Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Reductive Annulations of Arylidene Malonates With Unsaturated Electrophiles Using Photoredox/Lewis Acid Cooperative Catalysis

Rick C. Betori, Benjamin R. McDonald and Karl A. Scheidt*

Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States

Table of Contents

General Information	S2
Preparation of Salicylaldehyde Derived Arylidene Malonates	S2
Preparation of Salicylaldehyde Derived Arylidene Malonates Requiring Metathesis Reactions	S9
Preparation of Salicylaldehyde Derived Alkyne Electrophiles	S11
Preparation of Salicylaldehyde Derived Alkyne-Aryl Arylidene Malonates	S12
Preparation of Tetrahydroquinoline-Precursor Arylidene Malonate	S14
Preparation of Tetrahydronapthalene-Precursor Arylidene Malonate	S15
Preparation of Dihydrobenzofuran-Precursor Arylidene Malonate	S16
Selected Optimization Data:	S17
General Procedure for Reductive Cyclization	S20
Procedure for Krapcho Decarboxylation and Dieckmann Condensation	S30
Stern-Volmer Fluorescence Quenching Experiments	S31
Stern-Volmer Fluorescence Quenching: Figure 6 Table Data and Individual Graphs	S32
Stern-Volmer Fluorescence Quenching: Varying 1a and Sc(OTf)3	S34
Stern-Volmer Fluorescence Quenching: NBu3 Quenching with and without 1a and Sc(OTf)3	S36
Stern-Volmer Fluorescence Quenching: HEH Quenching with and without 1a and varying conc. of Sc(OTf)	3 . S38
Procedure for Determination of Quantum Yield	S40
Procedure for Light/Dark Experiment	S40
Procedure for UV-Vis Experiments	S41
ORTEPS of Crystallographic Structure	S42
NMR Spectra for Cyclization Starting Materials	S43
NMR Spectra for Cyclization Products	S66
References:	S91

General Information

All reactions were carried out under an argon or nitrogen atmosphere in flame-dried glassware with magnetic stirring. Solvents used in reactions were purified by passage through a bed of activated alumina. Unless stated otherwise, reagents were purified prior to use following the guidelines of Perrin and Armarego.¹ Purification of reaction products was carried out by flash chromatography on Biotage Isolera 4 systems with Ultra-grade silica cartridges. Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60-F plates. Visualization was accomplished with UV light. Infrared spectra were recorded on a Bruker Tensor 37 FT-IR spectrometer. ¹H NMR spectra were recorded on an AVANCE III 500 MHz spectrometer with direct cryoprobe (500 MHz) and Bruker Avance III 600 MHz (151 MHz) system. Spectra are reported in ppm using solvent as an internal standard (CDCl₃ at 7.26 ppm). Peak multiplicities are reported as (s = singlet, d = doublet, t = doublet, ttriplet, q = quartet, quint= quintet, m = multiplet, br= broad; coupling constant(s) in Hz; integration.) Proton-decoupled ¹³C NMR spectra were recorded on an AVANCE III 500 MHz with direct cryoprobe (125 MHz) spectrometer and Bruker Avance III 600 MHz (151 MHz) system. These are reported in ppm using solvent as an internal standard (CDCl₃ at 77.16 ppm). Low-resolution mass spectra were obtained on WATERS Acquity-H UPLC-MS with a single quad detector (ESI) Varian1200 Quadrupole Mass Spectrometer. High-resolution mass spectra were obtained using an Agilent 6120A LC-time of flight mass spectrometer. Gas chromatography experiments were run on Agilent 7890A/5975C GC/MS System. Enantioselectivity measurements were made on an Agilent 1290 Infinity SFC, using a Chiralpak ID-3 column. Blue light was generated by 3 40 W Kessil H150 LED lights.

Iridium and Ruthenium photocatalysts were obtained from Strem Chemical and Sigma-Aldrich respectively and used as received. Photocatalysts DPAIPN and CZIPN were synthesized according to Molander et al.²

Preparation of Salicylaldehyde Derived Arylidene Malonates

To an oven-dried scintillation vial under nitrogen was added NaH (60 wt %, 1.2 equiv) and DMF (0.5 M), and the mixture was cooled to 0 °C. A solution of salicylaldehyde (1 equiv) dissolved in DMF (1.0 M) was slowly added, and upon addition completion, the mixture was allowed to stir at 0 °C for 30 minutes. A solution of allyl bromide electrophile (1.2 equiv) dissolved in DMF (1.0 M) was slowly added, and then reaction mixture was allowed to stir overnight as it warmed to room S-2

temperature. Upon reaction completion, sat. aq. NH₄Cl was added, and the aqueous layer was extracted 3x with EtOAc. The combined organic layers were washed with H₂O and sat. aq. NaCl, passed through a Biotage Isolute phase separator, and concentrated to dryness under reduced pressure on a rotary evaporator to obtain the crude SN2 product, which was directly used in the next reaction without purification.

To a scintillation vial was added the crude aldehyde from the previous step (1 equiv). Malonate or ketoester was added (1.1 equiv), along with 250 wt % activated 4 Å molecular sieves (powder). A magnetic stir bar and CH₂Cl₂ (2.0 M) were added, followed by acetic acid (0.1 equiv) and piperidine (0.1 equiv). The mixture was stirred overnight. Silica was added and the reaction mixture was concentrated under reduced pressure. The resulting mixture was loaded onto a column of silica and purified via flash column chromatography (10-20% EtOAc/hexanes) to yield the desired product.

Prepared according to the general procedure with 78% overall yield over two steps.

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.11 (s, 1H), 7.60 (dd, J = 8.0, 1.4 Hz, 1H), 7.46 – 7.39 (m, 1H), 7.26 – 7.17 (m, 2H), 6.42 (dt, J = 15.7, 1.7 Hz, 1H), 4.78 (dd, J = 4.7, 1.9 Hz, 2H), 4.02 (s, 2H), 3.93 (d, J = 2.2 Hz, 6H).¹³C NMR (126 MHz, CDCl₃) δ 166.37, 166.18, 163.96, 153.30, 141.67, 137.89, 132.45, 129.36, 128.57, 128.28, 127.43, 125.42, 122.34, 77.31, 77.26, 77.06, 76.80, 72.58, 52.80, 52.63, 51.70. LRMS (ESI): Mass calcd for C₁₇H₁₈O₇ [M+H]+: 335.1; found 335.2 HRMS (ESI): Mass calcd for C₁₇H₁₈O₇ [M+H]+: 335.1053; found 335.1051 FTIR (neat): 2970, 2732, 1790, 1675, 1656, 1618, 1531, 1466, 1271, 1261, 1200, 1186, 1152, 1045, 1011, 937, 852, 808

Prepared according to the general procedure with 72% overall yield over two steps.

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.11 (s, 1H), 7.60 (dd, J = 8.0, 1.4 Hz, 1H), 7.46 – 7.39 (m, 1H), 7.26 – 7.17 (m, 2H), 6.42 (dt, J = 15.7, 1.7 Hz, 1H), 4.78 (dd, J = 4.7, 1.9 Hz, 2H), 4.02 (s, 2H), 3.93 (d, J = 2.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.37, 166.18, 163.96, 153.30, 141.67, 137.89, 132.45, 129.36, 128.57, 128.28, 127.43, 125.42, 122.34, 77.31, 77.26, 77.06, 76.80, 72.58, 52.80, 52.63, 51.70. LRMS (ESI): Mass calcd for C₁₇H₁₇ClO₇ [M+H]+: 369.1; found 369.1 HRMS (ESI): Mass calcd for C₁₇H₁₇ClO₇ [M+H]+: 369.0663; found 369.0660 FTIR (neat):

2988, 2738, 1762, 1685, 1637, 1600, 1518, 1315, 1292, 1246, 1209, 1179, 1158, 1075, 1017, 975, 914, 736

Prepared according to the general procedure with 71% overall yield over two steps.

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.93 (s, 1H), 7.62 – 7.56 (m, 1H), 7.27 (d, J = 7.7 Hz, 1H), 7.08 – 6.96 (m, 2H), 6.25 (d, J = 15.4 Hz, 1H), 4.60 – 4.54 (m, 2H), 3.83 (s, 3H), 3.75 (d, J = 5.3 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.42, 166.15, 163.94, 154.32, 141.62, 138.08, 135.50, 129.40, 128.36, 128.23, 125.94, 122.37, 117.98, 77.27, 77.22, 77.02, 76.76, 72.66, 52.83, 52.66, 51.73. LRMS (ESI): Mass calcd for C₁₇H₁₇BrO₇ [M+H]+: 413.0; found 413.1 HRMS (ESI): Mass calcd for C₁₇H₁₇BrO₇ [M+H]+: 413.0158; found 413.0160 FTIR (neat): 2984, 2784, 2345, 1676, 1659, 1628, 1552, 1481, 1280, 1248, 1214, 1166, 1129, 1044, 1008, 961, 884, 708

Prepared according to the general procedure with 67% overall yield over two steps.

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.24 (s, 1H), 7.29 – 7.20 (m, 2H), 7.19 – 7.09 (m, 2H), 6.41 (dd, J = 15.8, 2.2 Hz, 1H), 4.86 (dd, J = 4.9, 1.9 Hz, 2H), 4.10 – 4.02 (m, 6H), 3.98 – 3.93 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 194.33, 166.75, 166.57, 164.33, 152.57, 146.51, 143.04, 138.59, 138.43, 127.73, 126.95, 124.58, 121.66, 120.23, 114.56, 109.82, 100.99, 77.36, 77.10, 76.85, 72.00, 55.89, 55.82, 52.63, 52.52, 51.62. LRMS (ESI): Mass calcd for C₁₈H₂₀O₈[M+H]+: 365.1; found 365.2 HRMS (ESI): Mass calcd for C₁₈H₂₀O₈[M+H]+: 365.1158; found 365.1160 FTIR (neat): 2984, 2444, 2241, 1683, 1641, 1625, 1511, 1467, 1276, 1253, 1210, 1167, 1163, 1102, 1016, 961, 878, 701

Prepared according to the general procedure with 73% overall yield over two steps.

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.12 (s, 1H), 7.31 – 7.22 (m, 2H), 7.22 – 7.11 (m, 2H), 6.33 (dt, J = 15.7, 1.9 Hz, 1H), 4.90 (dd, J = 4.8, 1.8 Hz, 2H), 3.98 (s, 2H), 3.89 (d, J = 6.2 Hz, 5H). ¹³C NMR (126 MHz, CDCl₃) δ 166.37, 166.29, 164.09, 155.97, 154.00, 144.79, 144.70, 142.00, 137.42, 137.39, 128.51, 128.49, 127.74, 124.22, 124.15, 124.12, 124.09, 122.19, 119.05, S-4

118.89, 77.34, 77.08, 76.83, 72.53, 72.49, 52.74, 52.58, 51.69. LRMS (ESI): Mass calcd for $C_{17}H_{17}FO_7$ [M+H]+: 353.1; found 353.1 HRMS (ESI): Mass calcd for $C_{17}H_{17}FO_7$ [M+H]+: 353.0959; found 353.0961 FTIR (neat): 2999, 2398, 2107, 1706, 1657, 1605, 1586, 1379, 1303, 1259, 1195, 1187, 1133, 1089, 997, 967, 883, 707

Prepared according to the general procedure with 61% overall yield over two steps.

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.93 (s, 1H), 7.24 (dd, J = 8.6, 6.6 Hz, 1H), 6.94 (dt, J = 15.8, 4.2 Hz, 1H), 6.56 (td, J = 8.3, 2.1 Hz, 1H), 6.47 (dd, J = 10.4, 2.3 Hz, 1H), 6.07 – 6.00 (m, 1H), 4.64 (dd, J = 4.0, 2.0 Hz, 2H), 3.74 (t, J = 1.1 Hz, 3H), 3.70 – 3.63 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.96, 166.08, 165.92, 164.47, 163.91, 157.83, 157.75, 141.10, 137.26, 130.43, 130.35, 125.57, 122.31, 118.71, 118.68, 108.41, 108.24, 100.58, 100.37, 77.36, 77.11, 76.85, 67.23, 52.60, 52.53, 51.77. LRMS (ESI): Mass calcd for C₁₇H₁₇FO₇ [M+H]+: 353.0959; found 353.0960 FTIR (neat): 2993, 2942, 1766, 1690, 1655, 1616, 1562, 1445, 1298, 1249, 1191, 1186, 1151, 1042, 1000, 961, 922, 807

Prepared according to the general procedure with 75% overall yield over two steps.

