Supporting Information

Catalytic Asymmetric Allylation of Aldehydes with Alkenes through Allylic C(sp³)–H Functionalization Mediated by Organophotoredox and Chiral Chromium Hybrid Catalysis

Harunobu Mitsunuma,*^{,†} Shun Tanabe,[†] Hiromu Fuse,[†] Kei Ohkubo,[‡] and Motomu Kanai^{*,†}

[†]Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan

[‡]Institute for Advanced Co-Creation Studies and Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan

*e-mail: h-mitsunuma@mol.f.u-tokyo.ac.jp; kanai@mol.f.u-tokyo.ac.jp

Contents

- 1. General Method
- 2. Preparation of Catalysts and Substrates
- 3. General Procedure for Catalytic Asymmetric Allylation of Aldehydes
- 4. Optimization Study for Aliphatic Aldehydes
- 5. Mechanistic Study
- 6. References
- 7. NMR Charts

1. General Method

¹H NMR spectra were recorded on JEOL ECX500 (500 MHz for ¹H NMR and 125.65 MHz for ¹³C NMR), and JEOL ECS400 (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR, and 370 MHz for ¹⁹F NMR) spectrometer. For ¹H NMR and ¹³C NMR, chemical shifts were reported in the scale relative to CDCl₃ (δ = 7.26 for ¹H NMR and δ = 77.0 for ¹³C NMR) used as an internal reference. Electrospray ionization (ESI)-mass spectra were measured on a JEOL JMS-T100LC AccuTOF spectrometer for HRMS. DART-mass spectra were measured on a JEOL JMS-T100LC AccuTOF spectrometer. Infrared (IR) spectra were recorded on a JASCO FT/IR 410 Fourier transform infrared spectrophotometer. The enantiomeric excess (ee) was determined by HPLC analysis (JASCO HPLC systems; pump: PU-986; detector: UV-2075, measured at 210 nm or 254 nm; column: CHIRALPAK IA3, IBN3, IC3, IF3). Optical rotations were measured on a JASCO P-1010 polarimeter. Column chromatographies were performed with silica gel Merck 60 (230-400 mesh ASTM), Biotage Isolera One and Biotage SNAP Ultra, or Yamazen Smart Flash and Universal Column Premium. All non-commercially available compounds were prepared and characterized as described in Section 5 of this SI. Other reagents were purchased from Aldrich, Tokyo Chemical Industry Co., Ltd. (TCI), Kanto Chemical Co., Inc., and Wako Pure Chemical Industries, Ltd., and were used as received. A Valore VBP-L24-C2 with 38W LED lamp (VBL-SE150-BBB (430)) was used as the 430 nm light source.

2. Preparation of Catalysts and Substrates

Alkenes (1a-1e), aldehydes (2), Cr catalysts (CrCl₂, CrCl₃•3THF), ligand L2, photocatalysts (10, 11) and additives (LiCl, LiI, LiBF₄, LiClO₄, NaClO₄, Ca(ClO₄)₂•xH₂O, Mg(ClO₄)₂, NaO*t*Bu) were commercially available and used as purchased. Chiral ligands (L1, L3-L5) were prepared according to the reported method.¹⁻⁴ MgPhPO₃ was synthesized according to related procedure for the preparation of metal phosphates.⁵

Preparation of MgPhPO₃

To a solution of $Mg(OEt)_2$ (572 mg, 5 mmol) in EtOH (50 ml), phenylphosphonic acid (791 mg, 5 mmol) was added portion wise at 0 °C. The mixture was stirred for 15 min and concentrated under vacuo. The white solid was used for next reaction without further purification.

3. General Procedure for Catalytic Asymmetric Allylation of Aldehydes

Procedure for preparation of 8a-8i, 8k

CrCl₂ (1.5 mg, 0.0125 mmol, 5 mol %) and L5 (4.5 mg, 0.0125 mmol, 5 mol %) were dissolved in degassed

CH₂Cl₂ (2.5 mL) in a screw-capped vial under argon atmosphere and the mixture was stirred for 1 hour at room temperature. Cyclohexene **1a** (507 µL, 5.0 mmol, 20 eq), Mg(ClO₄)₂ (55.8 mg, 0.25 mmol, 100 mol %), benzaldehyde **2a** (25.5 µL, 0.25 mmol, 1 eq) and photocatalyst **10** (2.5 mg, 0.00625 mmol, 2.5 mol %) were added to the reaction mixture. The vial was subjected to 430 nm LED irradiation for 12 hours under temperature control (ca. 27–29 °C). Then, the reaction mixture was passed through a pad of silica gel with CH₂Cl₂ elution. After evaporation, diastereomeric ratio was determined by NMR analysis (68%, >20/1). The residue was purified by silica gel flash column chromatography (CH₂Cl₂/hexane = 1/2 to 2/1, v/v) to afford (*R*)-**8a** as colorless oil (25.8 mg, 55%).

The amount of $CrCl_2$ and L5 was increased to 10 mol% ($CrCl_2$: 3.0 mg, 0.025 mmol, L5: 9.0 mg, 0.025 mmol), (*R*)-8a was obtained in 65% (30.5 mg).

(R)-((S)-cyclohex-2-en-1-yl)(phenyl)methanol (8a).

All the spectroscopic data matches with the previously reported data.⁶

¹H NMR (CDCl₃, 500 MHz) δ 1.38-1.61 (m, 2H), 1.62-1.83 (m, 2H), 1.84-2.10 (m, 3H), 2.44-2.56 (m, 1H), 4.58 (d, *J* = 6.4 Hz, 1H), 5.38 (dd, *J* = 1.8, 10.1 Hz, 1H), 5.77-5.87 (m, 1H), 7.25-7.39 (m, 5H); ¹³C NMR (CDCl₃, 125 MHz) δ 21.0, 23.8, 25.2, 43.0, 76.7, 126.5, 127.4, 128.0, 128.2, 130.4, 142.8; HPLC (chiral column: CHIRALPAK IA3; solvent: hexane/2-propanol = 200/1; flow rate: 1.0 mL/min; detection: at 210 nm): *t*_R = 26.7 min (minor) and 28.0 min (major); $[\alpha]_D^{20} = -4.8$ (*c* = 0.76, CHCl₃, for 95% ee sample).

