total:			606.945	910.921	100.00	0.000	

Compound 2b-ent

1	15.57	n.a.	511.996	613.674	99.75	n.a
2	21.21	n.a.	1.606	1.507	0.25	n.a
Total:			513.602	615.181	100.00	0.000

BMB*

Compound 2e-ent

	No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
		min		mAU	mAU*min	%	n.a.	
1	1	33.00	n.a.	55.668	78.538	4.45	n.a.	BMB*
	2	36.73	n.a.	814.805	1686.126	95.55	n.a.	BMB*
	Total:			870.473	1764.664	100.00	0.000	

Compound 2f-ent

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%	n.a.	
1	34.94	n.a.	8.311	12.311	1.12	n.a.	BMB*
2	39.54	n.a.	405.541	1086.257	98.88	n.a.	BMB*
Total:			413.852	1098.568	100.00	0.000	

Compound 2i-ent

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%	n.a.	
1	17.47	n.a.	1203.992	1018.388	50.96	n.a.	BMB*
2	20.89	n.a.	1025.920	979.895	49.04	n.a.	BMB*
Total:			2229.912	1998.283	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%	n.a.	
1	17.49	n.a.	69.773	46.415	4.22	n.a.	BMB*
2	21.05	n.a.	958.266	1053.332	95.78	n.a.	BMB*
Total:			1028.039	1099.746	100.00	0.000	
Compound 2j-ent

No.	Ret.Time	Pea	k Name	Height	Area	Rel.Area	Amount	Туре
	min			mAU	mAU*min	%	n.a.	
1	31.00	n.a.		19.113	27.169	1.16	n.a.	BMb*
2	34.39	n.a.		910.741	2305.936	98.84	n.a.	bMB*
Total:				929.855	2333.105	100.00	0.000	

Compound 2a-ent'

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%	n.a.	
1	28.06	n.a.	1361.953	2376.246	49.84	n.a.	BMB*
2	34.45	n.a.	1204.479	2391.764	50.16	n.a.	BMB*
Total:			2566.432	4768.011	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%	n.a.	
1	25.17	n.a.	1072.451	1471.426	97.73	n.a.	BMB*
2	32.09	n.a.	29.144	34.154	2.27	n.a.	BMB*
Total:			1101.595	1505.580	100.00	0.000	

Compound 2ag

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%	n.a.	
1	37.54	n.a.	13.595	17.382	1.11	n.a.	BMB*
2	40.93	n.a.	684.641	1545.118	98.89	n.a.	BMB*
Total:			698.237	1562.500	100.00	0.000	

Compound 2ah

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%	n.a.	
1	26.91	n.a.	242.256	394.451	50.08	n.a.	BMB*
2	32.48	n.a.	199.536	393.236	49.92	n.a.	BMB*
Total:			441.792	787.688	100.00	0.000	

after recrystallization

— 160. 97 — 158. 57	-145.17	$140.76 \\ 135.30 \\ 134.37 \\ 131.96 \\ 130.27 \\ 130.17 \\ 130.17 \\ 129.59 \\ 127.25 \\ 1$	117.19 115.91 115.82 104.94 104.94 105.82 105.58	 $\frac{77}{77.00} \times \frac{77}{76.68} - 71.20$	— 62. 46 — 60. 04	 39. 14 36. 96	-21.45
			VF VF				

$\begin{array}{c} 36\\ 265\\ 65\end{array}$. 91 . 01	. 34	00	32 68 25 25	54 72	85	41
$\begin{array}{c} 144\\ 142\\ 137\\ 136\\ 134\\ 129\\ 129\\ 129\\ 126\\ 126\\ 124\\ 126\\ 124\\ 126\\ 126\\ 126\\ 126\\ 126\\ 126\\ 126\\ 126$	$117 \\ 117$	110	.06	77. 77. 76. 71.	64. 60.	39. 36.	22.
	Y			\vee 1			\/

•	· I	'	· I	· I		·	· '		· · ·	'	· I ·	1	· I	'	'	'	'	· I	· I			·	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
											fl (ppm)												

