SUPPLEMENTARY MATERIAL

Deep Neural Networks Outperform Human Expert's Capacity in Characterizing Bioleaching Bacterial Biofilm Composition

Antoine Buetti-Dinh^{*a,b}, Vanni Galli^{*c}, Sören Bellenberg^{*d}, Olga Ilie^{a,b}, Malte Herold^e, Stephan Christel^f, Mariia Boretska^d, Igor V. Pivkin^{a,b}, Paul Wilmes^e, Wolfgang Sand^{d,g,h}, Mario Veraⁱ, Mark Dopson^f

^aInstitute of Computational Science, Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland ^bSwiss Institute of Bioinformatics, Lausanne, Switzerland

^cInstitute for Information Systems and Networking, University of Applied Sciences of Southern Switzerland, Manno, Switzerland

^dFakultät für Chemie, Biofilm Centre, Universität Duisburg-Essen, Essen, Germany

^eLuxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg

^fCentre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden

^gCollege of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China

^hMining Academy and Technical University Freiberg, Freiberg, Germany ⁱInstitute for Biological and Medical Engineering. Schools of Engineering, Medicine & Biological Sciences. Department of Hydraulic & Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile

Contents

•

1	Deep Learning Resampling	2
2	Human Expert's Performance	3
3	Negative Control	5
4	Example of AL Images	5
5	Deep Learning Performance vs. Amount of Training Data	6
6	TensorFlow code and microscopy images	7
7	Test For Humans	8

1. Deep Learning Resampling

Run	Correct Prediction Rate	
1	90.20%	
2	89.80%	
3	93.10%	
4	87.30%	
5	90.20%	
6	88.90%	
7	86.30%	
8	90.10%	
9	89.50%	
10	87.40%	
	89.28%	

Figure S 1: Resampling. Different division of the images into training and testing sets is carried out in ten different runs and averaged (bold).

2. Human Expert's Performance

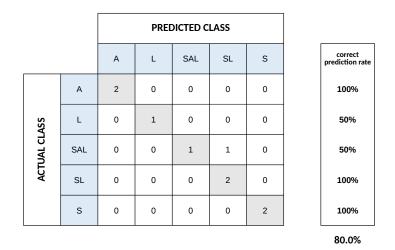


Figure S 2: Best human experts' performance in predicting the species composition of bacterial biofilms (see "Human Expert 12" in Fig. S3). The matrices indicate the share of images correctly deduced in the diagonal line (shaded grey) and categories the misclassified images were assigned are shown in the horizontal plane.

Correct Answer	Human Expert 1	Human Expert 2	Human Expert 3	Human Expert 4
AXX SXX	A	A S	SAX	AXX
SAL	SL	SL	SXX SAL	SXX LSX
LXX	A	JL		ALX
AXX	SA	A	AXX	AXX
SLX	SA	SA	SLX	ALS
SXX	S	S	SXX	SXX
SLX	SL	SL	SAX	ALS
LXX	A	L	SXX	ALX
SAL	SA	SA	LXX	SAX
Accuracy	0	.4 0.		
,				
Correct Anounce	Liveran Evenent E		Liveren Evenent 7	Liveren Event 0
Correct Answer AXX	Human Expert 5	Human Expert 6 SAX	Human Expert 7 ALX	Human Expert 8
SXX	SXX	SXX	SXX	SAX
SAL	LSX	SAL	ALX	SAL
LXX	ALX	LXX	ASX	SLX
AXX	LXX	AXX	AXX	AXX
SLX	ALS	SAL	LSX	SLX
SXX	SXX	SXX	LSX	SXX
SLX	LSX	SLX	ASX	SLX
LXX	ALX	LXX	ALX	SAL
SAL	SLX	SAX	ASL	LXX
Accuracy	0.27			
,				
0				
Correct Answer AXX	Human Expert 9	AXX	Human Expert 11	Human Expert 12
SXX	SXX	SXX	S	S
SAL	LAX	LSX	AS	SL
LXX	LXX	LXX	LS	AL
AXX	AXX	AXX	A	A
SLX	SAL	SAL	LS	SL
SXX	SXX	SXX	S	S
SLX	SAL	SAX	LS	SL
LXX	LXX	LXX	LC=LA=LS?	L
SAL	SAX	SAX	LS	SLA
Accuracy	0	.6 0.	6 0.	.6 0.8
Correct Answer	Human Expert 13	Human Expert 1/	Human Expert 15	Human Expert 16
AXX		AXX	AXX	SAX
SXX	A S	SXX	SXX	SXX
SAL	AL	LSX	SLX	LAX
LXX		ALX	ALX	LXX
AXX	A	LXX	LXX	AXX
SLX	SL	SLA	SLX	SLA
SXX	S	SXX	SAX/SLX	SXX
SLX	SAL	SLX	SAX/SLX	SAX
LXX	L	LXX	ALX	LXX
SAL	SA	SAX	SAX	LAX
Accuracy	0	.7 0.	5 0.	.3 0.5
Correct Anounce	Liveran Evenant 17		Ulumon Funert 10	Liveran Evenent 20
Correct Answer AXX	Human Expert 17	ASX	Human Expert 19 LXX	Human Expert 20 LXX
SXX	A S	SXX	SXX	SXX
SAL	S L	LSX	SAX	SAX
LXX		AXX	LXX	SAL
AXX	Ā		SAL	LAX
SLX	AL	ALS	SAL	LSX
SXX	S	SXX	SXX	SXX
SLX	AL	ALS	SAL	LXX
LXX	L	ALX	LXX	SXX
SAL	A	SLX	SLX	SLX
Accuracy	0.			