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.26 (s, 1H), 7.46 (d, J = 8.2 Hz, 1H), 7.37 – 7.32 (m, 1H), 7.35 – 7.26 (m, 1H), 7.24 (d, J = 1.8 Hz, 1H), 6.39 (dt, J = 15.8, 2.0 Hz, 1H), 5.00 (dd, J = 4.2, 2.1 Hz, 2H), 4.10 (s, 3H), 4.02 (d, J = 7.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 165.75, 165.11, 163.33, 155.70, 140.08, 136.32, 128.98, 125.39, 124.70, 123.60, 121.29, 120.63, 114.67, 76.32, 76.26, 76.06, 75.81, 66.24, 51.68, 51.60, 50.80. LRMS (ESI): Mass calcd for C₁₇H₁₇BrO₇ [M+H]+: 413.0; found 413.1 HRMS (ESI): Mass calcd for C₁₇H₁₇BrO₇ [M+H]+: 413.0158; found 413.0156 FTIR (neat): 2969, 2582, 1919, 1688, 1652, 1615, 1491, 1320, 1271, 1256, 1215, 1165, 1129, 1077, 1001, 933, 891, 813

¹H NMR (500 MHz, Chloroform-*d*) $\delta = 8.14$ (s, 1H), 7.25 (d, *J*=7.9, 1H), 7.09 (dt, *J*=15.8, 4.1, 1H), 6.77 (d, *J*=7.9, 1H), 6.66 (s, 1H), 6.17 (dt, *J*=15.8, 2.0, 1H), 4.75 (dd, *J*=4.1, 2.0, 2H), 3.85 (s, 2H), 3.78 (d, *J*=16.8, 5H), 2.34 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.33, 166.33, 164.73, 156.46, 143.16, 142.08, 138.31, 128.84, 124.67, 122.21, 121.85, 119.68, 112.90, 112.66, 77.37, 77.11, 76.86, 66.89, 52.51, 52.47, 51.72, 21.91. LRMS (ESI): Mass calcd for C₁₈H₂₀O₇ [M+H]+: 349.1; found 349.1 HRMS (ESI): Mass calcd for C₁₈H₂₀O₇ [M+H]+: 349.1209; found 349.1208 FTIR (neat): 3000, 2616, 2232, 1664, 1633, 1611, 1552, 1442, 1275, 1227, 1212, 1165, 1126, 1022, 1012, 925, 905, 803

¹H NMR (500 MHz, Chloroform-*d*) $\delta = 8.22$ (s, 1H), 7.26 – 7.21 (m, 2H), 7.17 (dt, *J*=15.8, 4.1, 1H), 6.84 (d, *J*=8.9, 1H), 6.25 (dt, *J*=15.8, 2.1, 1H), 4.82 (dd, *J*=4.2, 2.0, 2H), 3.95 (s, 3H), 3.87 (d, *J*=18.6, 5H), 2.35 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.33, 166.33, 164.73, 156.46, 143.16, 142.08, 138.31, 128.84, 124.67, 122.21, 121.85, 119.68, 112.90, 112.66, 77.37, 77.11, 76.86, 66.89, 52.51, 52.47, 51.72, 21.91. LRMS (ESI): Mass calcd for C₁₈H₂₀O₇ [M+H]+: 349.1; found 349.1 HRMS (ESI): Mass calcd for C₁₈H₂₀O₇ [M+H]+: 349.1210 FTIR (neat): 2967, 2772, 1975, 1678, 1650, 1612, 1571, 1435, 1283, 1231, 1192, 1188, 1143, 1070, 992, 943, 897, 792

¹H NMR (500 MHz, Chloroform-*d*) $\delta = 8.22$ (s, 1H), 7.23 (dt, *J*=26.7, 4.3, 2H), 7.00 – 6.92 (m, 1H), 6.31 (dt, *J*=15.9, 2.3, 1H), 4.93 – 4.87 (m, 2H), 4.00 (dd, *J*=21.7, 2.7, 5H), 3.93 (s, 2H), 3.92 (d, *J*=5.6, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.53, 166.21, 164.25, 157.85, 155.94, 152.66, 141.70, 137.02, 126.99, 123.76, 123.69, 122.13, 118.31, 118.13, 115.56, 115.36, 113.40, 113.34, 77.32, 77.06, 76.81, 67.67, 52.73, 52.66, 51.78. LRMS (ESI): Mass calcd for C₁₇H₁₇FO₇ [M+H]+: 353.1; found 353.1 HRMS (ESI): Mass calcd for C₁₇H₁₇FO₇ [M+H]+: 353.0959; found 353.0961 FTIR (neat): 2992, 2745, 2037, 1696, 1634, 1608, 1500, 1439, 1278, 1224, 1205, 1175, 1162, 1027, 998, 962, 920, 815

¹H NMR (500 MHz, Chloroform-*d*) $\delta = 7.78$ (s, 1H), 7.24 (d, *J*=2.5, 1H), 7.06 (d, *J*=2.3, 1H), 6.89 (dt, *J*=15.7, 3.9, 1H), 6.15 (dd, *J*=15.7, 2.2, 1H), 4.34 (dd, *J*=3.9, 2.2, 2H), 3.69 – 3.54 (m, 9H), 1.12 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 166.77, 166.64, 164.34, 154.88, 146.45, 142.81, 142.21, 141.06, 126.98, 126.85, 126.28, 124.38, 121.20, 77.28, 77.23, 77.03, 76.77, 73.55, 52.62, 52.58, 51.69, 35.26, 34.65, 31.38, 30.74. LRMS (ESI): Mass calcd for C₂₅H₃₄O₇ [M+H]+: 447.2; found 447.1 HRMS (ESI): Mass calcd for C₂₅H₃₄O₇ [M+H]+: 447.2305; found 447.2307 FTIR (neat): 2978, 2578, 2191, 1689, 1632, 1606, 1592, 1310, 1291, 1267, 1207, 1185, 1138, 1066, 1002, 967, 851, 786

¹H NMR (500 MHz, Chloroform-*d*) δ = 7.65 (s, 1H), 7.24 (d, *J*=2.4, 1H), 7.03 (d, *J*=2.4, 1H), 6.83 (dt, *J*=15.8, 4.7, 1H), 6.03 (dt, *J*=15.7, 1.9, 1H), 4.40 (dd, *J*=4.8, 1.8, 2H), 3.67 (d, *J*=1.0, 3H), 3.59 (dd, *J*=16.2, 1.1, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.20, 165.61, 163.61, 151.93, 141.19, 136.47, 131.80, 130.27, 130.21, 129.38, 129.36, 127.27, 122.60, 77.34, 77.29, 77.09, 76.83, 72.72, 52.90, 52.71, 51.71. LRMS (ESI): Mass calcd for C₁₇H₁₆Cl₂O₇ [M+H]+: 403.1; found 403.1 HRMS (ESI): Mass calcd for C₁₇H₁₆Cl₂O₇ [M+H]+: 403.0273; found 403.0271 FTIR (neat): 2967, 2537, 1842, 1708, 1654, 1614, 1538, 1391, 1306, 1262, 1206, 1188, 1131, 1120, 993, 935, 902, 748

Prepared according to the general procedure with 78% overall yield over two steps.

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 8.37$ (s, 1H), 7.95 – 7.85 (m, 2H), 7.63 – 7.55 (m, 1H), 7.52 – 7.44 (m, 1H), 7.26 – 7.12 (m, 1H), 6.22 (dt, *J*=15.8, 2.1, 1H), 4.92 (dd, *J*=4.3, 2.0, 1H), 4.01 (s, 2H), 3.83 (s, 2H), 3.58 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 166.33, 165.64, 164.90, 152.96, 142.37, 140.50, 131.94, 131.64, 129.86, 129.01, 128.42, 127.48, 124.49, 123.77, 122.12, 117.40, 113.85, 77.32, 77.07, 76.82, 68.00, 52.69, 52.00, 51.74. LRMS (ESI): Mass calcd for C₂₁H₂₀O₇ [M+H]+: 385.1; found 385.1 HRMS (ESI): Mass calcd for C₂₁H₂₀O₇ [M+H]+: 385.1; found 385.1 HRMS (ESI): Mass calcd for C₂₁H₂₀O₇ [M+H]+: 385.1209; found 385.1210 FTIR (neat): 2996, 2543, 2196, 1677, 1641, 1622, 1543, 1441, 1306, 1266, 1192, 1163, 1148, 1046, 990, 930, 831, 792

Prepared according to the general procedure with 85% overall yield over two steps.

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.96 (s, 1H), 7.25 (dd, *J*=7.9, 1.6, 1H), 7.19 – 7.12 (m, 1H), 6.91 (dt, *J*=15.8, 3.9, 1H), 6.77 (t, *J*=7.5, 1H), 6.68 (d, *J*=8.3, 1H), 6.01 (dt, *J*=15.8, 2.1, 1H), 4.57 (dd, *J*=4.1, 2.1, 2H), 4.12 (dq, *J*=14.1, 7.1, 4H), 3.56 (s, 3H), 1.18 (t, *J*=7.1, 3H), 1.07 (t, *J*=7.1, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.45, 166.14, 164.05, 156.24, 142.03, 137.33, 131.92, 129.02, 126.55, 122.49, 121.58, 121.11, 111.96, 77.54, 77.28, 77.03, 66.72, 61.43, 61.39, 51.53, 14.01, 13.79. LRMS (ESI): Mass calcd for C₁₉H₂₂O₇ [M+H]+: 363.1; found 363.2 HRMS (ESI): Mass calcd for C₁₉H₂₂O₇ [M+H]+: 363.1; found 363.2 HRMS (ESI): Mass calcd for C₁₉H₂₂O₇ [M+H]+: 363.1365; found 363.1363 FTIR (neat): 2991, 2700, 2301, 1699, 1655, 1602, 1512, 1400, 1296, 1250, 1200, 1181, 1131, 1043, 1002, 965, 840, 802

Prepared according to the general procedure with 75% overall yield over two steps.

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.86 (s, 1H), 7.23 (dd, *J*=7.8, 1.5, 1H), 7.15 – 7.04 (m, 1H), 6.86 (dt, *J*=15.8, 3.9, 1H), 6.71 (t, *J*=7.6, 1H), 6.61 (d, *J*=8.3, 1H), 5.97 (dd, *J*=15.8, 2.0, 1H), 5.02 – 4.88 (m, 2H), 4.53 (dd, *J*=4.1, 2.1, 2H), 3.56 – 3.42 (m, 4H), 1.10 (d, *J*=6.3, 5H), 1.02 (d, *J*=6.1, 5H). ¹³C NMR (126 MHz, CDCl₃) δ 166.34, 166.17, 166.08, 163.70, 156.28, 142.05, 136.62, 131.75, 129.20, 128.24, 127.42, 127.03, 122.77, 121.71, 121.14, 111.89, 77.34, 77.09, 76.84, 69.11, 69.06, 66.78, 51.66, 46.19, 42.25, 21.74, 21.49. LRMS (ESI): Mass calcd for C₂₁H₂₆O₇ [M+H]+: 390.2; found 390.2 HRMS (ESI): Mass calcd for C₂₁H₂₆O₇ [M+H]+: 390.1679; found 390.1680 FTIR (neat): 2998, 2486, 1967, 1703, 1639, 1614, 1546, 1385, 1280, 1237, 1203, 1179, 1124, 1030, 994, 930, 846, 705

Prepared according to the general procedure with 82% overall yield over two steps.

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 8.14$ (s, 1H), 7.35 – 7.20 (m, 5H), 7.21 – 7.13 (m, 1H), 6.89 – 6.81 (m, 2H), 6.63 (dt, *J*=16.0, 1.6, 1H), 6.31 (dt, *J*=16.0, 5.7, 1H), 4.65 (dd, *J*=5.8, 1.6, 2H), 3.74 (s, 2H), 3.70 (s, 2H), 3.65 (s, 2H), 3.30 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 167.23, 166.92, 164.73, 157.21, 139.00, 136.27, 133.14, 132.16, 129.01, 128.64, 128.02, 126.63, S-8

125.48, 123.92, 122.58, 120.85, 112.48, 77.48, 77.23, 76.97, 69.33, 69.21, 54.48, 52.54, 52.51, 52.47, 41.09. LRMS (ESI): Mass calcd for $C_{21}H_{20}O_5[M+H]+$: 353.1; found 353.2 HRMS (ESI): Mass calcd for $C_{21}H_{20}O_5[M+H]+$: 353.1311; found 353.1310 FTIR (neat): 2990, 2600, 2211, 1666, 1636, 1606, 1515, 1453, 1293, 1251, 1220, 1172, 1143, 1103, 993, 956, 831, 741

Prepared according to the general procedure with 55% overall yield over two steps. Isolated as an inseparable 1:1 mixture of Z/E isomers (4-bromobut-2-enenitrile used for SN2 reaction was an inseparable 1:1 mixture of Z/E isomers)

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.96 (d, *J*=2.7, 1H), 7.56 – 7.46 (m, 1H), 7.32 – 7.19 (m, 2H), 7.22 – 7.11 (m, 1H), 6.90 – 6.81 (m, 1H), 6.84 – 6.67 (m, 2H), 5.63 (dt, *J*=16.4, 2.3, 1H), 5.51 – 5.44 (m, 1H), 5.17 (s, 1H), 4.88 – 4.76 (m, 1H), 4.62 (dd, *J*=3.7, 2.3, 1H), 3.75 – 3.59 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 167.00, 166.88, 164.62, 164.45, 156.03, 155.79, 149.17, 148.77, 147.88, 138.76, 138.22, 134.48, 132.16, 132.08, 129.56, 129.40, 129.28, 126.39, 126.10, 124.90, 122.81, 121.95, 121.74, 116.85, 116.63, 114.70, 112.06, 111.96, 101.78, 101.24, 77.27, 77.22, 77.02, 76.77, 66.78, 66.46, 52.75, 52.65, 52.57, 52.51, 41.14. LRMS (ESI): Mass calcd for C₁₆H₁₅NO₅ [M+H]+: 302.1; found 302.2 HRMS (ESI): Mass calcd for C₁₆H₁₅NO₅ [M+H]+: 302.0950; found 302.0951 FTIR (neat): 2975, 2818, 2044, 1670, 1638, 1625, 1592, 1373, 1297, 1270, 1197, 1181, 1135, 1114, 1019, 924, 886, 745

Preparation of Salicylaldehyde Derived Arylidene Malonates Requiring Metathesis Reactions

To an oven-dried scintillation vial under nitrogen was added NaH (60 wt %, 1.2 equiv) and DMF (0.5 M), and the mixture was cooled to 0 °C. A solution of salicylaldehyde (1 equiv) dissolved in DMF (1.0 M) was slowly added, and upon addition completion, the mixture stirred at 0 °C for 30 minutes. A solution of allyl bromide electrophile (1.2 equiv) dissolved in DMF (1.0 M) was slowly added and then reaction was allowed to stir overnight as it warmed to room temperature. Upon reaction completion, sat. aq. NH₄Cl was added, and the aqueous layer was extracted 3x with EtOAc. The combined organic layers were washed with H₂O and sat. aq. NaCl, passed through a Biotage Isolute phase separator, and concentrated to dryness under reduced pressure on a rotary evaporator to obtain the crude SN2 product, which was directly used in the next reaction without purification. S-9

A flame dried round bottom flask was charged with alkene starting material (1.0 equiv) in CH_2Cl_2 (0.5 M), ethyl acrylate (5.0 equiv) and flushed with Ar. Grubbs-Hoveyeda second generation catalyst (2.5 mol %) was added in one portion and the reaction was stirred at room temperature under an atmosphere of Ar. The homogeneous solution was allowed to stir for 6 hours. Once the reaction was complete, the reaction was concentrated to dryness under reduced pressure on a rotary evaporator. The crude product was directly used in the next reaction without purification

To a scintillation vial was added the crude aldehyde from the previous step (1 equiv). Malonate or ketoester was added (1.1 equiv), along with 250 wt % activated 4 Å molecular sieves (powder). A magnetic stir bar and CH_2Cl_2 (2.0 M) were added, followed by acetic acid (0.1 equiv) and piperidine (0.1 equiv). The mixture was stirred overnight. Silica was added, and the reaction concentrated under reduced pressure. The resulting mixture was loaded onto a column of silica and purified via flash column chromatography (10-20% EtOAc/hexanes) to yield the desired product.

