p85α		p110α		DIOIZ	
Domain	Residue	Domain	Residue	ΡΙ3Κα	PI3KaanSH2
nSH2	R348	C2	D454	99.9%	0%
nSH2	K374	C2	D369	40.1%	0%
nSH2	K379	Helical	E542	99.3%	0%
nSH2	K379	Helical	E545	74.8%	0%
nSH2	K382	Helical	E547	30.2%	0%
nSH2	K419	Helical	E579	63.4%	0%
nSH2	D421	Helical	K548	41.8%	0%
nSH2	D421	Helical	K573	89.0%	0%
nSH2	R340	Kinase	D1029	100%	0%
nSH2	E341	Kinase	R1023	99.9%	0%
nSH2	E345	Kinase	K1024	99.1%	0%
nSH2	R348	Kinase	D1017	100%	0%
nSH2	D359	Kinase	K1030	65.9%	0%
nSH2	K363	Kinase	E1037	52.5%	0%
iSH2	E489	ABD	R79	96.2%	99.8%
iSH2	E496	ABD	K100	72.2%	74.1%
iSH2	R534	ABD	E23	100%	99.4%
iSH2	R557	C2	E469	56.1%	82.3%
iSH2	D569	C2	R412	56.1%	30.3%
iSH2	R574	C2	E453	99.1%	0%
iSH2	K575	C2	E418	60.0%	84.1%
iSH2	D464	Kinase	K944	88.6%	0%

Table S1. The salt bridges at the p110 α -p85 α interface in PI3K α .

The salt bridge interacting residue pairs are considered when the distance between any of atoms in the acidic and basic residues is within the cut-off distance of 3.5 Å. The salt bridges with the probability > 30% are shown. The residue contact with significant change upon nSH2 release is highlighted in blue.

		p110α		DIAK	
Domain	Residue	Domain	Residue	ΡΙ3Κα	ΡΙ3ΚαΔη5Η2
iSH2	M479	ABD	W11	100%	100%
iSH2	A483	ABD	W11	100%	100%
iSH2	A483	ABD	F95	100%	100%
iSH2	A486	ABD	W11	97.1%	99.2%
iSH2	A486	ABD	V73	100%	100%
iSH2	A486	ABD	A77	96.7%	95.1%
iSH2	A486	ABD	F95	100%	100%
iSH2	A486	ABD	F98	89.6%	97.8%
iSH2	F487	ABD	W11	98.2%	95.3%
iSH2	F487	ABD	V73	100%	100%
iSH2	F487	ABD	F95	100%	100%
iSH2	I493	ABD	L25	100%	100%
iSH2	I493	ABD	V71	100%	100%
iSH2	I493	ABD	V73	100%	100%
iSH2	I493	ABD	P98	100%	100%
iSH2	F494	ABD	L25	100%	100%
iSH2	F494	ABD	I31	100%	99.9%
iSH2	F494	ABD	F98	100%	100%
iSH2	I524	ABD	M30	100%	99.9%
iSH2	I524	ABD	P57	100%	100%
iSH2	I524	ABD	L58	100%	99.9%
iSH2	L531	ABD	L25	100%	100%
iSH2	L531	ABD	M30	100%	99.8%
iSH2	L531	ABD	I31	100%	100%
iSH2	1538	ABD	F95	98.8%	98.7%
iSH2	1538	ABD	F98	97.7%	97.4%
iSH2	P568	C2	I351	99.4%	99.6%
iSH2	P568	C2	A415	77.7%	38.0%
iSH2	P568	C2	P421	90.1%	99.2%
iSH2	P568	C2	L422	84.9%	100%
iSH2	I571	C2	A415	70.9%	15.9%
iSH2	I571	C2	P421	97.7%	99.2%
iSH2	I571	C2	L452	97.4%	100%

Table S2. The hydrophobic interactions at the p110 α -p85 α interface in PI3K α .

The hydrophobic interacting residue pairs are considered when the distance between any of atoms in the hydrophobic residues is within the cut-off distance of 6.5 Å. The hydrophobic interactions with the probability > 30% are shown. The residue contact with significant change upon nSH2 release is highlighted in blue.

Figure S1. The time-dependent domain (*a*) angel and (*b*) distance profiles of p110 α upon nSH2 release.

Figure S2. Results of principal component analysis (PCA). MD snapshots for inactive PI3K α and active PI3K $\alpha\Delta$ nSH2 are projected onto the first and second PCs.

Figure S3. Disruption of the salt bridges at (*a*) iSH2-C2 interface and (*b*) iSH2-kinase interface, and (*c*) the change of the solvent-accessible surface areas (SASA) of kinaseC upon PI3K α activation by nSH2 release.

Figure S4. Conformation change of ABD-RBD linker in PI3K α upon nSH2 release.

Figure S5. (*a*) Membrane contacting probability and (*b*) the snapshot for residues in iSH2 domain interacting with membrane in the active PI3K α with nSH2 released. The membrane surface is defined by the positions of _{kinase}Glu⁷²⁶, _{kinase}His¹⁰⁴⁷ and _{kinase}Lys⁹⁴² in the kinase domain. The residues with high membrane contacting probability is highlighted in orange.

Figure S6. 2D RMSD plots for ABD, RBD, C2, helical domain, kinaseN in p110 α upon PI3K α activation by nSH2 release.

Figure S7. Structural rearrangement of kinaseC in PI3K α upon nSH2 release. (*a*) The residuebased RMSD values show that six fragments in kinaseC experience significant conformational change. (*b*) The snapshot shows that these fragments (highlighted in orange) are located at the surface of kinaseC.

Figure S8. Catalytic site in the active PI3K α . (a) Schematic illustration of catalytic site of PI3K α . The distances of (b) Lys⁹⁴¹⁻⁹⁴⁴ and (c) His⁹³⁶ to ATP are reduced upon nSH2 release.

Figure S9. cSH2 domain in PI3K α . By two different strategies, cSH2 is modeled into PI3K α (*a*) based on the crystal structure of PI3K β , and (*b*) by docking. In both PI3K α structures, cSH2 interacts with kinase domain in p110 α . The RMSF profiles for the (*c*) superimposed and (*d*) docked cSH2 in PI3K α suggest that the interactions of cSH2 to p110 α are less stable, compared to nSH2 and iSH2 in p85 α .

Figure S10. Schematic illustration for PI3K α activation by nSH2 release. In the inactive PI3K α , the kinase domain cannot access the membrane because of because of steric clash of iSH2 domain, and the PIP₂-ATP distance is too far for substrate phosphorylation. The pY motifs in RTK activate PI3K α by releasing the nSH2 domain. nSH2 release triggers significant conformation change in p110 α , making kinaseC more exposed for interacting with the membrane. Upon the nSH2 release, the structural arrangement in kinaseC lead to a reduced PIP₂-ATP distance suitable for substrate phosphorylation. Ras interacts with the RBD in p110 α recruits PI3K α onto membrane.

Figure S11. Summary of simulation systems.