(R)-(4-chlorophenyl)((S)-cyclohex-2-en-1-yl)methanol (8b).

Prepared according to the general procedure, then the crude material was purified by silica gel flash column chromatography (CH₂Cl₂/hexane = 1/10 to 1/0, v/v) to afford (*R*)-**8b** as colorless oil (45.8 mg, 82%).

IR (neat) v 3396, 3022, 2927, 2861, 1698, 1651, 1597, 1541, 1492, 1410, 1090, 1013, 837, 725 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.42-1.54 (m, 2 H), 1.58-1.68 (m, 1H), 1.69-1.78 (m, 1H), 1.86 (d, *J* = 2.3 Hz, 1H), 1.91-2.02 (m, 2H), 2.40-2.50 (m, 1H), 4.60 (dd, *J* = 2.3, 6.3 Hz, 1H), 5.39 (dd, *J* = 2.3, 10.3 Hz, 1H), 5.78-5.87 (m, 1H), 7.24-7.33 (m, 4H); ¹³C NMR (CDCl₃, 125 MHz) δ 21.0, 23.6, 25.1, 43.0, 76.6, 127.5, 127.8, 128.3, 130.9, 132.9, 141.2; LRMS (ESI): *m/z* 245 [M+Na⁺]; HRMS (ESI): *m/z* calculated for C₁₃H₁₅ClNaO⁺ [M+Na⁺]: 245.0704, found: 245.0701; HPLC (chiral column: CHIRALPAK IA3; solvent: hexane/2-propanol = 200/1; flow rate: 1.0 mL/min; detection: at 210 nm): *t*_R = 37.5 min (major) and 41.5 min (minor); $[\alpha]_D^{20} = -24.6$ (*c* = 1.0, C₆H₆, for 99% ee sample).

(R)-(4-bromophenyl)((S)-cyclohex-2-en-1-yl)methanol (8c).

Prepared according to the general procedure, then the crude material was purified by silica gel flash column chromatography (CH₂Cl₂/hexane = 1/10 to 1/0, v/v) to afford (*R*)-8c as colorless oil (54 mg, 81%).

IR (neat) v 3396, 3022, 2927, 2860, 1651, 1592, 1488, 1404, 1072, 1010, 812, 725 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.45-1.52 (m, 2 H), 1.57-1.68 (m, 1H), 1.70-1.78 (m, 1H), 1.85 (d, *J* = 2.9 Hz, 1H), 1.93-2.20 (m, 2H), 2.41-2.50 (m, 1H), 4.59 (dd, *J* = 2.3, 6.3 Hz, 1H), 5.39 (dd, *J* = 2.3, 10.3 Hz, 1H), 5.80-5.88 (m, 1H), 7.18-7.30 (m, 2H), 7.43-7.49 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 21.2, 23.8, 25.4, 43.1, 77.5, 121.3, 127.8, 128.4, 131.1, 131.4, 142.0; LRMS (ESI): *m/z* 289 [M+Na⁺]; HRMS (ESI): *m/z* calculated for C₁₃H₁₅BrNaO⁺ [M+Na⁺]: 289.0198, found: 289.0197; HPLC (chiral column: CHIRALPAK IA3; solvent: hexane/2-propanol = 200/1; flow rate: 1.0 mL/min; detection: at 210 nm): *t*_R = 42.0 min (major) and 46.6 min (minor); $[\alpha]_D^{20} = -5.8$ (*c* = 0.66, CHCl₃, for 98% ee sample).

(R)-((S)-cyclohex-2-en-1-yl)(4-iodophenyl)methanol (8d).

Prepared according to the general procedure, then the crude material was purified by silica gel flash column chromatography (CH₂Cl₂/hexane = 1/10 to 1/0, v/v) to afford (*R*)-8d as colorless oil (36.3 mg, 46%).

IR (neat) v 3392, 3021, 2926, 2859, 1698, 1651, 1588, 1481, 1399, 1059, 1004, 811, 725 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.42-1.54 (m, 2 H), 1.59-1.67 (m, 1H), 1.68-1.79 (m, 1H), 1.86 (d, *J* = 1.7 Hz, 1H), 1.93-2.20 (m, 2H), 2.39-2.50 (m, 1H), 4.57 (dd, *J* = 1.7, 6.3 Hz, 1H), 5.39 (dd, *J* = 2.3, 10.3 Hz, 1H), 5.78-5.89 (m, 1H), 7.10 (d, *J* = 8.3 Hz, 2H), 7.67 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 21.0, 23.5, 25.1, 42.9, 76.6, 92.7, 127.5, 128.5, 130.9, 137.2, 142.4; LRMS (ESI): *m/z* 337 [M+Na⁺]; HRMS (ESI): *m/z* calculated for C₁₃H₁₅INaO⁺ [M+Na⁺]: 337.0060, found: 337.0073; HPLC (chiral column: CHIRALPAK IA3; solvent: hexane/2-propanol = 200/1; flow rate: 1.0 mL/min; detection: at 210 nm): *t*_R = 47.1 min (major) and 51.3 min (minor); [α]_D²⁰ = -6.3 (*c* = 2.7, CHCl₃, for 99% ee sample).

1-(3-((R)-((S)-cyclohex-2-en-1-yl)(hydroxy)methyl)phenyl)ethan-1-one (8e).

Prepared according to the general procedure, then the crude material was purified by silica gel flash column chromatography (AcOEt/hexane = 1/10 to 1/1, v/v) to afford (*R*)-**8e** as colorless oil (26.7 mg, 46%).