Prepared according to the general procedure with 65% overall yield over three steps.

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 8.05$ (s, 1H), 7.28 – 7.15 (m, 3H), 6.90 – 6.80 (m, 2H), 6.77 – 6.71 (m, 1H), 5.95 (dt, *J*=15.7, 2.0, 1H), 4.63 (dd, *J*=4.3, 2.0, 2H), 3.75 (s, 2H), 3.66 (d, *J*=18.0, 5H), 1.39 (s, 7H). ¹³C NMR (126 MHz, CDCl₃) δ 167.10, 166.92, 165.17, 164.60, 156.53, 140.46, 138.56, 133.52, 132.09, 130.24, 129.03, 128.69, 128.45, 128.15, 125.76, 124.26, 122.58, 121.25, 112.12, 80.80, 77.33, 77.07, 76.82, 67.11, 60.39, 52.57, 52.54, 52.50, 41.11, 28.09. LRMS (ESI): Mass calcd for C₂₀H₂₄O₇[M+H]+: 377.2; found 377.2 HRMS (ESI): Mass calcd for C₂₀H₂₄O₇[M+H]+: 377.1522; found 377.1520 FTIR (neat): 2982, 2944, 1952, 1669, 1647, 1607, 1595, 1384, 1276, 1244, 1197, 1180, 1138, 1066, 992, 950, 893, 688

Prepared according to the general procedure with 52% overall yield over three steps.

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 8.01$ (s, 1H), 7.28 – 7.15 (m, 7H), 6.98 (dt, *J*=15.7, 4.1, 1H), 6.81 (t, *J*=7.6, 1H), 6.70 (d, *J*=8.1, 1H), 6.07 (dt, *J*=15.8, 2.0, 1H), 5.07 (s, 2H), 4.63 (dd, *J*=4.2, 2.1, 2H), 3.66 (d, *J*=23.6, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 167.06, 165.66, 164.57, 156.38, 142.33, 138.48, 135.77, 132.07, 129.10, 128.59, 128.31, 125.89, 122.66, 122.10, 121.39, 112.10, 77.30, 77.24, 77.04, 76.79, 67.01, 66.50, 52.58, 52.52. LRMS (ESI): Mass calcd for C₂₃H₂₂O₇[M+H]+: 411.1; found 411.1 HRMS (ESI): Mass calcd for C₂₃H₂₂O₇[M+H]+: 411.1365; S-10

found 411.1367 FTIR (neat): 2964, 2533, 2087, 1691, 1640, 1607, 1571, 1384, 1297, 1230, 1192, 1186, 1123, 1027, 992, 987, 882, 765

Preparation of Salicylaldehyde Derived Alkyne Electrophiles

To an oven- dried scintillation vial under nitrogen was added NaH (60 wt %, 1.2 equiv) and DMF (0.5 M), and the mixture was cooled to 0 °C. A solution of salicylaldehyde (1 equiv) dissolved in DMF (1.0 M) was slowly added, and upon addition completion, the mixture stirred at 0 °C for 30 minutes. A solution of propargyl bromide (1.2 equiv) dissolved in DMF (1.0 M) was slowly added and then reaction was allowed to stir overnight as it warmed to room temperature. Upon reaction completion, sat. aq. NH₄Cl was added, and the aqueous layer was extracted 3x with EtOAc. The combined organic layers were washed with H₂O and sat. aq. NaCl, passed through a Biotage Isolute phase separator, and concentrated to dryness under reduced pressure on a rotary evaporator to obtain the crude SN2 product, which was directly used in the next reaction without purification.

In an oven dried round-bottom flask, salicylaldehyde propargyl ether (1 equiv) was dissolved in dry ethanol (0.2 M) under N₂ atmosphere. Triethyl orthoformate (1.7 equiv) and PPTS (1 mol %) were added, and the resulting solution was refluxed for 3 h. Upon reaction completion, the reaction mixture was quenched with few drops of Et₃N and concentrated to dryness under reduced pressure on a rotary evaporator. The oil was diluted in EtOAc (50 mL), washed with 10 % NaHCO₃ (2 × 20 mL), followed by saturated NaCl (2 × 10 mL) and then dried over Na₂SO₄. The combined organic layers were concentrated to dryness under reduced pressure on a rotary evaporator. The crude product was directly used in the next reaction without purification.

In an oven dried round-bottom flask, the acetal-protected salicylaldehyde (1.0 equiv) was dissolved in dry THF (0.2 M). The solution was stirred at 78 °C, and *n*-BuLi (1.1 equiv, 2.5 M in hexanes) was slowly added to the flask over 10 min, and the reaction was stirred for another 30 min. At the same temperature, acyl chloride (1.7 equiv) dissolved in THF (0.2 M) was slowly added to the reaction mixture and stirred for an additional 2 h. Upon reaction completion, the reaction mixture was allowed to warm to room temperature and quenched with sat. aq. NH₄Cl (20 mL). Then the reaction mixture was diluted with EtOAc (50 mL), washed with water (3 × 50 mL), followed by saturated NaCl (2 × 10 mL), and then dried over Na₂SO₄. The combined organic layers were concentrated to dryness under reduced pressure on a rotary evaporator. The crude product was directly used in the next reaction without purification.

To a scintillation vial with the crude acetal protected alkyne was added CHCl₃:H₂O (3:1), and the reaction was stirred until the alkyne completely dissolved. Trifluoroacetic acid (5.0 equiv) was added, and the reaction was stirred at room temperature for 3 h. Saturated NaHCO₃ was added, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were passed through a Biotage Isolute phase separator and concentrated to dryness under reduced pressure on a rotary evaporator to obtain the crude product, which was directly used in the next reaction without purification.

To a scintillation vial was added the crude aldehyde from the previous step (1 equiv). Malonate or ketoester was added (1.1 equiv), along with 250 wt % activated 4 Å molecular sieves (powder). A magnetic stir bar and CH_2Cl_2 (2.0 M) were added, followed by acetic acid (0.1 equiv) and piperidine (0.1 equiv). The mixture was stirred overnight. Silica was added and the reaction concentrated under reduced pressure. The resulting mixture was loaded onto a column of silica and purified via flash column chromatography (10-20% EtOAc/hexanes) to yield the desired product.

Prepared according to the general procedure with 61% overall yield over five steps.

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.95 (d, *J*=15.6, 1H), 7.24 (pd, *J*=8.7, 8.3, 3.7, 2H), 6.96 – 6.84 (m, 1H), 6.88 – 6.79 (m, 1H), 4.74 (s, 2H), 4.16 – 3.97 (m, 2H), 3.71 (d, *J*=4.1, 3H), 3.65 (s, 3H), 1.20 – 1.08 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.00, 164.56, 155.63, 152.77, 138.45, 132.02, 131.88, 129.32, 126.15, 122.99, 122.00, 112.36, 80.88, 79.11, 77.29, 77.04, 76.78, 62.37, 55.83, 52.63, 52.53, 28.61, 13.96. LRMS (ESI): Mass calcd for C₁₈H₁₈O₇[M+H]+: 347.1; found 347.1 HRMS (ESI): Mass calcd for C₁₈H₁₈O₇[M+H]+: 347.1053; found 347.1051 FTIR (neat): 2980, 2888, 2311, 1668, 1643, 1605, 1566, 1417, 1287, 1269, 1214, 1164, 1130, 1028, 1001, 977, 853, 774

Preparation of Salicylaldehyde Derived Alkyne-Aryl Arylidene Malonates

To an oven dried scintillation vial under nitrogen was added NaH (60 wt %, 1.2 equiv) and DMF (0.5 M), and the mixture was cooled to 0 °C. A solution of salicylaldehyde (1 equiv) dissolved in DMF (1.0 M) was slowly added, and upon addition completion, the mixture stirred at 0 °C for 30 minutes. A solution of propargyl bromide (1.2 equiv) dissolved in DMF (1.0 M) was slowly added and then reaction was allowed to stir overnight as it warmed to room temperature. Upon reaction completion, sat. aq. NH₄Cl was added, and the aqueous layer was extracted 3x with EtOAc. Upon reaction completion, sat. aq. NH₄Cl was added, and the aqueous layer was extracted 3x with EtOAc. Upon reaction completion, sat. aq. NH₄Cl was added, and the aqueous layer was extracted 3x with EtOAc. The combined organic layers were washed with H₂O and sat. aq. NaCl, passed through a Biotage Isolute phase separator, and concentrated to dryness under reduced pressure on a rotary evaporator to obtain the crude SN2 product, which was directly used in the next reaction without purification.

To a scintillation vial was added the crude 2-prop-2-ynyloxy-benzaldehyde derivatives (1.0 equiv) with substituted iodobenzene (1.2 equiv), $Pd(PPh_3)_2Cl_2$ (2 mol %), CuI (4 mol %) and triethylamine (1.5 equiv) in dry THF (0.2 M). The reaction was stirred for 18 hours until reaction completion NH₄Cl was added, and the aqueous layer was extracted 3x with EtOAc. The combined organic layers were washed with H₂O and sat. aq. NaCl, passed through a Biotage Isolute phase separator, and concentrated to dryness under reduced pressure on a rotary evaporator to obtain the crude product, which was directly used in the next reaction without purification.

To a scintillation vial was added the crude aldehyde from the previous step (1 equiv). Malonate or ketoester was added (1.1 equiv) as well as 250 wt % activated 4 Å molecular sieves (powder). A magnetic stirbar and CH_2Cl_2 (2.0 M) were added, followed by acetic acid (0.1 equiv) and piperidine (0.1 equiv). The mixture was stirred overnight. Silica was added and the reaction concentrated under reduced pressure. The resulting mixture was loaded onto a column of silica and purified via flash column chromatography (10-20% EtOAc/hexanes) to yield the desired product.

Prepared according to the general procedure with 70% overall yield over three steps.

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.08 (s, 1H), 7.39 – 7.26 (m, 4H), 7.29 – 7.17 (m, 3H), 7.08 (dd, J = 8.4, 1.0 Hz, 1H), 6.90 (td, J = 7.6, 1.0 Hz, 1H), 4.90 (s, 2H), 3.77 (s, 3H), 3.70 (d, J = 19.1 Hz, 6H), 3.32 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 167.17, 166.93, 164.71, 156.31, 138.94, 131.97, 131.79, 131.55, 129.17, 128.80, 128.32, 125.69, 122.89, 122.07, 121.40, 112.84, 87.74, 83.38, 77.31, 77.27, 77.06, 76.81, 57.10, 52.57, 52.56, 52.50, 41.13. LRMS (ESI): Mass calcd for C₂₁H₁₈O₅[M+H]+: 351.1; found 351.1 HRMS (ESI): Mass calcd for C₂₁H₁₈O₅[M+H]+: 351.1; found 351.1 HRMS (ESI): Mass calcd for C₂₁H₁₈O₅[M+H]+: 351.1154; found 351.1153 FTIR (neat): 2972, 2382, 2316, 1708, 1637, 1599, 1489, 1355, 1277, 1234, 1212, 1182, 1134, 1060, 1008, 976, 900, 798

Preparation of Tetrahydroquinoline-Precursor Arylidene Malonate

To a dry and N₂-flushed round bottom flask, equipped with a magnetic stirring bar and a septum, was charged with a solution of 2-aminobenzyl alcohol (1.0 equiv) in CHCl₃ (0.2 M). TsCl (1.1 equiv) and pyridine (5 mol %) were added, and the reaction mixture was stirred for 12 h at room temperature. Once the reaction was complete, the reaction was concentrated to dryness under reduced pressure on a rotary evaporator. Without purification, the crude product was dissolved in CH_2Cl_2 (0.5 M) and PCC (1.2 equiv) was added. The reaction mixture was stirred for 4 h at room temperature and then filtered through celite followed by washing with CH_2Cl_2 . The combined organic layers were concentrated to dryness under reduced pressure on a rotary evaporator. Without purification.

To an oven dried scintillation vial under nitrogen was added NaH (60 wt %, 1.2 equiv) and DMF (0.5 M), and the mixture was cooled to 0 °C. A solution of N-tosyl-aldehyde (1 equiv) dissolved in DMF (1.0 M) was slowly added, and upon addition completion, the mixture stirred at 0 °C for 30 minutes. A solution of allyl bromide (1.2 equiv) dissolved in DMF (1.0 M) was slowly added and then reaction was allowed to stir overnight as it warmed to room temperature. Upon reaction completion, sat. aq. NH₄Cl was added, and the aqueous layer was extracted 3x with EtOAc. The combined organic layers were washed with H₂O and saturated NaCl followed by passage through a Biotage Isolute phase separator and concentration concentrated to dryness under reduced pressure on a rotary evaporator to obtain the crude SN2 product, which was directly used in the next reaction without purification.