Figure S 3: Performance of the individual human experts in the custom-built double-blind test. Green highlights indicate correct answer.

3. Negative Control

AXX	16.00%
LXX	12.00%
SAL	21.00%
SAX	17.00%
SLX	15.00%
SXX	19.00%
Expected	16.67%

Figure S 4: Negative control. Performance of deep neural networks when subjected to samples devoid of bacteria, and consisting only on chalcopyrite grains.

4. Example of AL Images

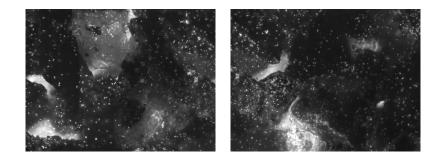


Figure S 5: Example of EFM images representing the AL biofilm category.

5. Deep Learning Performance vs. Amount of Training Data

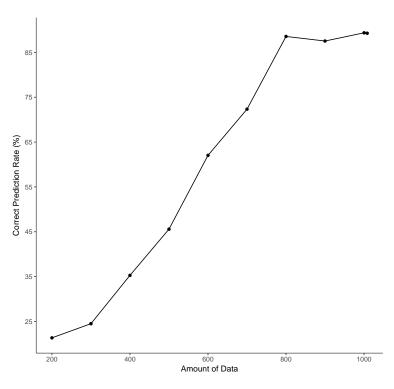


Figure S 6: Deep learning performance vs. amount of training data. The algorithm performance was tested in its accuracy expressed in percentage of images accurately classified as a function of the number of images used for training. Data augmentation was applied by duplicating training images. The correct prediction rate was obtained by averaging the outcome over the different image categories.

6. TensorFlow code and microscopy images

TensorFlow code describing the convolutional neural network (CNN) used in this study, as well as the images used for CNN training and testing are available in the FAIRDOMHub repository (DOI: 10.15490/fairdomhub.1.investigation.281.1).

7. Test For Humans

Guess the Microbes !

In the following pages you can see microscopy images of microbial biofilms. The biofilms are composed of bacteria (the bright dots) that feed on mineral particles (dark areas).

After looking at some labelled examples of the different biofilms formed by different bacterial mixes (Fig.1-6), will you be able to correctly guess unlabelled images in the last two pages (Fig.7-8) ?

BACKGROUND

With this test, we would like to study the performance of a computer program to correctly classify microscopy images, based on the bacterial composition of the represented biofilm. The method relies on convolutional neural networks (CNNs, a type of artificial neural networks used in deep learning), which were previously trained on \sim 500 images.

In particular, this test will allow us to compare the performance of deep learning *vs*. the human capacity in distinguishing biofilm composition based on microscopy images.

Spoiler alert! The computer program turned out to be quite good, reaching $\sim 90\%$ accuracy in guessing the correct image type, can you do better ?