IR (neat) v 3444, 3021, 2927, 2860, 1683, 1601, 1584, 1433, 1360, 1276, 1184, 1025, 699 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.45-1.54 (m, 2 H), 1.58-1.67 (m, 1H), 1.71-1.81 (m, 1H), 1.92 (d, *J* = 2.3 Hz, 1H), 1.96-2.03 (m, 2H), 2.48-2.57 (m, 1H), 2.62 (s, 3H), 4.71 (dd, *J* = 1.7, 5.7 Hz, 1H), 5.41 (dd, *J* = 1.7, 9.7 Hz, 1H), 5.83-5.90 (m, 1H), 7.45 (dd, *J* = 7.7, 7.7 Hz, 1H), 7.57 (d, *J* = 7.7 Hz, 1H), 7.87 (d, *J* = 7.7 Hz, 1H), 7.93 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 21.0, 23.4, 25.1, 26.7, 43.0, 76.8, 126.3, 127.4, 127.5, 128.4, 131.0, 131.2, 137.0, 143.4, 198.3; LRMS (DART): *m/z* 231 [M+H⁺]; HRMS (DART): *m/z* calculated for C₁₅H₁₉O₂⁺ [M+H⁺]: 231.1380, found: 231.1371; HPLC (chiral column: CHIRALPAK IBN3; solvent: hexane/2-propanol = 50/1; flow rate: 1.0 mL/min; detection: at 210 nm): *t*_R = 42.4 min (minor) and 54.4 min (major); [α]_D²⁰ = +6.9 (*c* = 0.54, CHCl₃, for 99% ee sample).

Methyl 4-((R)-((S)-cyclohex-2-en-1-yl)(hydroxy)methyl)benzoate (8f).

Prepared according to the general procedure, then the crude material was purified by silica gel flash column chromatography (AcOEt/hexane = 1/10 to 1/1, v/v) to afford (*R*)-**8f** as colorless oil (49.4 mg, 80%). All the spectroscopic data matches with the previously reported data.⁷

¹H NMR (CDCl₃, 500 MHz) δ 1.44-1.62 (m, 1H), 1.66-1.80 (m, 1H), 1.90-2.02 (m, 3H), 2.41-2.46 (m, 1H), 3.91 (s, 3H), 4.70 (dd, J = 2.3, 6.3 Hz, 1H), 5.42 (dd, J = 1.7, 10.3 Hz, 1H), 5.84-5.90 (m, 1H), 7.42 (d, J = 8.3 Hz, 2H), 8.02 (d, J = 8.3 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 21.0, 23.3, 25.1, 42.9, 52.0, 76.6, 126.4, 127.5, 129.0, 129.4, 131.0, 148.1, 167.0; HPLC (chiral column: CHIRALPAK IA3; solvent: hexane/2-propanol = 50/1; flow rate: 1.0 mL/min; detection: at 210 nm): $t_{\rm R} = 38.8$ min (major) and 55.2 min (minor); $[\alpha]_{\rm D}^{20.9} = +5.1$ (c = 0.97, CHCl₃, for 99% ee sample).

(R)-((S)-cyclohex-2-en-1-yl)(4-(trifluoromethyl)phenyl)methanol (8g).

Prepared according to the general procedure, then the crude material was purified by silica gel flash column chromatography (CH₂Cl₂/hexane = 1/10 to 1/0, v/v) to afford (*R*)-8g as colorless oil (40.2 mg, 63%). All the spectroscopic data matches with the previously reported data.⁸

¹H NMR (CDCl₃, 500 MHz) δ 1.45-1.62 (m, 2H), 1.70-1.81 (m, 1H), 1.91 (d, *J* = 2.3 Hz, 1H), 1.97-2.03 (m, 2H), 2.47-2.56 (m, 1H), 4.71 (d, *J* = 8.0 Hz, 2H), 5.42 (dd, *J* = 2.3, 10.3 Hz, 1H), 5.85-5.92 (m, 1H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.60 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 21.0, 23.2, 25.1, 43.0, 76.5, 124.2 (q, *J* = 270.7 Hz), 125.1 (q, *J* = 4.8 Hz), 126.7, 127.3, 129.5 (q, *J* = 32.2 Hz), 131.3, 146.7; HPLC (chiral column: CHIRALPAK IBN3; solvent: hexane/2-propanol = 200/1; flow rate: 1.0 mL/min; detection: at 210 nm): *t*_R = 23.4 min (major) and 24.6 min (minor); [α]_D²⁰ = +8.6 (*c* = 1.1, CHCl₃, for 99% ee sample).

(R)-((S)-cyclopent-2-en-1-yl)(phenyl)methanol (8h).

(*R*)-8h

Prepared according to the general procedure, then the crude material was purified by silica gel flash column chromatography (CH₂Cl₂/hexane = 1/2 to 2/1, v/v) to afford (*R*)-**8h** as colorless oil (25.5 mg, 59%). All the spectroscopic data matches with the previously reported data.⁶

¹H NMR (CDCl₃, 500 MHz) δ 1.78-2.00 (m, 3H), 2.24-2.45 (m, 2H), 3.05-3.17 (m, 1H), 4.58 (d, *J* = 6.4 Hz, 1H), 5.38-5.44 (m, 1H), 5.83-5.92 (m, 1H), 7.22-7.42 (m, 5H); ¹³C NMR (CDCl₃, 125 MHz) δ 25.0, 32.2, 53.9, 76.7, 126.2, 127.3, 128.2, 131.2, 133.7, 143.4; HPLC (chiral column: CHIRALPAK IA3; solvent: hexane/2-propanol = 200/1; flow rate: 1.0 mL/min; detection: at 210 nm): *t*_R = 25.2 min (minor) and 26.1 min (major); $[\alpha]_D^{20} = -67$ (*c* = 1.56, CHCl₃, for 99% ee sample).

(R)-(4-chlorophenyl)((S)-cyclopent-2-en-1-yl)methanol (8i).

Prepared according to the general procedure, then the crude material was purified by silica gel flash column chromatography (CH₂Cl₂/hexane = 1/2 to 2/1, v/v) to afford (*R*)-**8i** as colorless solid (28.5 mg, 55%).