To a scintillation vial was added the crude aldehyde from the previous step (1 equiv). Malonate or ketoester was added (1.1 equiv), as well as 250 wt % activated 4 Å molecular sieves S-14 (powder). A magnetic stirbar and mL of CH_2Cl_2 (2.0 M) were added, followed by acetic acid (0.1 equiv) and piperidine (0.1 equiv). The mixture was stirred overnight. Silica was added and the reaction concentrated under reduced pressure. The resulting mixture was loaded onto a column of silica and purified via flash column chromatography (10-20% EtOAc/hexanes) to yield the desired product.

Prepared according to the general procedure with 62% overall yield over four steps.

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 7.64$ (s, 1H), 7.57 – 7.48 (m, 2H), 7.32 – 7.20 (m, 4H), 7.02 – 6.93 (m, 1H), 6.72 (dt, *J*=15.7, 6.6, 1H), 5.73 (dt, *J*=15.7, 1.5, 1H), 5.24 (s, 1H), 4.20 (dd, *J*=6.6, 1.4, 2H), 3.78 (s, 3H), 3.69 (s, 1H), 3.61 (d, *J*=3.8, 5H), 2.38 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 166.20, 165.81, 163.72, 147.09, 144.24, 141.33, 140.13, 138.13, 135.79, 134.37, 130.89, 130.51, 129.83, 129.10, 129.00, 128.30, 127.76, 124.60, 119.73, 77.29, 77.04, 76.78, 61.84, 53.44, 52.90, 52.67, 52.52, 51.65, 51.61, 21.62. LRMS (ESI): Mass calcd for C₂₄H₂₅NO₈S [M+H]+: 487.1; found 487.2 HRMS (ESI): Mass calcd for C₂₄H₂₅NO₈S [M+H]+: 487.1309; found 487.1311 FTIR (neat): 2977, 2957, 2293, 1671, 1644, 1602, 1488, 1342, 1295, 1265, 1195, 1172, 1143, 1067, 1012, 956, 845, 764

Preparation of Tetrahydronapthalene-Precursor Arylidene Malonate

To a round-bottom flask flushed with N₂ was charged Mg turnings (5.0 equiv) and anhydrous ether (0.5 M). A tip of iodine and a drop of 1,2-dibromoethane were successively added. After leaving the mixture at 0 °C for 30 min, a solution of allyl bromide (2.0 equiv) in dry ether (0.5 M) was added dropwise to the mixture to prepare a solution of a Grignard reagent. To a solution of 2bromobenzyl bromide (1.0 equiv) in anhydrous THF (0.5 M) was added dropwise the prepared solution of a Grignard reagent at rt, and the reaction mixture was stirred at rt overnight. The following day, 25 mL of H₂O was added to the mixture, which was then extracted with ether (15 mL × 3). The combined ethereal solution was washed with H₂O (15 mL × 3) and dried over anhydrous MgSO₄. The reaction was concentrated to dryness under reduced pressure on a rotary evaporator. The crude product was directly used in the next reaction without purification. Under N₂, to a solution of 1-bromo or iodo aryl compound 1.0 equiv) in anhydrous diethyl ether (0.25 M) at -78 °C was slowly added *n*-BuLi (1.1 equiv, 2.5 M in hexanes). The reaction was stirred at the same temperature for 40 min, and DMF (3.0 equiv) was added dropwise. The reaction was allowed to warm to room temperature over 1 h before it was quenched with saturated aqueous NH₄Cl. The reaction mixture was diluted with diethyl ether (30 mL), washed with saturated NH₄Cl (10 mL) and saturated NaCl (10 mL), dried over Na₂SO₄, and concentrated to dryness under reduced pressure on a rotary evaporator. The crude product was directly used in the next reaction without purification.

A flame dried round bottom flask was charged with alkene starting material (1.0 equiv) in CH_2Cl_2 (0.5 M), ethyl acrylate (5.0 equiv) and flushed with Ar. Grubbs-Hoveyeda second generation catalyst (2.5 mol %) was added in one portion and the reaction was stirred at room temperature under an atmosphere of Ar. The homogeneous solution was stirred for 6 hours. Once the reaction was complete, the reaction was concentrated to dryness under reduced pressure on a rotary evaporator. The crude product was directly used in the next reaction without purification.

To a scintillation vial was added the crude aldehyde from the previous step (1 equiv). Malonate or ketoester was added (1.1 equiv), as well as 250 wt % activated 4 Å molecular sieves (powder). A magnetic stirbar and CH_2Cl_2 (2.0 M) were added, followed by acetic acid (0.1 equiv) and piperidine (0.1 equiv). The mixture was stirred overnight. Silica was added and the reaction concentrated under reduced pressure. The resulting mixture was loaded onto a column of silica and purified via flash column chromatography (10-20% EtOAc/hexanes) to yield the desired product.

Prepared according to the general procedure with 58% overall yield over four steps. Isolated as a \sim 2:1 mixture of E/Z isomers

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.99 (s, 1H), 7.33 – 7.24 (m, 2H), 7.23 – 7.13 (m, 2H), 6.93 (dt, *J*=15.7, 6.9, 1H), 5.79 (dt, *J*=15.7, 1.6, 1H), 4.15 (q, *J*=7.1, 2H), 3.85 (s, 3H), 3.70 (d, *J*=31.0, 5H), 3.38 (s, 1H), 2.82 (dd, *J*=8.8, 6.8, 2H), 2.49 – 2.40 (m, 2H), 1.26 (t, *J*=7.1, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.52, 166.42, 164.20, 147.16, 142.22, 140.18, 132.35, 130.26, 129.58, 128.09, 126.71, 122.31, 77.27, 77.02, 76.76, 60.24, 52.74, 52.49, 41.14, 33.23, 32.23, 14.26. LRMS (ESI): Mass calcd for C₁₉H₂₂O₆[M+H]+: 347.1; found 347.1 HRMS (ESI): Mass calcd for C₁₉H₂₂O₆[M+H]+: 347.1; found 347.1 HRMS (ESI): Mass calcd for C₁₉H₂₂O₆[M+H]+: 347.1416; found 347.1418 FTIR (neat): 2997, 2710, 2244, 1663, 1637, 1613, 1562, 1374, 1283, 1254, 1206, 1181, 1146, 1104, 1021, 939, 865, 728

Preparation of Dihydrobenzofuran-Precursor Arylidene Malonate

A solution of alcohol (1.0 equiv), methyl propiolate (1.1 equiv), and N-methylmorpholine (5 mol %) in CH_2Cl_2 (0.4 M) was stirred at room temperature for 4 h. The solution was then washed with water and saturated aqueous NaCl and dried over anhydrous sodium sulfate. The combined organic layers were concentrated to dryness under reduced pressure on a rotary evaporator. The crude product was directly used in the next reaction without purification.

To a scintillation vial was added the crude aldehyde from the previous step (1 equiv). Malonate or ketoester was added (1.1 equiv) along with 250 wt % activated 4 Å molecular sieves (powder). A magnetic stir bar and CH₂Cl₂ (2.0 M) were added, followed by acetic acid (0.1 equiv) and piperidine (0.1 equiv). The mixture was stirred overnight. Silica was added and the crude reaction mixture was concentrated under reduced pressure. The resulting mixture was loaded onto a column of silica and purified via flash column chromatography (10-20% EtOAc/hexanes) to yield the desired product.

Prepared according to the general procedure with 85% overall yield over two steps.

Analytical Data: ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 8.07$ (s, 1H), 7.90 (d, *J*=12.3, 1H), 7.62 – 7.50 (m, 2H), 7.37 – 7.29 (m, 1H), 7.23 (dd, *J*=8.1, 1.1, 1H), 5.71 (d, *J*=12.2, 1H), 4.00 (s, 3H), 3.90 (d, *J*=24.6, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 167.14, 166.44, 164.16, 158.28, 153.89, 152.07, 137.19, 132.14, 129.38, 127.68, 125.26, 124.52, 118.03, 103.19, 83.24, 77.33, 77.08, 76.82, 52.75, 52.60, 51.42, 50.44. LRMS (ESI): Mass calcd for C₁₆H₁₆O₇[M+H]+: 321.1; found 321.1 HRMS (ESI): Mass calcd for C₁₆H₁₆O₇[M+H]+: 321.0896; found 321.0899 FTIR (neat): 2994, 2495, 2353, 1669, 1633, 1605, 1531, 1484, 1281, 1226, 1208, 1168, 1122, 1094, 994, 983, 868, 743

Selected Optimization Data:

Table 1. Effect of Solvent

MeO ₂ C	_CO2Me + CO2Me	EtO ₂ C Me N H Me N H Me	t 1 mol % DPAIPN 10 mol % Sc(OTf) ₃ solvent (0.1 M) blue LEDs, 5 h	MeO ₂ C CO ₂ MeO	∕le `CO₂Me
	Entry:	Conditions:		GC Yield:	
	1	CH₃CN		84	
	2	DMF		38	
	3	MeOH		<5	
	4	DMSO		45	
	5	DMPU		38	
	6	CH ₂ Cl ₂		<5	
	7	THF		<5	

[a] Yield determined by GC with bibenzyl as internal standard.

Table 2. Chiral Ligand Screen

MeO ₂ C CO ₂ Me DPAIPN 1 mol% metal complex (10 mol%) HEH (1.5 equiv), CH ₃ CN, 48 h							MeO ₂ C		:O ₂ Me
			Tf R			R			
entry	R	yield*	dr	er	entry	R	yield	dr	er
entry 1	R Ph	yield* 53	dr 1.5:1	er 50:50	entry 5	R Inda	yield 52	dr 3:1	er 50:50
entry 1 2	R Ph Inda	yield* 53 51	dr 1.5:1 2:1	er 50:50 50:50	entry 5 6	R Inda <i>t</i> Bu	yield 52 56	dr 3:1 2.5:1	er 50:50 50:50
entry 1 2 3	R Ph Inda <i>i</i> Pr	yield* 53 51 50	dr 1.5:1 2:1 2.5:1	er 50:50 50:50 50:50	entry 5 6	R Inda <i>t</i> Bu	yield 52 56	dr 3:1 2.5:1	er 50:50 50:50
entry 1 2 3 4	R Ph Inda <i>i</i> Pr Bn	yield* 53 51 50 10	dr 1.5:1 2:1 2.5:1 1.5:1	er 50:50 50:50 50:50 50:50	entry 5 6	R Inda <i>t</i> Bu	yield 52 56	dr 3:1 2.5:1	er 50:50 50:50

[a] Yield determined by GC with bibenzyl as internal standard.
[b] dr determined by ¹H NMR
[c] er determined by SFC on a chiral stationary phase

Table 3. Effect of Concentration and Catalyst Loading

MeO ₂ C	,CO ₂ Me +	$\underbrace{ \begin{array}{c} \text{EtO}_2\text{C}\\ \text{Me} \end{array} }_{\text{Me}} \underbrace{ \begin{array}{c} \text{CO}_2\text{Et}\\ \text{Me} \end{array} }_{\text{H}} \underbrace{ \begin{array}{c} \text{XX mol \% DPAIPN}\\ \text{XX mol \% Sc(OTf)_3}\\ \text{MeCN (XX M)}\\ \text{blue LEDs, 5 h} \end{array} }_{\text{I.5 equiv.}}$	MeO ₂ C CO ₂ N	1e `CO₂Me
_	Entry:	Conditions:	GC Yield:	
	1	10% Sc(OTf) ₃ , 0.5% DPAIPN, 0.2 M	62	
	2	5% Sc(OTf) ₃ , 0.5% DPAIPN, 0.2 M	51	
	3	5% Sc(OTf) ₃ , 1% DPAIPN, 0.2 M	65	
	4	10% Sc(OTf) ₃ , 1% DPAIPN, 0.2 M	81	
	5	10% Sc(OTf) ₃ , 0.5% DPAIPN, 0.1 M	65	
	6	5% Sc(OTf) ₃ , 0.5% DPAIPN, 0.1 M	55	
	7	10% Sc(OTf) ₃ , 0.5% DPAIPN, 0.05 M	42	
	8	5% Sc(OTf) ₃ , 1% DPAIPN, 0.05 M	41	

[a] Yield determined by GC with bibenzyl as internal standard.

General Procedure for Reductive Cyclization

To a 2 dram vial was added arylidene malonate (1.0 equiv). The reaction vessel was equipped with a cap and stir bar and was then taken into a glovebox. DPAIPN (1 mol %) and $Sc(OTf)_3$ (10 mol %) were added to the vial, which was then removed from the glovebox. The vial was then charged with a solution of HEH (1.5 equiv) and sparged CH3CN (0.1 M). The mixture was stirred until homogenous. The vial was then placed between 3 Kessil blue LED lights and irradiated for 5 hours (with a small fan placed for cooling). Conversion of the malonate was monitored by UPLC/MS. Upon complete conversion, the reaction was concentrated under reduced pressure onto silica gel. This silica was loaded onto a column of silica gel and isolated via flash column chromatography (2-20% ethyl acetate/hexanes) to yield the product as a mixture of diastereomers.