1 TRAINING

The following images are representative of the biofilms formed by the different bacterial mixes. There are three species:

- ★ Acidithiobacillus caldus
- ★ Leptospirillum ferriphilum
- \star Sulfobacillus thermosulfidooxidans

labelled as A, L and S, respectively.

Images represent biofilms of mixtures composed between 1-3 of these bacteria. For example, the mixture ALX contains the first two bacteria listed above, and not the third (indicated as "X"). Similarly, LXX indicates that the biofilm mixture is only composed of L. And so on...

Optionally, you can look at more such images in the folders named with the mixture names, see the folder more_images (you can download it at https://goo.gl/Yc6vcT ($\sim 200 \text{ MB}$)).

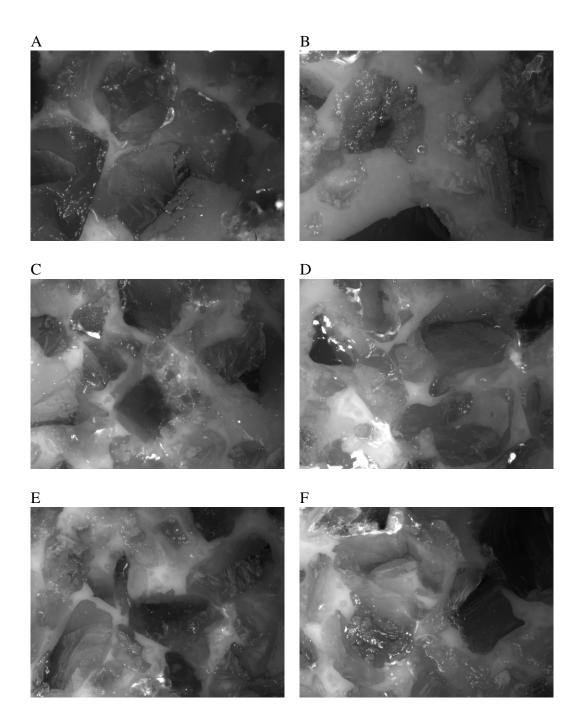


Figure 1: AXX. More images can be found in the folder more_images/AXX.

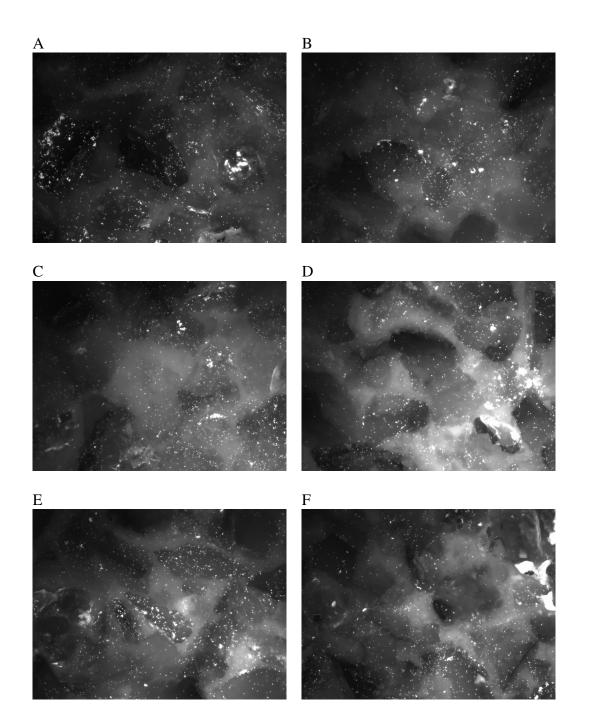


Figure 2: LXX. More images can be found in the folder more_images/LXX.