IR (neat) v 3390, 3053, 2929, 2850, 1902, 1716, 1597, 1489, 1410, 1293, 1089, 1013, 827, 726 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.72-1.97 (m, 3H), 2.23-2.43 (m, 2H), 3.01-3.12 (m, 1H), 4.58 (d, *J* = 6.4 Hz, 1H), 5.37-5.45 (m, 1H), 5.84-5.93 (m, 1H), 7.24-7.34 (m, 4H); ¹³C NMR (CDCl₃, 125 MHz) δ 24.6, 32.2, 53.9, 76.0, 127.6, 128.3, 130.8, 132.9, 134.2, 141.8; LRMS (ESI): *m/z* 231 [M+Na⁺]; HRMS (ESI): *m/z* calculated for C₁₂H₁₃ClNaO⁺ [M+Na⁺]: 231.0547, found: 231.0550; HPLC (chiral column: CHIRALPAK IC3; solvent: hexane/2-propanol = 200/1; flow rate: 1.0 mL/min; detection: at 210 nm): *t*_R = 16.4 min (major) and 20.8 min (minor); [α]_D²⁰ = -60 (*c* = 0.98, CHCl₃, for 99% ee sample).

(R)-(4-chlorophenyl)((S)-cyclohept-2-en-1-yl)methanol (8k).

Prepared according to the general procedure, then the crude material was purified by silica gel flash column chromatography (CH₂Cl₂/hexane = 1/2 to 2/1, v/v) to afford (*R*)-**8k** as colorless solid (28.1 mg, 47%). IR (neat) v 3389, 3020, 2923, 2852, 1901, 1721, 1650, 1597, 1490, 1444, 1090, 1013, 832, 687 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.23-1.41 (m, 2H), 1.47-1.72 (m, 2H), 1.77-2.21 (m, 5H), 2.56-2.65 (m, 1H), 4.65 (d, *J* = 6.3 Hz, 1H), 5.46-5.54 (m, 1H), 5.75-5.84 (m, 1H), 7.21-7.37 (m, 4H); ¹³C NMR (CDCl₃, 125 MHz) δ 26.7, 27.9, 28.5, 29.8, 47.0, 76.7, 128.0, 128.4, 132.8, 133.1, 133.1, 141.6; LRMS (ESI): *m/z* 259[M+Na⁺]; HRMS (ESI): *m/z* calculated for C₁₄H₁₇ClNaO⁺ [M+Na⁺]: 259.0860, found: 259.0854; HPLC (chiral column: CHIRALPAK IA3; solvent: hexane/2-propanol = 200/1; flow rate: 1.0 mL/min; detection: at 210 nm): *t*_R = 43.8 min (major) and 50.6 min (minor); [α]_D^{20.9} = +63 (*c* = 0.92, CHCl₃, for 99% ee sample).

Procedure for preparation of 8j

 $CrCl_2$ (3.0 mg, 0.025 mmol, 10 mol %) and L5 (9.0 mg, 0.025 mmol, 10 mol %) were dissolved in degassed CH_2Cl_2 (2.5 mL) in a screw-capped vial under argon atmosphere and the mixture was stirred for 1 hour at room temperature. Cyclohexene 1c (584 µL, 5.0 mmol, 20 eq), Mg(ClO₄)₂ (55.8 mg, 0.25 mmol, 100 mol %), benzaldehyde 2a (25.5 µL, 0.25 mmol, 1 eq) and photocatalyst 10 (2.5 mg, 0.00625 mmol, 2.5 mol, 2.5 mol %) were added to the reaction mixture. The vial was subjected to 430 nm LED irradiation for 12 hours under temperature control (ca. 27–29 °C). Then, the reaction mixture was passed through a pad of silica gel with CH₂Cl₂ elution. After evaporation, diastereomeric ratio was determined by NMR analysis (68%, >20/1). The residue was purified by silica gel flash column chromatography (CH₂Cl₂/hexane = 1/2 to 2/1, v/v) to afford (*R*)-8a as colorless oil (28.4 mg, 56%).

(R)-((S)-cyclohept-2-en-1-yl)(phenyl)methanol (8j).

(R)-**8j**

All the spectroscopic data matches with the previously reported data.9

¹H NMR (CDCl₃, 500 MHz) δ 1.21-1.40 (m, 2H), 1.48-1.75 (m, 2H), 1.85-2.24 (m, 5H), 2.62-2.71 (m, 1H), 4.66 (d, *J* = 7.3 Hz, 1H), 5.53 (dd, *J* = 3.2, 14.5 Hz, 1H), 5.73-5.83 (m, 1H), 7.25-7.39 (m, 5H); ¹³C NMR (CDCl₃, 125 MHz) δ 26.7, 28.1, 28.6, 30.0, 46.9, 77.4, 126.7, 127.5, 128.3, 132.4, 133.5, 143.2; HPLC (chiral column: CHIRALPAK IA3; solvent: hexane/2-propanol = 200/1; flow rate: 1.0 mL/min; detection: at 210 nm): *t*_R = 32.8 min (minor) and 38.4 min (major); $[\alpha]_D^{20} = +84$ (*c* = 0.77, CHCl₃, for 99% ee sample).

Procedure for preparation of 8l and 8v

CrCl₂ (1.5 mg, 0.0125 mmol, 2.5 mol %) and **L5** (4.5 mg, 0.0125 mmol, 2.5 mol %) were dissolved in degassed CH₂Cl₂ (4 mL) in a screw-capped vial under argon atmosphere and the mixture was stirred for 1 hour at room temperature. 2,3-Dimethyl-2-butene **1d** (106 μ L, 1.0 mmol, 2 eq), Mg(ClO₄)₂ (112 mg, 0.5 mmol, 100 mol %), benzaldehyde **2a** (51 μ L, 0.5 mmol, 1 eq) and photocatalyst **11** (1.0 mg, 0.0025 mmol, 0.5 mol %) were added to the reaction mixture. The vial was subjected to 430 nm LED irradiation for 12 hours under temperature control (ca. 27–29 °C). Then, the reaction mixture was directly loaded to silica gel and purified by flash column chromatography (CH₂Cl₂/hexane = 1/10 to 1/0, v/v) to afford (*R*)-**8l** as colorless oil (82.1 mg, 87%).