Prepared according to the general procedure in 86% yield in a 1.2:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.11 (qd, *J*=8.1, 1.7, 1H), 7.04 – 6.93 (m, 1H), 6.93 – 6.74 (m, 2H), 4.27 – 4.15 (m, 1H), 3.95 – 3.83 (m, 1H), 3.77 (d, *J*=3.8, 3H), 3.74 – 3.53 (m, 6H), 3.46 – 3.35 (m, 2H), 2.69 (dddd, *J*=13.1, 9.0, 6.2, 3.6, 1H), 2.44 (dq, *J*=13.6, 7.1, 1H), 2.41 – 2.26 (m, 2H), 2.28 – 2.13 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 172.29, 171.72, 168.93, 168.52, 168.22, 167.96, 153.52, 130.64, 128.98, 128.87, 128.81, 121.17, 120.50, 120.08, 118.86, 116.95, 116.50, 77.28, 77.23, 77.03, 76.77, 66.49, 64.20, 58.82, 54.07, 53.03, 52.85, 52.61, 52.49, 51.94, 51.78, 38.82, 37.50, 35.36, 32.08, 32.06, 31.54. LRMS (ESI): Mass calcd for C₁₇H₂₀O₇[M+H]+: 337.1; found 337.1 HRMS (ESI): Mass calcd for C₁₇H₂₀O₇[M+H]+: 337.1209; found 337.1211 FTIR (neat): 3090, 2816, 2624, 1887, 1670, 1642, 1628, 1495, 1335, 1304, 1247, 1220, 1168, 1138, 1103, 998, 987, 860, 709

Prepared according to the general procedure in 61% yield in a 1.2:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.22 (td, *J*=9.1, 8.5, 1.6, 1H), 6.93 (dd, *J*=7.8, 1.5, 1H), 6.73 (q, *J*=7.6, 1H), 4.40 – 4.31 (m, 1H), 4.26 (dd, *J*=12.4, 2.1, 1H), 3.96 – 3.89 (m, 1H), 3.78 (s, 1H), 3.77 (s, 2H), 3.68 (s, 1H), 3.67 (s, 2H), 3.67 – 3.54 (m, 1H), 3.55 (s, 2H), 3.44 (d, *J*=16.6, 2H), 2.48 – 2.23 (m, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 172.00, 171.37, 168.78, 168.25, 167.99, 167.73, 149.50, 149.26, 129.69, 129.49, 129.15, 127.63, 123.05, 121.63, 121.36, 120.66, 120.56, 120.14, 77.28, 77.23, 77.02, 76.77, 67.01, 65.18, 58.59, 53.85, 53.12, 52.96, 52.64, 52.57, 52.03, 51.86, 38.81, 37.44, 35.27,

32.10, 31.99, 31.28. LRMS (ESI): Mass calcd for C₁₇H₁₉ClO₇ [M+H]+: 371.1; found 371.1 HRMS (ESI): Mass calcd for C₁₇H₁₉ClO₇ [M+H]+: 371.0819; found 371.0821

FTIR (neat): 3090, 2877, 2475, 1734, 1664, 1658, 1622, 1499, 1473, 1304, 1254, 1211, 1176, 1128, 1076, 1016, 985, 849, 825

Prepared according to the general procedure in 70% yield in a 1.2:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.38 (ddd, *J*=9.7, 7.8, 1.6, 1H), 6.97 (dd, *J*=7.8, 1.5, 1H), 6.67 (q, *J*=7.7, 1H), 4.39 – 4.30 (m, 1H), 4.26 (dd, *J*=12.0, 2.2, 1H), 4.20 – 4.05 (m, 1H), 3.92 (dd, *J*=8.0, 4.1, 1H), 3.77 (s, 2H), 3.67 (s, 1H), 3.66 (s, 2H), 3.64 – 3.51 (m, 1H), 3.55 (s, 2H), 3.48 – 3.32 (m, 2H), 2.77 – 2.66 (m, 1H), 2.48 – 2.32 (m, 2H), 2.31 – 2.14 (m, 1H) ¹³C NMR (126 MHz, CDCl₃) δ 171.99, 171.35, 168.78, 168.23, 167.98, 167.72, 150.11, 132.79, 132.59, 129.93, 128.43, 123.04, 121.18, 120.73, 120.67, 110.87, 110.55, 77.29, 77.24, 77.03, 76.78, 67.10, 65.35, 58.60, 53.83, 53.11, 52.96, 52.62, 52.56, 52.03, 51.86, 38.95, 37.54, 35.28, 32.12, 32.07, 31.34, 14.21. LRMS (ESI): Mass calcd for C₁₇H₁₉BrO₇ [M+H]+: 415.1; found 415.2 HRMS (ESI): Mass calcd for C₁₇H₁₉BrO₇ [M+H]+: 415.1; found 415.2 HRMS (ESI): Mass calcd for C₁₇H₁₉BrO₇ [M+H]+: 415.0314; found 415.0316 FTIR (neat): 3090, 2964, 2557, 2069, 1708, 1647, 1606, 1550, 1354, 1292, 1229, 1189, 1168, 1122, 1048, 1016, 978, 900, 778

Prepared according to the general procedure in 62% yield in a 1.2:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 6.87 - 6.73$ (m, 1H), 6.77 - 6.65 (m, 1H), 6.61 (dd, *J*=6.5, 2.9, 1H), 4.37 - 4.19 (m, 1H), 4.21 - 4.06 (m, 1H), 3.96 - 3.80 (m, 3H), 3.76 (s, 2H), 3.84 - 3.67 (m, 2H), 3.65 (s, 2H), 3.70 - 3.59 (m, 1H), 3.56 (s, 2H), 3.62 - 3.46 (m, 1H), 3.48 - 3.32 (m, 2H), 2.80 - 2.55 (m, 1H), 2.47 (dt, *J*=15.9, 7.9, 1H), 2.40 - 2.27 (m, 1H) ¹³C NMR (126 MHz, CDCl₃) δ 172.23, 168.20, 167.92, 148.14, 142.94, 122.27, 120.71, 119.97, 119.62, 119.52, 117.61, 110.41, 110.35, 77.28, 77.23, 77.02, 76.77, 66.85, 64.63, 58.89, 58.85, 55.98, 55.87, 55.81, 54.16, 53.04, 52.95, 52.86, 52.64, 52.50, 51.92, 51.75, 50.89, 39.14, 38.64, 37.37, 35.23, 31.95, 31.87, 31.30. LRMS (ESI): Mass calcd for C₁₈H₂₂O₈ [M+H]+: 367.1; found 367.1 HRMS (ESI): Mass calcd for C₁₈H₂₂O₈ [M+H]+: 367.1315; found 367.1317 FTIR (neat): 3028, 2893, 2704, 2196, 1693, 1631, 1600, 1531, 1428, 1273, 1269, 1218, 1165, 1128, 1091, 995, 938, 896, 696

Prepared according to the general procedure in 74% yield in a 1.5:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.00 – 6.88 (m, 1H), 6.84 – 6.66 (m, 2H), 4.35 – 4.27 (m, 1H), 4.25 – 4.10 (m, 1H), 3.78 (s, 1H), 3.77 (s, 2H), 3.67 (s, 2H), 3.72 – 3.60 (m, 2H), 3.59 (t, *J*=7.4, 1H), 3.56 (s, 2H), 3.51 – 3.42 (m, 2H), 2.50 – 2.27 (m, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 172.03, 171.45, 168.74, 168.31, 168.01, 167.74, 152.30, 150.35, 142.05, 141.96, 125.57, 125.54, 123.96, 123.93, 123.77, 121.40, 119.85, 119.80, 119.44, 119.38, 115.38, 115.23, 115.11, 77.27, 77.02, 76.77, 66.71, 64.64, 58.59, 53.90, 53.11, 52.95, 52.68, 52.56, 52.01, 51.85, 38.34, 38.32, 37.11, 35.25, 31.96, 31.91, 31.31. LRMS (ESI): Mass calcd for C₁₇H₁₉FO₇ [M+H]+: 355.1; found 355.1 HRMS (ESI): Mass calcd for C₁₇H₁₉FO₇ [M+H]+: 355.1110 FTIR (neat): 3093, 2766, 2601, 1918, 1667, 1639, 1599, 1489, 1346, 1278, 1238, 1215, 1183, 1151, 1082, 1016, 983, 854, 747

Prepared according to the general procedure in 68% yield in a 1.5:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) δ = 6.93 (ddd, *J*=41.9, 8.3, 6.5, 1H), 6.57 – 6.46 (m, 2H), 4.25 – 4.15 (m, 2H), 4.12 – 4.02 (m, 1H), 3.87 (dd, *J*=7.9, 4.2, 1H), 3.77 (d, *J*=3.4, 1H), 3.77 (s, 2H), 3.77 – 3.64 (m, 4H), 3.62 – 3.51 (m, 3H), 3.44 (d, *J*=1.0, 1H), 3.39 (d, *J*=10.3, 1H), 2.74 – 2.63 (m, 1H), 2.45 – 2.24 (m, 2H) ¹³C NMR (126 MHz, CDCl₃) δ 172.12, 171.50, 168.87, 168.39, 168.12, 167.83, 163.81, 161.86, 154.65, 154.55, 131.79, 131.71, 130.10, 114.69, 114.67, 108.01, 107.83, 107.32, 107.15, 104.09, 103.90, 103.51, 77.27, 77.02, 76.77, 66.34, 64.37, 58.69, 53.90, 53.06, 52.91, 52.63, 52.56, 52.00, 51.84, 38.29, 36.91, 35.26, 32.16, 32.13, 31.36. LRMS (ESI): Mass calcd for C₁₇H₁₉FO₇ [M+H]+: 355.1; found 355.1 HRMS (ESI): Mass calcd for C₁₇H₁₉FO₇ [M+H]+: 355.1; found 355.1 HRMS (ESI): Mass calcd for C₁₇H₁₉FO₇ [M+H]+: 355.1115; found 355.1114 FTIR (neat): 3052, 2886, 2485, 2252, 1708, 1656, 1626, 1544, 1331, 1286, 1255, 1208, 1186, 1121, 1109, 994, 952, 839, 719

Prepared according to the general procedure in 84% yield in a 1.2:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.02 – 6.94 (m, 1H), 6.97 – 6.84 (m, 2H), 4.16 (d, *J*=2.1, 1H), 4.07 (td, *J*=11.8, 11.1, 8.2, 1H), 3.77 (s, 2H), 3.76 (d, *J*=7.1, 1H), 3.72 – 3.52 (m, 7H), 3.46 (s, 1H), 3.37 (d, *J*=10.1, 1H), 2.45 – 2.23 (m, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 172.05, 171.48, 168.31, 168.02, 167.73, 154.32, 141.64, 132.43, 131.90, 130.23, 123.68, 123.14, 122.03, 121.55, 120.10, 119.65, 117.99, 114.80, 77.28, 77.22, 77.02, 76.77, 66.60, 66.52, 64.44, 58.49, 53.72, 52.95, 52.63, 51.85, 38.38, 37.06, 35.28, 32.04, 31.95, 31.26, 29.94. LRMS (ESI): Mass calcd for C₁₇H₁₉BrO₇ [M+H]+: 415.1; found 415.2 HRMS (ESI): Mass calcd for C₁₇H₁₉BrO₇ [M+H]+: 415.0314; found 415.0318 FTIR (neat): 3100, 2967, 2561, 2235, 1686, 1650, 1625, 1567, 1371, 1303, 1258, 1217, 1185, 1124, 1120, 1013, 933, 900, 802

Prepared according to the general procedure in 88% yield in a 1.2:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 6.91 - 6.70$ (m, 1H), 6.67 - 6.56 (m, 2H), 4.23 - 4.03 (m, 2H), 3.91 - 3.80 (m, 1H), 3.76 (d, *J*=2.9, 2H), 3.74 - 3.52 (m, 5H), 3.48 (s, 1H), 3.36 (d, *J*=10.3, 1H), 2.48 - 2.34 (m, 1H), 2.37 - 2.22 (m, 2H), 2.25 - 2.13 (m, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 172.35, 171.83, 168.27, 168.00, 153.28, 139.05, 138.83, 130.37, 128.46, 121.57, 121.43, 121.08, 118.11, 117.28, 116.86, 115.79, 77.29, 77.23, 77.03, 76.78, 66.57, 64.12, 58.88, 54.13, 52.99, 52.82, 52.64, 52.50, 51.91, 51.75, 38.60, 37.32, 35.32, 32.15, 31.94, 31.59, 21.05. LRMS (ESI): Mass calcd for C₁₈H₂₂O₇ [M+H]+: 351.1; found 351.1 HRMS (ESI): Mass calcd for C₁₈H₂₂O₇ [M+H]+: 351.1366; found 351.1365 FTIR (neat): 3093, 2893, 2538, 1936, 1699, 1631, 1625, 1522, 1451, 1290, 1247, 1200, 1182, 1121, 1059, 997, 945, 895, 756

Prepared according to the general procedure in 91% yield in a 1.2:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) δ = 6.91 (td, *J*=8.2, 2.1, 1H), 6.80 – 6.71 (m, 1H), 6.74 – 6.60 (m, 1H), 4.23 – 4.01 (m, 2H), 3.91 – 3.79 (m, 1H), 3.81 – 3.69 (m, 3H), 3.72 – 3.63 (m, 3H), 3.66 – 3.55 (m, 1H), 3.51 (d, *J*=56.4, 3H), 3.35 (d, *J*=10.2, 1H), 2.44 (dd, *J*=18.0, 10.2, 1H), 2.38 – 2.26 (m, 2H), 2.28 – 2.14 (m, 1H), 2.19 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 172.35, 171.75, 168.97, 168.55, 168.29, 167.99, 151.49, 151.26, 130.77, 129.67, 129.62, 129.42, 129.16, 129.12, 120.82, 118.50, 116.65, 116.20, 77.28, 77.23, 77.03, 76.77, 66.39, 64.13, 58.86, 54.13, 53.00, 52.82, 52.52, 52.37, 51.92, 51.76, 38.86, 37.53, 35.38, 32.20, 32.08, 31.63, 20.50, 20.48. LRMS (ESI): Mass calcd for S-23

C₁₈H₂₂O₇ [M+H]+: 351.1; found 351.1 HRMS (ESI): Mass calcd for C₁₈H₂₂O₇ [M+H]+: 351.1366; found 351.1367 FTIR (neat): 3042, 2854, 2608, 2018, 1689, 1636, 1628, 1580, 1467, 1299, 1238, 1219, 1179, 1120, 1086, 1012, 951, 856, 759