			→ 117. 05 → 114. 39 → 113. 07 111. 08	-85.69 -77.25 77.726 -71.32 -71.32 -67.30	$ <_{55, 90} $				
		MeO MeO	Ms N O						
			3c						
hand ye for y shand y says, databasi a aya ya a sa ya ya yika ya ta sa ya ya yika ya sa ya ba ya ya ya ya ya y							Level is a subject to the subject of	an and a state of the	u ga
210 200 190 180 170 16	0 150	140 130	120 110 100 f1 (pp		60 50	40 30	20 10		-10

halanalla

	$ \begin{array}{c} -134. 65 \\ 131. 26 \\ 127. 90 \\ 127. 78 \\ 127. 22 \\ 127. 22 \\ \end{array} $		— 116. 87		$\underbrace{\overbrace{77.32}^{77.32}}_{76.68}$	- 71. 34 - 70. 25 - 67. 40	
--	---	--	-----------	--	--	----------------------------------	--

	1		· · · · · · · ·		· · · · ·	- T		- T .		1			······································				<u> </u>
160	150	140	130	120	110	100	90	80 f1 (ppm)	70	60	50	40	30	20	10	0	

		' '		1								1		1					· 1			
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											fl (ppm	ı)										

—175.21	$ \begin{array}{c} & -150.\ 08 \\ \hline & -159.\ 06 \\ \hline & -145.\ 35 \\ \hline & -138.\ 53 \\ \hline & -128.\ 132.\ 51 \\ \hline & -128.\ 132.\ 51 \\ \hline & -128.\ 138.\ 53 \\ \hline & -116.\ 62 \\ \hline & -1116.\ 62 \\ \hline & -112.\ 76 \\ \hline & -103.\ 43 \\ \hline \end{array} $	$\underbrace{\overbrace{77.25}}_{76.75}$	7 36. 83 36. 01 31. 62 7 19. 98 7 19. 98
	F H N Ts 2d		
<u></u>			

 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\underbrace{}_{76.\ 851}^{78.\ 372}$	7 - 36.880 35.840 - 31.515 - 21.574 - 19.806	
 	F_3C H O H		

110 100 f1 (ppm) 0 -10

		— 175.52		$\begin{array}{c} -145.07\\ -145.07\\ -135.17\\ -135.17\\ -126.10\\ -112.37\\ -1118.18\\ -1112.83\end{array}$		78. 48 77. 25 76. 75				
				MeO N						
				Ts 2k						
				1 1						
		1								
hafkatlantagi olapistiyanafi					versegistes and test and the second states and the					
210	200 190	180 170	160	150 140 130 120 110	100 f1 (ppm)	90 80 70	60 50	40 30	20 10	0 -10

37 77 78	58 05
43. 39. 37.	21.
155	Ŷ

	— 175. 03	$ \begin{array}{c} -145.09 \\ 136.13 \\ 135.73 \\ 135.73 \\ 128.51 \\ 128.51 \\ 128.81 \\ 121.32 \\ 121.32 \\ 121.32 \\ 115.39 \end{array} $	86.02 $\underbrace{-77.15}_{76.85}$	$\begin{array}{c} - 43.11 \\ \hline 38.16 \\ - 38.14 \\ - 29.10 \\ \hline 20.76 \\ \end{array}$
$\sum_{135.73}^{136.33}$				
 	130 128 126 124 f1 (ppm)	2z	H3	

12	$19 \\ 17$	10	53 81
	Å.38.38.	— 29.	$\sum_{20.}^{21.}$

 $\begin{array}{c} & 129.92 \\ & 126.16 \\ & & 126.16 \\ & & & 124.84 \\ & & & 123.82 \\ & & & & 117.66 \\ & & & & 117.66 \\ \end{array}$

т 10 f1 (ppm) -10

I

1

4a

· ·		· I	· ·	· · ·	• •				• •	· I	· I	•	· .	· .	· I	· ·	· I	· I	· I			· I
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											fl (ppm))										

f1 (ppm) -10

f1 (ppm) -10

 $\frac{287}{42}$

•	· I	' '	· I	· I	· I				· I	'	· · ·	· I	· I	· I	• •	·	· I	· I		1 1		· .
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											fl (ppm))										

Ph OH OH TS	

Т f1 (ppm) -10

2ah

Mahalaharata Jalah paramatahan basil penya

f1 (ppm) -10