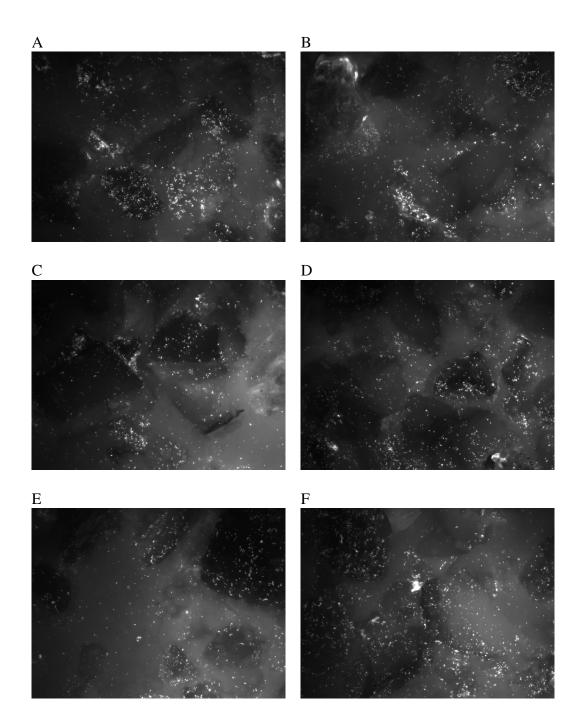


Figure 3: SAL. More images can be found in the folder more_images/SAL.

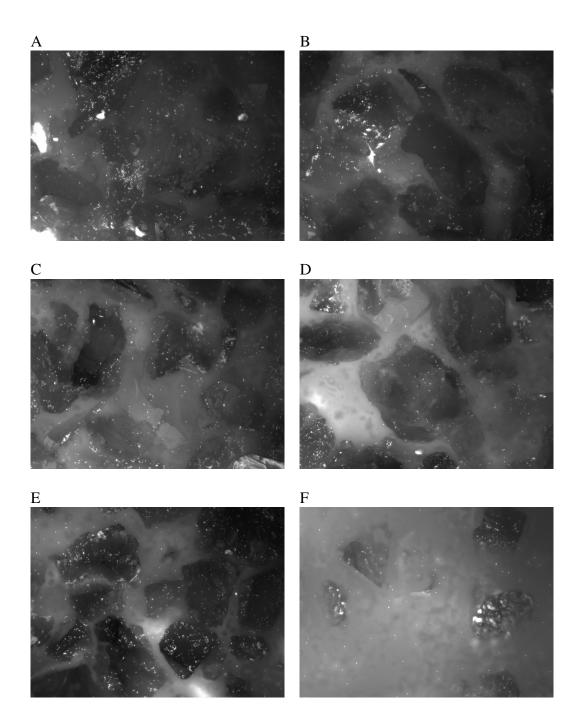


Figure 4: SAX. More images can be found in the folder more_images/SAX.

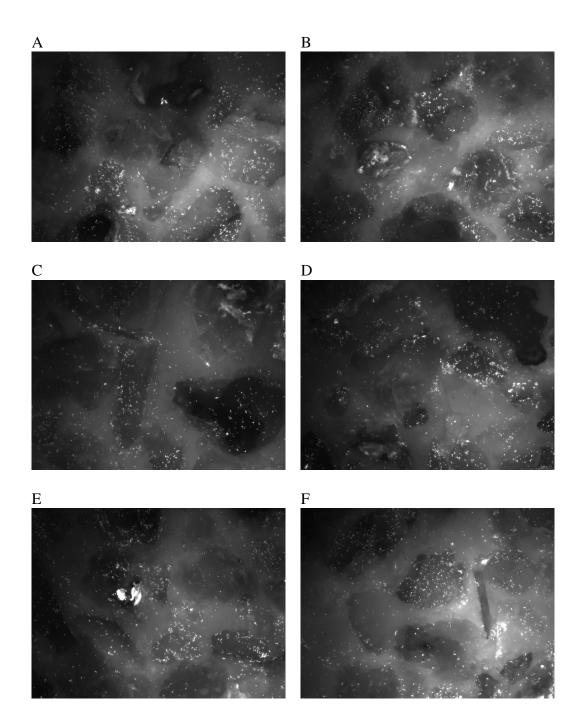


Figure 5: SLX. More images can be found in the folder more_images/SLX.