(S)-2,2,3-trimethyl-1-phenylbut-3-en-1-ol (8l).

All the spectroscopic data matches with the previously reported data.¹⁰

¹H NMR (CDCl₃, 500 MHz) δ 0.94 (s, 3H), 0.99 (s, 3H), 1.87 (s, 3H), 2.08 (d, J = 1.7 Hz, 1H), 4.63 (s, 1H), 4.97 (s, 1H), 5.04 (s, 1H), 7.18-7.36 (m, 5H); ¹³C NMR (CDCl₃, 125 MHz) δ 19.8, 20.1, 24.2, 44.5, 77.4, 113.2, 127.2, 127.4, 127.9, 140.2, 150.6; HPLC (chiral column: CHIRALPAK IA3; solvent: hexane/2-propanol = 100/1; flow rate: 1.0 mL/min; detection: at 210 nm): $t_{\rm R} = 11.1$ min (minor) and 13.5 min (major); $[\alpha]_{\rm D}^{20} = +99$ (c = 0.24, CHCl₃, for 88% ee sample).

(R)-2,2-dimethyl-1-phenylbut-3-en-1-ol (8v).

Prepared according to the general procedure, then the reaction mixture was passed through a pad of silica gel with CH_2Cl_2 . After evaporation, regioisomeric ratio was determined by NMR analysis (1.9/1 rr). The residue was purified by silica gel flash column chromatography (CH_2Cl_2 /hexane = 1/10 to 1/0, v/v) to afford (*R*)-**8v**

as colorless oil along with the inseparable mixture of stereoisomers (8w) (42.8 mg, 97%). All the spectroscopic data matches with the previously reported data.¹¹ The following spectroscopic data were collected with a pure sample obtained by preparative TLC.

¹H NMR (CDCl₃, 500 MHz) δ 0.88 (s, 3H), 0.93 (s, 3H), 2.01 (s, 1H), 4.33 (s, 1H), 4.99 (dd, J = 1.4, 17.9 Hz, 1H), 5.05 (dd, J = 1.4, 11.0 Hz, 1H), 5.83 (dd, J = 11.0, 17.9 Hz, 1H), 7.12-7.26 (m, 5H); ¹³C NMR (CDCl₃, 125 MHz) δ 20.1, 24.4, 42.2, 80.6, 113.8, 127.4, 127.4, 127.7, 140.7, 145.0; HPLC (chiral column: CHIRALPAK IE3; solvent: hexane/2-propanol = 500/1; flow rate: 1.0 mL/min; detection: at 210 nm): $t_{\rm R} = 27.3$ min (minor) and 34.2 min (major); $[\alpha]_{\rm D}^{20} = +111.5$ (c = 1.23, CHCl₃, for 83% ee sample).

Procedure for preparation of 8m and 8p

 $CrCl_3$ •3THF (9.4 mg, 0.025 mmol, 10 mol %), NaOtBu (7.2 mg, 0.075 mmol, 30 mol %) and L5 (9.0 mg, 0.025 mmol, 10 mol %) were dissolved in degassed CH_2Cl_2 (4 mL) in a screw-capped vial under argon

atmosphere and the mixture was stirred for 1 hour at room temperature. 2,3-Dimethyl-2-butene **1d** (540 μ L, 5.0 mmol, 20 eq), Mg(ClO₄)₂ (55.8 mg, 0.25 mmol, 100 mol %), *o*-tolaldehyde (29 μ L, 0.25 mmol, 1 eq) and photocatalyst **11** (1.3 mg, 0.03125 mmol, 1.25 mol %) were added to the reaction mixture. The vial was subjected to 430 nm LED irradiation for 12 hours under temperature control (ca. 27–29 °C). Then, the reaction mixture was directly loaded to silica gel and purified by flash column chromatography (CH₂Cl₂/hexane = 1/10 to 1/0, v/v) to afford (*R*)-**8m** as colorless oil (51.1 mg, 50%).

(*R*)-2,2,3-trimethyl-1-(*o*-tolyl)but-3-en-1-ol (8m).

IR (neat) v 3466, 3090, 2972, 1633, 1607, 1463, 1377, 1150, 1049, 892, 790, 734 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.93 (s, 3H), 1.10 (s, 3H), 1.90 (s, 3H), 2.00 (d, J = 1.7 Hz, 1H), 2.38 (s, 3H), 4.90-5.10 (m, 2H), 5.05 (s, 1H), 7.10-7.25 (m, 3H), 7.50 (dd, J = 1.7, 7.4 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 20.1, 20.4, 20.5, 23.8, 45.8, 72.2, 113.3, 125.3, 127.1, 128.3, 130.1, 136.1, 138.6, 150.9; LRMS (ESI): m/z 227 [M+Na⁺]; HRMS (ESI): m/z calculated for C₁₄H₂₀NaO⁺ [M+Na⁺]: 227.1406, found: 227.1395; HPLC (chiral column: CHIRALPAK IA3; solvent: hexane/2-propanol = 100/1; flow rate: 1.0 mL/min; detection: at 210 nm): $t_R = 9.7$ min (major) and 10.7 min (minor); $[\alpha]_D^{20} = +110$ (c = 1.05, CHCl₃, for 96% ee sample).

(S)-1-(4-methoxyphenyl)-2,2,3-trimethylbut-3-en-1-ol (8p).