Prepared according to the general procedure in 92% yield in a 1.3:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 6.93 - 6.76$ (m, 1H), 6.80 - 6.70 (m, 1H), 6.68 (ddd, *J*=30.4, 8.4, 3.1, 1H), 4.23 - 4.02 (m, 2H), 3.77 (s, 2H), 3.91 - 3.73 (m, 1H), 3.75 - 3.65 (m, 2H), 3.67 (s, 2H), 3.61 (s, 2H), 3.52 (s, 1H), 3.38 (d, *J*=10.0, 1H), 2.48 - 2.25 (m, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 172.12, 171.61, 168.68, 168.01, 167.73, 157.56, 155.66, 149.58, 119.92, 118.00, 117.93, 117.36, 116.47, 116.08, 115.89, 115.49, 115.01, 114.83, 77.28, 77.02, 76.77, 66.59, 64.37, 58.64, 53.82, 53.11, 52.94, 52.65, 51.84, 38.76, 37.50, 35.33, 31.88, 31.33. LRMS (ESI): Mass calcd for C₁₇H₁₉FO₇ [M+H]+: 355.1; found 355.1 HRMS (ESI): Mass calcd for C₁₇H₁₉FO₇ [M+H]+: 355.1115; found 355.1117 FTIR (neat): 3081, 2939, 2530, 2298, 1666, 1635, 1620, 1564, 1423, 1303, 1223, 1194, 1188, 1158, 1089, 1007, 928, 901, 775

Prepared according to the general procedure in 91% yield in a 1.1:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.14 (d, *J*=2.5, 1H), 6.85 (d, *J*=2.4, 1H), 4.22 – 4.14 (m, 1H), 4.09 (dt, *J*=11.5, 1.9, 1H), 3.95 – 3.83 (m, 1H), 3.86 – 3.73 (m, 1H), 3.76 (s, 2H), 3.76 – 3.65 (m, 2H), 3.66 (s, 2H), 3.55 (s, 2H), 3.46 (s, 1H), 3.44 – 3.33 (m, 1H), 2.45 – 2.28 (m, 2H), 1.33 (d, *J*=24.0, 1H), 1.32 (s, 8H), 1.30 – 1.18 (m, 2H), 1.22 (s, 7H). ¹³C NMR (126 MHz, CDCl₃) δ 172.52, 168.30, 168.27, 150.17, 141.90, 136.79, 125.14, 123.17, 118.83, 77.28, 77.23, 77.03, 76.77, 66.26, 64.22, 59.09, 52.77, 52.48, 51.72, 39.85, 35.83, 34.95, 34.93, 34.22, 31.73, 31.62, 31.58, 31.55, 29.68. LRMS (ESI): Mass calcd for C₂₅H₃₆O₇ [M+H]+: 449.2; found 449.2 HRMS (ESI): Mass calcd for C₂₅H₃₆O₇ [M+H]+: 449.2461; found 449.2462 FTIR (neat): 3039, 2804, 2587, 1770, 1690, 1630, 1615, 1569, 1413, 1305, 1243, 1216, 1168, 1134, 1084, 1002, 956, 852, 759

Prepared according to the general procedure in 90% yield in a 1.2:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.26 – 7.19 (m, 1H), 6.97 – 6.93 (m, 1H), 4.34 (dt, *J*=12.1, 1.7, 1H), 4.26 – 4.04 (m, 2H), 3.77 (s, 3H), 3.67 (s, 3H), 3.61 (s, 3H), 3.68 – 3.46 (m, 2H), 3.47 – 3.38 (m, 1H), 2.45 – 2.13 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 171.79, 167.76, 167.45, 148.14, 129.38, 129.15, 128.78, 127.49, 124.93, 122.51, 121.76, 77.27, 77.22, 77.02, 76.77, 67.02, 65.36, 58.40, 53.65, 53.21, 53.05, 52.77, 52.71, 52.10, 51.93, 38.68, 37.30, 35.21, 32.04, 31.84, 31.07. LRMS (ESI): Mass calcd for C₁₇H₁₈Cl₂O₇ [M+H]+: 405.1; found 405.1 HRMS (ESI): Mass calcd for C₁₇H₁₈Cl₂O₇ [M+H]+: 405.0430; found 405.0428 FTIR (neat): 3097, 2839, 2540, 2264, 1682, 1658, 1622, 1496, 1398, 1304, 1254, 1218, 1165, 1128, 1033, 1001, 941, 887, 799

Prepared according to the general procedure in 82% yield in a 1.5:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.83 (d, *J*=8.5, 1H), 7.78 – 7.57 (m, 2H), 7.44 (dddd, *J*=8.4, 6.6, 5.2, 1.3, 1H), 7.33 – 7.24 (m, 1H), 7.00 (dd, *J*=8.9, 3.0, 1H), 4.38 – 4.28 (m, 1H), 4.29 – 4.06 (m, 2H), 3.81 (s, 1H), 3.81 – 3.55 (m, 6H), 3.03 (s, 2H), 2.78 (s, 1H), 2.58 – 2.38 (m, 2H), 2.33 (dd, *J*=16.5, 5.8, 1H) ¹³C NMR (126 MHz, CDCl₃) δ 172.37, 171.23, 169.71, 168.72, 168.29, 168.09, 151.46, 132.99, 132.28, 129.42, 129.23, 128.83, 128.55, 128.05, 126.44, 126.31, 123.31, 123.26, 122.89, 121.91, 118.65, 118.42, 110.56, 77.30, 77.25, 77.05, 76.79, 64.76, 64.15, 57.80, 53.99, 53.04, 52.78, 52.14, 52.06, 51.86, 51.78, 35.86, 34.60, 33.08, 32.90, 32.73, 32.01, 14.22. LRMS (ESI): Mass calcd for C₂₁H₂₂O₇ [M+H]+: 387.1; found 387.1 HRMS (ESI): Mass calcd for C₂₁H₂₂O₇ [M+H]+: 387.1366; found 387.1364 FTIR (neat): 3006, 2943, 2689, 2235, 1669, 1657, 1608, 1515, 1340, 1305, 1264, 1199, 1166, 1140, 1046, 1000, 987, 832, 747

Prepared according to the general procedure in 86% yield in a 1.2:1 ratio of diastereomers

¹H NMR (500 MHz, Chloroform-*d*) $\delta = 7.20 - 6.89$ (m, 2H), 6.90 - 6.73 (m, 2H), 4.35 - 4.07 (m, 5H), 4.09 - 3.96 (m, 1H), 3.98 - 3.88 (m, 1H), 3.77 - 3.62 (m, 3H), 3.62 - 3.50 (m, 1H), 3.45 - 3.33 (m, 1H), 2.52 - 2.26 (m, 2H), 1.35 - 1.12 (m, 4H), 1.04 (dt, *J*=30.5, 7.1, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 172.33, 171.77, 167.89, 167.64, 153.55, 130.85, 129.10, 128.85, 128.70, 120.42, 120.02, 119.11, 116.83, 116.40, 77.28, 77.23, 77.02, 76.77, 66.50, 64.24, 62.05, 61.85, 61.73, 61.58, 59.08, 54.32, 51.90, 51.76, 38.68, 37.29, 35.40, 32.09, 32.07, 31.63, 14.06, 13.82, 13.65. LRMS (ESI): Mass calcd for C₁₉H₂₄O₇ [M+H]+: 365.1; found 365.2 HRMS (ESI): Mass calcd for C₁₉H₂₄O₇ [M+H]+: 365.1; found 365.2 HRMS (ESI): Mass calcd for C₁₉H₂₄O₇ [M+H]+: 365.1522; found 365.1525 FTIR (neat): 3033, 2854, 2391, 1822, 1663, 1650, 1626, 1544, 1486, 1300, 1252, 1210, 1184, 1151, 1039, 1008, 935, 904, 742

Prepared according to the general procedure in 82% yield in a 1.2:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.15 – 6.99 (m, 2H), 6.76 (q, *J*=8.4, 7.6, 2H), 5.14 – 5.06 (m, 1H), 5.09 – 4.94 (m, 1H), 4.89 (hept, *J*=6.3, 1H), 4.78 (dq, *J*=12.5, 6.4, 1H), 4.25 – 4.09 (m, 2H), 3.79 – 3.66 (m, 1H), 3.66 (s, 1H), 3.66 (s, 2H), 3.55 – 3.45 (m, 1H), 3.40 (d, *J*=9.7, 1H), 2.48 – 2.38 (m, 1H), 2.42 – 2.17 (m, 2H), 1.28 – 1.19 (m, 5H), 1.22 – 1.10 (m, 3H), 1.08 (d, *J*=6.3, 1H), 0.98 (s, 1H), 0.99 – 0.88 (m, 2H), 0.87 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 172.37, 171.86, 167.75, 167.44, 167.24, 153.85, 153.56, 131.06, 129.23, 128.74, 128.58, 120.40, 120.01, 119.34, 116.75, 116.40, 77.28, 77.02, 76.77, 69.71, 69.64, 69.44, 69.42, 69.27, 66.65, 64.29, 59.41, 54.64, 51.86, 51.73, 38.43, 37.04, 35.45, 32.04, 31.99, 31.69, 21.73, 21.54, 21.51, 21.40, 21.17.

LRMS (ESI): Mass calcd for $C_{21}H_{28}O_7$ [M+H]+: 393.2; found 393.2 HRMS (ESI): Mass calcd for $C_{21}H_{28}O_7$ [M+H]+: 393.1835; found 393.1837 FTIR (neat): 3072, 2984, 2652, 1843, 1671, 1653, 1601, 1501, 1474, 1283, 1270, 1199, 1180, 1161, 1049, 1007, 971, 884, 740

Prepared according to the general procedure in 85% yield in a 1.1:1 ratio of diastereomers

¹H NMR (500 MHz, Chloroform-*d*) δ = 7.32 – 7.19 (m, 5H), 7.15 (ddd, *J*=8.5, 7.3, 1.7, 1H), 7.06 (dd, *J*=7.7, 1.6, 1H), 6.96 – 6.86 (m, 2H), 4.60 (d, *J*=10.3, 1H), 4.21 (d, *J*=9.2, 1H), 4.09 (dd, *J*=11.8, 1.5, 1H), 3.79 (dd, *J*=11.7, 2.4, 1H), 3.47 (dddd, *J*=10.5, 9.1, 2.4, 1.5, 1H), 3.40 (s, 3H), 3.22 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.59, 168.65, 156.02, 137.23, 131.52, 128.39, 128.27, 127.90, 127.40, 121.22, 120.63, 118.00, 77.27, 77.22, 77.02, 76.76, 65.01, 64.28, 52.10, 51.91, 42.45, 36.13, 34.40, 14.13. LRMS (ESI): Mass calcd for C₂₁H₂₂O₅ [M+H]+: 355.1; found 355.1 HRMS (ESI): Mass calcd for C₂₁H₂₂O₅ [M+H]+: 355.1; found 355.1 HRMS (ESI): Mass calcd for C₂₁H₂₂O₅ [M+H]+: 355.1310 FTIR (neat): 3067, 2980, 2871, 1654, 1651, 1605, 1555, 1504, 1421, 1281, 1270, 1190, 1180, 1161, 1079, 1021, 925, 880, 742

Prepared according to the general procedure in 81% yield in a 1.2:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.51 – 7.34 (m, 1H), 7.31 – 7.20 (m, 1H), 7.18 – 7.02 (m, 2H), 4.53 – 4.46 (m, 1H), 4.42 (dd, *J*=12.2, 2.3, 1H), 4.00 (s, 3H), 3.97 – 3.85 (m, 2H), 3.85 (s, 3H), 3.70 (dd, *J*=9.8, 1.7, 1H), 2.66 (d, *J*=7.9, 2H), 2.61 – 2.51 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 167.92, 167.76, 153.07, 144.50, 130.52, 129.42, 121.13, 117.82, 117.58, 117.28, 115.18, 77.30, 77.05, 76.79, 63.18, 58.40, 53.00, 52.69, 52.61, 38.10, 32.46, 29.79, 19.60, 12.81. LRMS (ESI): Mass calcd for C₁₆H₁₇NO₅ [M+H]+: 304.1; found 304.1 HRMS (ESI): Mass calcd for C₁₆H₁₇NO₅ [M+H]+: 304.1105 FTIR (neat): 3037, 2910, 2591, 1791, 1694, 1653, 1623, 1585, 1365, 1283, 1227, 1197, 1176, 1162, 1063, 999, 924, 885, 773

Prepared according to the general procedure in 77% yield in a 1.5:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.11 (qd, *J*=7.9, 1.7, 1H), 6.99 (dd, *J*=8.0, 1.8, 1H), 6.95 – 6.86 (m, 1H), 6.81 – 6.74 (m, 2H), 4.25 – 4.12 (m, 2H), 4.07 (dd, *J*=11.1, 9.4, 1H), 3.93 – 3.87 (m, 1H), 3.77 (d, *J*=6.2, 3H), 3.64 – 3.55 (m, 1H), 3.55 (s, 2H), 3.42 (s, 1H), 2.71 – 2.61 (m, 1H), 2.39 – 2.15 (m, 2H), 2.07 (dd, *J*=15.9, 9.2, 1H), 1.43 (d, *J*=3.6, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 171.10, 170.46, 168.99, 168.58, 168.26, 167.98, 153.81, 153.55, 130.61, 129.03, 128.90, 128.75, 121.35, 120.37, 119.96, 119.14, 116.89, 116.45, 81.16, 80.86, 77.27, 77.02, 76.76, 66.39, 64.35, 58.80, 53.99, 52.98, 52.82, 52.53, 52.46, 38.90, 37.52, 36.76, 33.73, 32.29, 31.56, 28.10, 28.06. LRMS (ESI): Mass calcd for C₂₀H₂₆O₇ [M+H]+: 379.1; found 379.2,HRMS (ESI): Mass calcd for C₂₀H₂₆O₇ [M+H]+:

379.1679; found 379.1681 FTIR (neat): 3057, 2972, 2548, 1877, 1676, 1643, 1616, 1541, 1374, 1297, 1252, 1211, 1177, 1126, 1068, 1009, 955, 867, 782