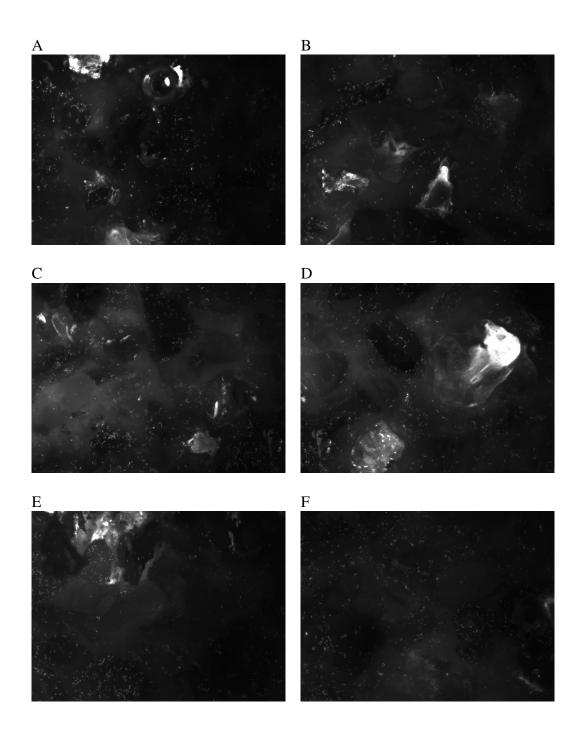


Figure 6: SXX. More images can be found in the folder more_images/SXX.

2 TEST

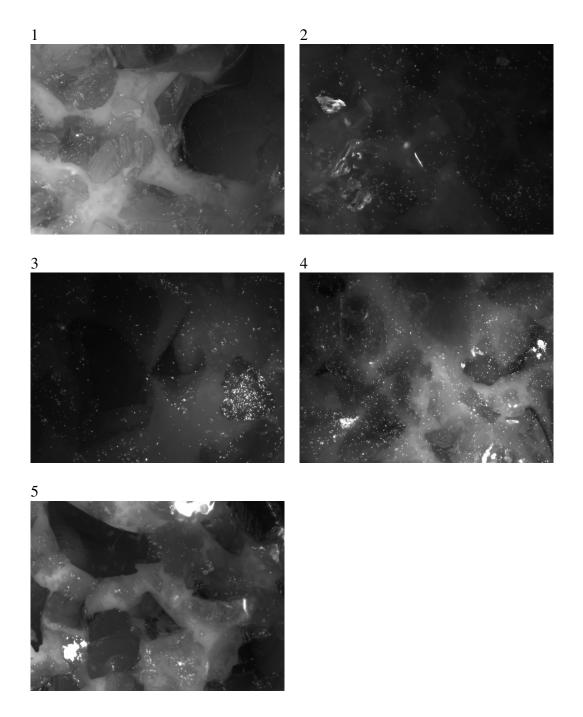


Figure 7: Test (part 1)

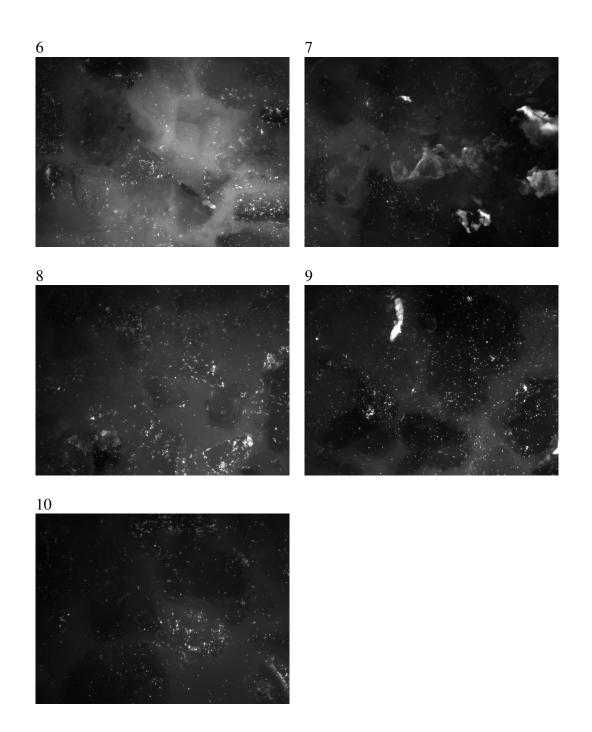


Figure 8: Test (part 2): Please write the name of what you think is the bacterial mixture as your answer. Some features in particular were determinant for your choice ? You can send the answers to antoine.buetti@lnu.se. THANK YOU!