Prepared according to the general procedure, then the crude material was purified by silica gel flash column chromatography (AcOEt/hexane = 1/10 to 1/1, v/v) to afford (*S*)-**8p** as colorless oil (21.5 mg, 39%). All the spectroscopic data matches with the previously reported data.¹⁰

¹H NMR (CDCl₃, 500 MHz) δ 0.92 (s, 3H), 0.98 (s, 3H), 1.86 (s, 3H), 2.03 (d, J = 1.7 Hz, 1H), 3.81 (s, 3H), 4.59 (s, 1H), 4.96 (s, 1H), 5.02 (s, 1H), 6.83-6.88 (m, 2H), 7.23-7.27 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 19.8, 20.0, 24.2, 44.6, 55.2, 77.1, 112.8, 113.1, 129.0, 132.3, 150.7, 158.8; HPLC (chiral column: CHIRALPAK IA3; solvent: hexane/2-propanol = 200/1; flow rate: 1.0 mL/min; detection: at 210 nm): $t_{\rm R} = 27.2$ min (minor) and 28.8 min (major); $[\alpha]_{\rm D}^{20} = +138$ (c = 0.49, CHCl₃, for 96% ee sample).

Procedure for preparation of 8n and 8o

CrCl₂ (3.0 mg, 0.025 mmol, 10 mol %) and L5 (9.0 mg, 0.025 mmol, 10 mol %) were dissolved in degassed CH₂Cl₂ (4 mL) in a screw-capped vial under argon atmosphere and the mixture was stirred for 1 hour at room temperature. 2,3-Dimethyl-2-butene 1d (148 μ L, 1.25 mmol, 5 eq), Mg(ClO₄)₂ (55.8 mg, 0.25 mmol, 100 mol %), *m*-tolaldehyde (29 μ L, 0.25 mmol, 1 eq) and photocatalyst 11 (1.3 mg, 0.003125 mmol, 1.25 mol %) were added to the reaction mixture. The vial was subjected to 430 nm LED irradiation for 12 hours under temperature control (ca. 27–29 °C). Then, the reaction mixture was directly loaded to silica gel and purified by flash column chromatography (CH₂Cl₂/hexane = 1/10 to 1/0, v/v) to afford (*S*)-8n as colorless oil (43.2 mg, 85%).

(S)-2,2,3-trimethyl-1-(*m*-tolyl)but-3-en-1-ol (8n).

IR (neat) v 3468, 2974, 1715, 1632, 1461, 1378, 1181, 1039, 1007, 893, 764, 738 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.94 (s, 3H), 0.99 (s, 3H), 1.87 (s, 3H), 2.05 (s, 1H), 2.36 (s, 3H), 4.60 (s, 1H), 4.97 (d, *J* = 1.1 Hz, 1H), 5.03 (d, *J* = 1.1 Hz, 1H), 7.08 (d, *J* = 7.4 Hz, 1H), 7.12 (d, *J* = 7.4 Hz, 1H), 7.16 (s, 1H), 7.20 (dd, *J* = 7.4, 7.4 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 19.8, 20.0, 21.5, 24.3, 44.4, 77.4, 113.1, 125.1, 127.2, 128.0, 128.6, 136.8, 140.2, 150.7; LRMS (ESI): *m/z* 227 [M+Na⁺]; HRMS (ESI): *m/z* calculated for C₁₄H₂₀NaO⁺ [M+Na⁺]: 227.1406, found: 227.1399; HPLC (chiral column: CHIRALPAK IBN3; solvent: hexane/2-propanol = 200/1; flow rate: 1.0 mL/min; detection: at 210 nm): *t*_R = 16.2 min (minor) and 21.9 min (major); [α]_D²⁰ = +103 (*c* = 0.9, CHCl₃, for 90% ee sample).

(S)-2,2,3-trimethyl-1-(p-tolyl)but-3-en-1-ol (80).

Prepared according to the general procedure, then the crude material was purified by silica gel flash column chromatography (CH₂Cl₂/hexane = 1/10 to 1/0, v/v) to afford (*S*)-**80** as colorless oil (49.4 mg, 97%). All the spectroscopic data matches with the previously reported data.¹²

¹H NMR (CDCl₃, 500 MHz) δ 0.93 (s, 3H), 0.98 (s, 3H), 1.86 (s, 3H), 2.03 (d, J = 1.7 Hz, 1H), 2.34 (s, 3H), 4.60 (s, 1H), 4.96 (d, J = 1.1 Hz, 1H), 5.02 (d, J = 1.1 Hz, 1H), 7.12 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 19.8, 20.1, 21.1, 24.2, 44.4, 77.3, 113.0, 127.8, 128.1, 136.8, 137.3, 150.7; HPLC (chiral column: CHIRALPAK IA3; solvent: hexane/2-propanol = 200/1; flow rate: 1.0 mL/min; detection: at 210 nm): $t_{\rm R} = 15.7$ min (minor) and 17.1 min (major); $[\alpha]_{\rm D}^{20} = +134$ (c = 1.76, CHCl₃, for 95% ee sample).

Procedure for preparation of 8q

CrCl₂ (6.1 mg, 0.05 mmol, 20 mol %) and L5 (17.9 mg, 0.05 mmol, 20 mol %) were dissolved in degassed CH₂Cl₂ (4 mL) in a screw-capped vial under argon atmosphere and the mixture was stirred for 1 hour at room temperature. 2,3-Dimethyl-2-butene 1d (593 μ L, 5.0 mmol, 20 eq), Mg(ClO₄)₂ (55.8 mg, 0.25 mmol, 100 mol %), 3-furaldehyde (21 μ L, 0.25 mmol, 1 eq) and photocatalyst 11 (5.2 mg, 0.00125 mmol, 5 mol %) were added to the reaction mixture. The vial was subjected to 430 nm LED irradiation for 12 hours under temperature control (ca. 27–29 °C). Then, the reaction mixture was directly loaded to silica gel and purified by flash column chromatography (CH₂Cl₂/hexane = 1/10 to 1/0, v/v) to afford (*R*)-8q as colorless oil (14.8 mg, 33%).

(*R*)-1-(furan-3-yl)-2,2,3-trimethylbut-3-en-1-ol (8q).