Prepared according to the general procedure in 88% yield in a 1.2:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.39 – 7.25 (m, 5H), 7.11 (qd, *J*=7.1, 6.2, 1.6, 1H), 6.98 (dd, *J*=8.2, 1.7, 1H), 6.78 (dt, *J*=8.1, 5.6, 2H), 5.16 – 5.05 (m, 2H), 4.26 – 4.15 (m, 2H), 4.09 (dd, *J*=11.2, 8.9, 1H), 3.93 (dd, *J*=8.2, 4.1, 1H), 3.75 (s, 2H), 3.71 (s, 1H), 3.66 – 3.55 (m, 1H), 3.56 (s, 2H), 3.43 (d, *J*=11.2, 2H), 2.71 (tq, *J*=8.9, 4.2, 1H), 2.49 (dd, *J*=18.0, 10.1, 1H), 2.44 – 2.31 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 171.68, 171.13, 168.20, 167.95, 153.51, 135.71, 130.64, 128.99, 128.83, 128.80, 128.62, 128.56, 128.40, 128.37, 128.28, 128.25, 121.18, 120.50, 120.08, 118.85, 116.95, 116.50, 77.27, 77.22, 77.02, 76.76, 66.76, 66.54, 66.50, 64.21, 58.80, 54.05, 53.00, 52.84, 52.61, 52.49, 38.85, 37.51, 35.58, 32.28, 32.06, 31.52. LRMS (ESI): Mass calcd for C₂₃H₂₄O₇ [M+H]+: 413.2; found 413.2 HRMS (ESI): Mass calcd for C₂₃H₂₄O₇ [M+H]+: 413.2; found 413.2 HRMS (ESI): Mass calcd for C₂₃H₂₄O₇ [M+H]+: 413.2; found 413.2 HRMS (ESI): Mass calcd for C₂₃H₂₄O₇ [M+H]+: 413.69, 1153, 1110, 998, 945, 849, 698

Prepared according to the general procedure in 81% yield in a 1:1 ratio of *Z/E* isomers ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.30 (dd, *J*=7.7, 1.7, 1H), 7.28 (s, 2H), 7.21 – 7.10 (m, 1H), 6.99 – 6.82 (m, 1H), 5.89 (p, *J*=0.9, 1H), 5.62 (d, *J*=8.4, 1H), 5.01 (dd, *J*=14.3, 1.9, 1H), 4.53 (dt, *J*=14.4, 1.2, 1H), 4.26 – 4.12 (m, 2H), 3.86 (d, *J*=8.5, 1H), 3.71 (s, 2H), 3.68 (s, 1H), 3.59 (s, 2H), 1.55 (s, 1H), 1.31 (t, *J*=7.1, 3H), 1.26 (t, *J*=9.8, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 167.77, 167.59, 165.12, 154.26, 151.22, 130.12, 129.06, 122.63, 121.66, 117.52, 117.02, 77.27, 77.22, 77.02, 76.76, 69.30, 60.52, 57.24, 52.68, 52.47, 52.39, 37.80, 28.64, 14.20. LRMS (ESI): Mass calcd for C₁₈H₂₀O₇ [M+H]+: 349.1; found 349.1 HRMS (ESI): Mass calcd for C₁₈H₂₀O₇ [M+H]+: 349.1209; found 349.1210 FTIR (neat): 3095, 2750, 2389, 1840, 1691, 1658, 1619, 1525, 1471, 1276, 1264, 1204, 1163, 1129, 1099, 1019, 946, 862, 727

Prepared according to the general procedure in 86% yield in a 1:1 ratio of Z/E isomers

¹H NMR (500 MHz, Chloroform-*d*) $\delta = 7.45 - 7.16$ (m, 5H), 7.13 (s, 1H), 7.19 - 7.03 (m, 1H), 7.03 (d, *J*=8.2, 1H), 7.00 - 6.77 (m, 2H), 5.12 - 4.94 (m, 1H), 4.93 (s, 1H), 4.59 (dd, *J*=12.9, 1.5, 1H), 4.25 (d, *J*=10.8, 1H), 3.97 - 3.85 (m, 1H), 3.80 - 3.71 (m, 1H), 3.68 (s, 1H), 3.65 (s, 2H), 3.61 (d, *J*=13.1, 1H), 3.51 (s, 1H), 3.24 (d, *J*=7.7, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 169.61, 167.45, 155.83, 154.06, 135.54, 133.18, 132.08, 132.01, 131.78, 131.07, 129.45, 129.26, 129.03, 128.97, 128.71, 128.65, 128.63, 128.56, 128.53, 128.40, 128.28, 128.16, 127.55, 127.45, 126.63, 126.53, 122.30, 121.32, 121.22, 120.64, 117.19, 117.05, 112.45, 112.03, 87.15, 84.00, 77.27, 77.02, 76.76, 70.38, 65.22, 57.49, 57.41, 56.70, 52.67, 52.54, 52.41, 51.42, 45.58, 37.90, 30.29. LRMS (ESI): Mass calcd for C₂₁H₂₀O₅ [M+H]+: 353.1; found 353.1 HRMS (ESI): Mass calcd for C₂₁H₂₀O₅ [M+H]+: 353.1; found 353.1 HRMS (ESI): Mass calcd for C₂₁H₂₀O₅ [M+H]+: 353.1; found 353.1 HRMS (ESI): Mass calcd for C₂₁H₂₀O₅ [M+H]+: 353.1; found 353.1 HRMS (ESI): Mass calcd for C₂₁H₂₀O₅ [M+H]+: 3080, 2843, 2561, 1773, 1672, 1655, 1618, 1552, 1486, 1295, 1268, 1215, 1187, 1134, 1062, 1017, 987, 855, 766

Prepared according to the general procedure in 85% yield in a 1.3:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.84 (ddd, *J*=13.3, 8.4, 1.1, 1H), 7.71 – 7.59 (m, 2H), 7.37 – 7.19 (m, 3H), 7.07 (dd, *J*=7.7, 1.8, 1H), 7.06 – 6.92 (m, 1H), 3.89 – 3.79 (m, 1H), 3.77 (d, *J*=2.6, 4H), 3.77 – 3.67 (m, 1H), 3.69 (s, 1H), 3.67 (s, 2H), 3.64 – 3.43 (m, 1H), 3.44 (s, 2H), 3.35 (s, 1H), 2.78 (d, *J*=11.0, 1H), 2.62 (dp, *J*=10.0, 3.8, 3.2, 1H), 2.42 (d, *J*=2.1, 3H), 2.18 (d, *J*=7.1, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 171.79, 167.70, 167.60, 144.08, 136.21, 135.49, 130.71, 129.80, 129.76, 128.53, 128.20, 128.12, 127.18, 127.11, 126.43, 124.08, 122.91, 122.34, 77.29, 77.03, 76.78, 56.24, 52.98, 52.85, 52.35, 52.24, 52.04, 51.96, 51.82, 47.99, 47.00, 41.79, 37.39, 34.52, 34.16, 32.78, 21.57. LRMS (ESI): Mass calcd for C₂₄H₂₇NO₈S [M+H]+: 490.2; found 490.2 HRMS (ESI): Mass calcd for C₂₄H₂₇NO₈S [M+H]+: 490.2; found 490.2 HRMS (ESI): Mass calcd for C₂₄H₂₇NO₈S [M+H]+: 490.1457; found 490.1455 FTIR (neat): 3029, 2819, 2633, 2317, 1706, 1632, 1604, 1546, 1331, 1304, 1247, 1192, 1168, 1141, 1072, 1008, 957, 886, 713

Prepared according to the general procedure in 82% yield in a 1.2:1 ratio of diastereomers S-29

¹H NMR (500 MHz, Chloroform-*d*) δ = 7.31 – 7.19 (m, 4H), 7.12 (dt, *J*=15.7, 6.8, 1H), 4.34 – 4.19 (m, 2H), 3.80 (s, 6H), 3.85 – 3.72 (m, 1H), 3.35 (d, *J*=7.7, 2H), 2.95 – 2.85 (m, 2H), 2.60 (dtd, *J*=8.1, 6.7, 1.6, 2H), 1.43 – 1.31 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.23, 166.52, 147.76, 138.99, 135.40, 129.92, 129.59, 129.50, 129.38, 129.30, 127.21, 127.16, 126.55, 122.00, 77.28, 77.23, 77.03, 76.78, 60.38, 60.25, 52.71, 52.63, 52.57, 38.06, 35.69, 33.37, 31.25, 30.89, 30.73, 29.71, 28.46, 14.28. LRMS (ESI): Mass calcd for C₁₉H₂₄O₆ [M+H]+: 349.1; found 349.1 HRMS (ESI): Mass calcd for C₁₉H₂₄O₆ [M+H]+: 349.1; found 349.1 HRMS (ESI): Mass calcd for C₁₉H₂₄O₆ [M+H]+: 349.1573; found 349.1573 FTIR (neat): 3090, 2759, 2533, 2099, 1660, 1630, 1623, 1531, 1475, 1302, 1259, 1209, 1178, 1133, 1075, 1000, 968, 904, 804

Prepared according to the general procedure in 72% yield in a 1.1:1 ratio of diastereomers ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.24 – 7.00 (m, 2H), 6.86 – 6.76 (m, 2H), 5.07 – 5.00 (m, 1H), 3.86 – 3.79 (m, 1H), 3.82 – 3.72 (m, 1H), 3.75 – 3.64 (m, 8H), 3.67 – 3.56 (m, 1H), 2.85 – 2.67 (m, 2H) ¹³C NMR (126 MHz, CDCl₃) δ 170.68, 168.08, 168.02, 158.81, 129.62, 125.35, 125.08, 120.83, 110.43, 82.41, 77.27, 77.02, 76.76, 56.01, 52.86, 52.65, 51.91, 46.42, 40.28. LRMS (ESI): Mass calcd for C₁₆H₁₈O₇ [M+H]+: 323.1; found 323.1 HRMS (ESI): Mass calcd for C₁₆H₁₈O₇ [M+H]+: 323.1053; found 323.1051 FTIR (neat): 3016, 2953, 2588, 1766, 1667, 1633, 1628, 1580, 1446, 1306, 1250, 1212, 1178, 1138, 1107, 991, 990, 906, 798

Procedure for Krapcho Decarboxylation and Dieckmann Condensation

To a 0.5-2 mL Biotage microwave vial outfitted with a magnetic stir bar was added 2a (1 equiv) and LiCl (4.1 equiv). Water (3 equiv) was then added, followed by DMSO (0.5 M). The vial was then sealed and heated in an oil bath at 140 °C for 18 hours. Upon observation of complete conversion, the vial was removed from oil bath and allowed to cool to room temperature. The solution was diluted with water (15 mL) and extracted with EtOAc (3 x 10 mL). The organic extracts were then pooled and washed with water (4 x 15 mL) and saturated brine solution (4 x 15 mL). The organic extracts were then concentrated under reduced pressure onto silica gel and loaded onto a column of silica gel. 3a was then isolated via flash chromatography (5-40% ethyl acetate/hexanes) as a thick, clear oil (85%).

¹H NMR (500 MHz, Chloroform-*d*) $\delta = 7.17 - 7.07$ (m, 2H), 7.00 - 6.89 (m, 1H), 6.86 (d, *J*=8.2, 1H), 4.21 - 4.11 (m, 1H), 3.95 (dd, *J*=11.2, 7.5, 1H), 3.61 (dt, *J*=8.7, 6.7, 1H), 2.86 - 2.75 (m, 2H), 2.56 -2.42 (m, 2H), 2.25 (ddd, *J*=19.1, 6.4, 1.5, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 217.18, 153.87, 129.97, 127.93, 121.45, 117.30, 77.28, 77.03, 76.77, 65.58, 45.81, 39.53, 34.68, 34.62, 33.89, 22.66. LRMS (ESI): Mass calcd for C₁₂H₂₁O₂ [M+H]+: 189.1; found 189.1 HRMS (ESI): Mass calcd for C₁₂H₂₁O₂ [M+H]+: 189.0837; found 189.0835 FTIR (neat): 3095, 1720, 1472, 1325, 1241, 1170, 1111, 1032, 968, 904, 804

Stern-Volmer Fluorescence Quenching Experiments

Stern-Volmer fluorescence quenching experiments were run with freshly prepared solutions of 2.0 x 10^{-6} M DPAIPN in acetonitrile at room temperature under an inert Ar atmosphere. The solutions were irradiated at 425 nm and fluorescence was measured at 523 nm. Control experiments show that, at the concentrations employed in these studies, neither arylidene malonates nor Sc(OTf)₃ measurably quench the excited state of DPAIPN (Figure 3). The data summarized in the tables is the fluorescence intensity measured three times for each sample. The data shown in the graphs is the average of three experiments.

$\mathbf{C}_{\mathbf{A}}$ $\mathbf{V}_{\mathbf{A}}$ $\mathbf{L}_{\mathbf{A}}$ $\mathbf{E}_{\mathbf{A}}$ $\mathbf{E}_{\mathbf{A}}$ $\mathbf{C}_{\mathbf{A}}$ $\mathbf{E}_{\mathbf{A}}$ $\mathbf{C}_{\mathbf{A}}$ $\mathbf{E}_{\mathbf{A}}$	
Ntern-Valmer Hillarescence Ullenching, Figure 9 Table Data and Individua	i t-ranne
Stern volner i huvi estence Vuenenne, i igure o i abre Data ana inuivitua	· Or april

Vial	1	2	3	Average	10/1	[1a] mol/L	var 1a, No Sc(Otf)3
0	514	513	513	513.3	1.0	0	
1	510	508	508	508.7	1.0	0.02	
2	509	519	520	516.0	1.0	0.04	
3	508	507	510	508.3	1.0	0.06	
4	507	508	505	506.7	1.0	0.08	
5	517	514	517	516.0	1.0	0.1	
				•		•	•
Vial	1	2	3	Average	10/1	[1a] mol/L	var 1a, 0.1 M Sc(Otf)3
0	510	511	514	511.7	1.0	0	
1	420	418	418	418.7	1.2	0.02	
2	330	348	348	342.0	1.5	0.04	
3	291	292	292	291.7	1.8	0.06	
4	251	253	253	252.3	2.0	0.08	
5	221	218	218	219.0	2.3	0.1	
	•	•		•		•	
Vial	1	2	3	Average	10/1	[HEH] mol/L	var HEH, No Sc(Otf)3, No 1a
0	510	511	511	510.7	1.0	0	
1	410	405	404	406.3	1.3	0.02	
2	312	316	308	312.0	1.6	0.04	
3	252	246	257	251.7	2.0	0.06	
4	208	221	215	214.7	2.4	0.08	
5	172	173	170	171.7	3.0	0.1	
	•	•	•	•		•	
Vial	1	2	3	Average	10/1	[HEH] mol/L	var HEH, No Sc(Otf)3, 0.1 M 1a
0	515	502	508	507.3	1.0	0	
1	409	402	407	404.3	1.3	0.02	
2	300	308	309	304.3	1.7	0.04	
3	252	251	252	246.7	2.1	0.06	
4	212	209	211	211.3	2.4	0.08	
5	168	180	174	176.3	2.9	0.1	
Vial	1	2	3	Average	10/1	[HEH] mol/L	var HEH, 0.1 M 1a, 0.1 M Sc(Otf)3
0	512	514	513	507.3	1.0	0	
1	418	406	412	404.7	1.3	0.02	
2	308	298	295	304.7	1.7	0.04	
3	248	255	252	249.0	2.0	0.06	
4	205	205	190	210.3	2.4	0.08	
5	169	173	175	172.0	2.9	0.1	

Stern-Volmer Fluorescence Quenching: Varying 1a and Sc(OTf)₃

Vial	1	2	3	Average	10/1	[1a] mol/L	var 1a, No Sc(Otf)3
0	514	513	513	513.3	1.0	0	
1	510	508	508	508.7	1.0	0.02	
2	509	519	520	516.0	1.0	0.04	
3	508	507	510	508.3	1.0	0.06	
4	507	508	505	506.7	1.0	0.08	
5	517	514	517	516.0	1.0	0.1	

Vial	1	2	3	Average	10/1	[Sc(Otf)3] mol/L	var Sc(Otf)3, no 1a
0	513	514	512	513.0	1.0	0	
1	512	511	511	511.3	1.0	0.02	
2	513	511	511	511.7	1.0	0.04	
3	511	515	513	513.0	1.0	0.06	
4	513	511	514	512.7	1.0	0.08	
5	512	510	515	512.3	1.0	0.1	

Vial	1	2	3	Average	10/1	[1a] mol/L	var 1a, 0.1 M Sc(Otf)3
0	510	511	514	511.7	1.0	0	
1	420	418	418	418.7	1.2	0.02	
2	330	348	348	342.0	1.5	0.04	
3	291	292	292	291.7	1.8	0.06	
4	251	253	253	252.3	2.0	0.08	
5	221	218	218	219.0	2.3	0.1	

Vial	1	2	3	Average	10/1	[Sc(Otf)3] mol/L	var Sc(Otf)3, 0.1 M 1a
0	510	511	511	510.7	1.0	0	
1	423	425	422	423.3	1.2	0.02	
2	343	345	347	345.0	1.5	0.04	
3	304	301	303	302.7	1.7	0.06	
4	266	268	270	268.0	1.9	0.08	
5	231	227	234	230.7	2.2	0.1	

Vial	1	2	3	Average	10/1	[nBu3] mol/L	var NBu3, 0.1 M 1a, No Sc(Otf)3
0	504	508	497	503.0	1.0	0	
1	305	303	307	305.0	1.6	0.02	
2	211	206	210	209.0)9.0 2.4 (
3	166	180	172	172.7	2.9	0.06	
4	149	152	149	150.0	3.4	0.08	
5	130	121	124	125.0	4.0	0.1	
Vial	1	2	3	Average	10/1	[nBu3] mol/L	var NBu3, No 1a, No Sc(Otf)3
0	498	507	505	503.3	1.0	0	
1	314	317	313	314.7	1.6	0.02	
2	217	207	208	210.7	2.4	0.04	
3	175	168	171	171.3	2.9	0.06	
4	146	142	147	145.0	3.5	0.08	
5	135	122	124	127.0	4.0	0.1	
Vial	1	2	3	Average	10/1	[nBu3] mol/L	var NBu3, 0.1 M Sc(Otf)3, 0.1 M 1a
0	510	501	502	504.3	1.0	0	
1	308	312	305	308.3	1.6	0.02	
2	220	220	212	217.3	2.3	0.04	
3	178	171	161	170.0	3.0	0.06	
4	140	145	143	142.7	3.5	0.08	
5	134	117	119	123.3	4.1	0.1	

Stern-Volmer Fluorescence Quenching: NBu₃ Quenching with and without 1a and Sc(OTf)₃

Stern-Volmer Fluorescence Quenching: HEH Quenching with and without 1a and varying conc. of Sc(OTf)₃

Vial	1	2	3		10/1	[HEH] mol/l	var HEH No Sc(Otf)3 No 1a
0	510	511	511	510.7	10/1	0	
1	410	405	404	406.3	1.0	0.02	
2	312	316	308	312.0	1.5	0.02	
3	252	246	257	251.7	2.0	0.06	
4	208	221	215	214.7	2.4	0.08	
5	172	173	170	171.7	3.0	0.1	
		1.0	270	1, 10	0.0	0.1	
Vial	1	2	3	Average	10/1	[HEH] mol/L	var HEH. No Sc(Otf)3. 0.1 M 1a
0	515	502	508	507.3	1.0	0	
1	409	402	407	404.3	1.3	0.02	
2	300	308	309	304.3	1.7	0.04	
3	252	251	252	246.7	2.1	0.06	
4	212	209	211	211.3	2.4	0.08	
5	168	180	174	176.3	2.9	0.1	
	•						
Vial	1	2	3	Average	10/1	[HEH] mol/L	var HEH, 0.1 M 1a, 10 mol % Sc(Otf)3
0	519	514	520	517.7	1.0	0	
1	418	419	410	415.7	1.2	0.02	
2	293	295	292	293.3	1.8	0.04	
3	242	246	246	244.7	2.1	0.06	
4	192	190	191	191.0	2.7	0.08	
5	174	173	174	173.7	3.0	0.1	
-							
Vial	1	2	3	Average	10/1	[HEH] mol/L	var HEH, 0.1 M 1a, 25 mol % Sc(Otf)3
0	517	519	517	517.7	1.0	0	
1	414	402	417	411.0	1.3	0.02	
2	292	294	299	295.0	1.8	0.04	
3	244	249	243	245.3	2.1	0.06	
4	201	205	192	199.3	2.6	0.08	
5	169	170	166	168.3	3.1	0.1	
						1	
Vial	1	2	3	Average	10/1	[HEH] mol/L	var HEH, 0.1 M 1a,, 50 mol % Sc(Otf)3
0	512	517	520	516.3	1.0	0	
1	408	1 418	1 405	/1/1/2	1 1	1 1 1 1 1	
2	225	410	405	410.5	1.3	0.02	
	306	290	292	296.0	1.3	0.02	
5	306 255	290 240	292 248	296.0 247.7	1.3 1.7 2.1	0.02	
4	306 255 191	290 240 204	292 248 196	296.0 247.7 197.0	1.3 1.7 2.1 2.6	0.02 0.04 0.06 0.08	
4 5	306 255 191 168	290 240 204 171	292 248 196 170	296.0 247.7 197.0 169.7	1.3 1.7 2.1 2.6 3.0	0.02 0.04 0.06 0.08 0.1	
4 5	306 255 191 168	290 240 204 171	292 248 196 170	296.0 247.7 197.0 169.7	1.3 1.7 2.1 2.6 3.0	0.02 0.04 0.06 0.08 0.1	
4 5 Vial	306 255 191 168 1	290 240 204 171 2 514	292 248 196 170	410.3 296.0 247.7 197.0 169.7 Average	1.3 1.7 2.1 2.6 3.0 10/1	0.02 0.04 0.06 0.08 0.1	var HEH, 0.1 M 1a, 0.1 M Sc(Otf)3
4 5 Vial 0	306 255 191 168 1 512 418	290 240 204 171 2 514	403 292 248 196 170 3 513 412	410.3 296.0 247.7 197.0 169.7 Average 507.3	1.3 1.7 2.1 2.6 3.0 10/1 1.0 1.2	0.02 0.04 0.06 0.08 0.1 [HEH] mol/L 0	var HEH, 0.1 M 1a, 0.1 M Sc(Otf)3
4 5 Vial 0 1	306 255 191 168 1 512 418 309	290 240 204 171 2 514 406 298	105 292 248 196 170 3 513 412 295	410.3 296.0 247.7 197.0 169.7 Average 507.3 404.7	1.3 1.7 2.1 2.6 3.0 10/I 1.0 1.3 1.7	0.02 0.04 0.06 0.08 0.1 [HEH] mol/L 0 0.02	var HEH, 0.1 M 1a, 0.1 M Sc(Otf)3
4 5 Vial 0 1 2 3	306 255 191 168 1 512 418 308 248	290 240 204 171 2 514 406 298 255	105 292 248 196 170 3 513 412 295 252	410.3 296.0 247.7 197.0 169.7 Average 507.3 404.7 304.7 249.0	1.3 1.7 2.1 2.6 3.0 10/I 1.0 1.3 1.7 2.0	0.02 0.04 0.06 0.08 0.1 [HEH] mol/L 0 0.02 0.02 0.04	var HEH, 0.1 M 1a, 0.1 M Sc(Otf)3
4 5 Vial 0 1 2 3	306 255 191 168 1 512 418 308 248 205	290 240 204 171 2 514 406 298 255 205	105 292 248 196 170 3 513 412 295 252 190	410.3 296.0 247.7 197.0 169.7 Average 507.3 404.7 304.7 249.0 210.3	1.3 1.7 2.1 2.6 3.0 10/1 1.0 1.3 1.7 2.0 2.4	0.02 0.04 0.06 0.08 0.1 [HEH] mol/L 0 0.02 0.02 0.04 0.06 0.08	var HEH, 0.1 M 1a, 0.1 M Sc(Otf)3
4 5 Vial 0 1 2 3 4	306 255 191 168 1 512 418 308 248 205 169	290 240 204 171 2 514 406 298 255 205 173	105 292 248 196 170 3 513 412 295 252 190 175	410.3 296.0 247.7 197.0 169.7 Average 507.3 404.7 304.7 249.0 210.3 172.0	1.3 1.7 2.1 2.6 3.0 10/1 1.0 1.3 1.7 2.0 2.4 2.9	0.02 0.04 0.06 0.08 0.1 [HEH] mol/L 0 0.02 0.04 0.06 0.08 0.1	var HEH, 0.1 M 1a, 0.1 M Sc(Otf)3

<u></u>5 2-

1

0-

0.00

Equation

0.02

R square 0.9931

0.04

0.06

HEH (0.1 M AM, 25 mol % Sc(OTf)₃)

HEH (0.1 M AM, 25 mol % Sc(OTf)₃)

Concentration / M

Y = 21.00*X + 0.9333

0.08

0.10

Procedure for Determination of Quantum Yield

The photon flux of the fluorimeter was determined using a ferrioxolate Hatchard – Parker actinometer as described by Yoon et al.³ Based on the average of three experiments, the photon flux at 420 nm (10 nm slit width) was determined to be 5.27712E-09 einsteins s⁻¹. UV/Vis absorbance spectra of DPAIPN in MeCN (0.1 M) indicated that essentially all light was absorbed at 420 nm (f = 0.99148). A screw-top quartz cuvette with Teflon septa was charged with **1a** (0.2 mmol, 1 equiv), DPAIPN (1 mol %), scandium triflate (10 mol %), HEH (1.5 equiv), and a small Teflon coated magnetic stirbar in a glovebox. The cuvette was sealed and removed from glovebox. The cuvette was then capped with a PTFE stopper, and 2 mL sparged MeCN added. The solution was stirred until homogenous. The sample was placed in the fluorimeter and irradiated ($\lambda = 420$ nm, slit width= 10.0 nm) for 5400 s (3 hours). 1 H NMR based on a trimethoxybenzene standard determined the yield of product formed was 30%. The average quantum yield of the two experiments was determined to be 1.0.

Procedure for Light/Dark Experiment

To verify the necessity of light to maintain the conversion of 1a to 2a, a "light/dark" experiment was performed. A J-Young NMR tube was charged with 1a (0.2 mmol, 1 equiv), DPAIPN (1 mol %), scandium triflate (10 mol %), and HEH (1.5 equiv) in a glovebox. Upon removal from the glovebox, the reaction mixture was irradiated with 456 nm Kessil blue LEDs for periods of 1 hour, followed by 2 hours of no irradiation (3 cycles of 3 hours, 9 hours total). Notably, the reaction progressed steadily during periods of irradiation, while no conversion was observed during periods S-40

without irradiation. This is indicative that propagation is likely not a operational mechanistic process over the course of the reaction.

Procedure for UV-Vis Experiments

A 1 dram vial equipped with a rubber septum and a stir bar was charged with **1a** (0.1 mmol, 1 equiv), scandium triflate (0 or 100 mol %), and tertiary amine (0 or 150 mol %) in a glovebox. Upon removal from the glovebox, the reaction mixture was stirred for 2 hours, followed by measurement of the UV-Vis spectra using a Thermo Fisher Nanodrop One Spectrophotometer.

ORTEPS of Crystallographic Structure

A single crystal of trans-2a was grown by evaporative diffusion in dichloromethane with hexanes as the anti-solvent at room temperature. This crystal structure was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC 1835356. Further information can be found in the CIF file.

NMR Spectra for Cyclization Starting Materials

S-52

NMR Spectra for Cyclization Products

S-76

References:

1. Perrin, D. D.; Armarego, W. L. F., *Purification of Laboratory Chemicals*. 3rd ed.; Pergamon Press: Oxford, 1988.

2. Lin, K.; Wiles, R. J.; Kelly, C. B.; Davies, G. H. M.; Molander, G. A. Acs Catal **2017**, *7*, 5129

3. Cismesia, M. A.; Yoon, T. P. Chem. Sci. 2015, 6, 5426