IR (neat) v 3464, 3091, 2971, 1716, 1635, 1501, 1460, 1377, 1261, 1163, 1023, 875, 798, 736 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.98 (s, 3H), 1.05 (s, 3H), 1.83 (s, 3H), 1.93 (s, 1H), 4.61 (s, 1H), 4.95 (s, 1H), 5.01 (s, 1H), 6.39 (s, 1H), 7.35-7.39 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 19.8, 20.5, 23.7, 44.2, 71.3, 110.3, 113.1, 124.9, 140.3, 142.3, 150.3; LRMS (ESI): *m/z* 203 [M+Na⁺]; HRMS (ESI): *m/z* calculated for C₁₁H₁₆NaO₂⁺ [M+Na⁺]: 203.1043, found: 203.1040; HPLC (chiral column: CHIRALPAK IBN3; solvent: hexane/2-propanol = 100/1; flow rate: 1.0 mL/min; detection: at 210 nm): *t*_R = 12.1 min (major) and 13.1 min (minor); [α]_D²⁰ = +56 (*c* = 0.54, CHCl₃, for 93% ee sample).

Procedure for preparation of 8r

CrCl₂ (2.4 mg, 0.02 mmol, 20 mol %) and L5 (7.2 mg, 0.02 mmol, 20 mol %) were dissolved in degassed 1,2-dichloroethane (4 mL) in a screw-capped vial under argon atmosphere and the mixture was stirred for 1 hour at room temperature. 2,3-Dimethyl-2-butene **1a** (119 μ L, 1.0 mmol, 5 eq), Mg(ClO₄)₂ (44.6 mg, 0.2 mmol, 100 mol %), cyclohexanecarbaldehyde (24 μ L, 0.2 mmol, 1 eq) and photocatalyst **11** (4.1 mg, 0.01 mmol, 5 mol %) were added to the reaction mixture. The vial was subjected to 430 nm LED irradiation for 12 hours under temperature control (ca. 27–29 °C). Then, the reaction mixture was directly loaded to silica gel and purified by flash column chromatography (CH₂Cl₂/hexane = 1/10 to 1/0, v/v) to afford (*S*)-**8r** as colorless oil (35.5 mg, 90%).

(S)-1-cyclohexyl-2,2,3-trimethylbut-3-en-1-ol (8r).

All the spectroscopic data matches with the previously reported data.¹⁰ Enantiomeric excess was determined after protection of 8r by *p*-NO₂-benzoyl chloride.

¹H NMR (CDCl₃, 500 MHz) δ 1.06 (s, 3H), 1.08 (s, 3H), 1.19-1.37 (m, 6H), 1.43 (d, J = 4.6 Hz, 1H), 1.45-1.66 (m, 2H), 1.68-1.80 (m, 6H), 3.28 (dd, J = 2.9, 4.0 Hz, 1H), 4.83 (s, 1H), 4.87 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 20.0, 22.9, 23.2, 26.4, 26.4, 26.9, 28.0, 34.0, 39.1, 44.6, 79.5, 111.7, 151.7; HPLC (chiral column: CHIRALPAK IA3; solvent: hexane/2-propanol = 200/1; flow rate: 1.0 mL/min; detection: at 254 nm): $t_{\rm R} = 7.6$ min (minor) and 8.8 min (major); $[\alpha]_{\rm D}^{20} = -49$ (c = 1.19, CHCl₃, for 99% ee sample).

Procedure for preparation of 8s-8u

CrCl₂(6.1 mg, 0.05 mmol, 20 mol %) and L5 (17.9 mg, 0.05 mmol, 20 mol %) were dissolved in degassed

1,2-dichloroethane (2.5 mL) in a screw-capped vial under argon atmosphere and the mixture was stirred for 1 hour at room temperature. 2,3-Dimethyl-2-butene **1d** (593 μ L, 5.0 mmol, 20 eq), MgPhPO₃ (9.0 mg, 0.05 mmol, 20 mol %), hydrocinnamaldehyde (33 μ L, 0.25 mmol, 1 eq) and photocatalyst **11** (5.2 mg, 0.0125 mmol, 5 mol %) were added to the reaction mixture. The vial was subjected to 430 nm LED irradiation for 48 hours under temperature control (ca. 27–29 °C). Then, the reaction mixture was directly loaded to silica gel and purified by flash column chromatography (CH₂Cl₂/hexane = 1/10 to 1/0, v/v) to afford (*S*)-**8s** as colorless oil (33.8 mg, 69%).

(S)-4,4,5-trimethyl-1-phenylhex-5-en-3-ol (8s).

IR (neat) v 3479, 3087, 3027, 2970, 1634, 1603, 1496, 1455, 1377, 1302, 1067, 894, 748, 699 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.99 (s, 3H), 1.04 (s, 3H), 1.50-1.81 (m, 6H), 2.55-2.66 (m, 1H), 2.88-2.99 (m, 1H), 3.50 (d, *J* = 10.3 Hz, 1H), 4.84 (s, 1H), 4.90 (s, 1H), 7.15-7.32 (m, 5H); ¹³C NMR (CDCl₃, 125 MHz) δ 19.6, 21.5, 22.4, 33.0, 33.6, 43.7, 74.8, 112.1, 125.7, 128.3, 128.5, 142.5, 150.8; LRMS (DART): *m/z* 219 [M+H⁺]; HRMS (DART): *m/z* calculated for C₁₅H₂₃O⁺ [M+H⁺]: 219.1743, found: 219.1753; HPLC (chiral column: CHIRALPAK IA3; solvent: hexane/2-propanol = 100/1; flow rate: 1.0 mL/min; detection: at 210 nm): *t*_R = 9.2 min (minor) and 10.5 min (major); [α]_D²⁰ = +98 (*c* = 1.38, CHCl₃, for 86% ee sample).

(*S*)-2,3,3-trimethylnon-1-en-4-ol (8t).

Prepared according to the general procedure, then the crude material was purified by silica gel flash column chromatography (CH₂Cl₂/hexane = 1/10 to 1/0, v/v) to afford (*S*)-8t as colorless oil (43.6 mg, 95%). Enantiomeric excess was determined after protection of 8t by *p*-NO₂-benzoyl chloride.

IR (neat) v 3446, 2928, 2856, 1732, 1635, 1457, 1377, 1289, 1120, 1073, 934, 892 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.89 (t, J = 6.9 Hz, 3H), 1.00 (s, 3H), 1.04 (s, 3H), 1.18-1.37 (m, 6H), 1.38-1.47 (m, 1H), 1.47-1.63 (m, 2H), 1.75 (d, J = 1.1 Hz, 3H), 3.46 (d, J = 10.3 Hz, 1H), 4.84 (s, 1H), 4.91 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 14.1, 19.7, 21.4, 22.6, 22.7, 27.1, 31.0, 32.0, 43.7, 75.5, 111.9, 151.1; LRMS (DART): m/z 633 [M+H⁺]; HRMS (DART): m/z calculated for C₁₂H₂₅O⁺ [M+H⁺]: 185.1900, found: 185.1894; HPLC (chiral column: CHIRALPAK IF3; solvent: hexane/2-propanol = 200/1; flow rate: 1.0 mL/min; detection: at 254 nm): $t_{\rm R} = 7.3$ min (minor) and 9.4 min (major); [α]_D²⁰ = +70 (c = 0.26, CHCl₃, for 85% ee sample).

(*S*)-2,3,3,6-tetramethylhept-1-en-4-ol (8u).

Prepared according to the general procedure, then the crude material was purified by silica gel flash column chromatography (CH₂Cl₂/hexane = 1/10 to 1/0, v/v) to afford (*R*)-**8u** as colorless oil (33.3 mg, 78%). Enantiomeric excess was determined after protection of **8u** by *p*-NO₂-benzoylchloride.

IR (neat) v 3408, 3091, 2957, 2970, 1635, 1468, 1377, 1296, 1069, 983, 893 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.90 (t, J = 6.3 Hz, 3H), 0.94 (t, J = 6.9 Hz, 3H), 0.99 (s, 3H), 1.04 (s, 3H), 1.10-1.18 (m, 1H), 1.22-1.32 (m, 1H), 1.46 (d, J = 2.2 Hz, 1H), 1.73-1.85 (m, 4H), 3.56 (dd, J = 2.2, 10.3 Hz, 1H), 4.84 (s, 1H), 4.90 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 14.1, 19.7, 21.4, 22.6, 22.7, 27.1, 31.0, 32.0, 43.7, 75.5, 111.9, 151.1; LRMS (ESI): m/z 193 [M+Na⁺]; HRMS (ESI): m/z calculated for C₁₁H₂₂NaO⁺ [M+Na⁺]: 193.1563, found: 193.1570; HPLC (chiral column: CHIRALPAK IF3; solvent: hexane/2-propanol = 200/1; flow rate: 1.0 mL/min; detection: at 254 nm): $t_R = 7.2$ min (minor) and 8.3 min (major); [α]_D²⁰ = +116 (c = 0.84, CHCl₃, for 85% ee sample).

Determination of absolute configuration

The absolute configurations of 8 were determined as follows:

8a-8k: The absolute configuration was determined by optical rotation value of **8b**. Those of others were assigned by analogy.

This time: $[\alpha]_D^{20} = -24.6 \ (c = 1.0, C_6H_6, \text{ for 99\% ee sample})$ Reported value¹³: $[\alpha]_D^{20} = -15.0 \ (c = 1.0, C_6H_6, \text{ for 64\% ee sample})$

81-8v: Following the following reaction scheme, diol **12** was obtained. The absolute configuration was determined by optical rotation value of diol **12**. Those of others were assigned by analogy.

8v (38 mg, 0.216 mmol, 1 eq, 83% ee) were dissolved in CH₂Cl₂ (2 mL) in a round bottom flask. Then the flask was connected to an oxygen tank with a bubbler. The reaction mixture was cooled to -78 °C. The ozone generator was switched on and the ozone went into the reaction flask. The reaction mixture was allowed to stir until the color changed to blue. NaBH₄ (16.8 mg, 0.431 mmol, 2 eq) and MeOH (1 ml) were added and the mixture was warmed up to room temperature. The reaction mixture was stirred for 15 h, and then quenched with saturated *aq*. NH₄Cl. The organic layer was separated, and the aqueous layer was further extracted three times with AcOEt. The combined organic layer was washed with water and brine and dried over Na₂SO₄. After the evaporation under reduced pressure, the residue was purified by silica gel flash column chromatography (hexane/AcOEt = 3/1 to 1/1, v/v) to give the desired diol **9** (30.2 mg, 78% yield) as a colorless oil. $[\alpha]_D^{20} = +65.9$ (*c* = 2.5, CHCl₃, for 83% ee sample) Reported optical rotation value¹⁴: $[\alpha]_D^{30} = +44.7$ (*c* = 1.0, CHCl₃, for 99% ee sample)

4. Optimization Study for Aliphatic Aldehydes

During the optimization of racemic reaction, DCE solvent was found to be better solvent than DCM in terms of reactivity.

Addition of MgPhPO₃ was effective for improving enantioselectivity, while the reaction rate was slower than in the presence of $Mg(ClO_4)_2$. 48 hours was required for the completion of the reaction.

5. Mechanistic Study

5.1 Redox potentials of intermediates in catalytic cycle

We assumed that the proposed catalytic cycle (Figure 2 in the text) is feasible based on the following redox potentials of intermediates. Although oxidation potential of cyclohexene is higher than that of excited state of photocatalyst **10**, one electron transfer would be possible based on the related precedent (cyclopentene and photocatalyst **11**).¹⁵ In addition, addition of $Mg(ClO_4)_2$ might facilitate this step by stabilizing ion pair **3** (see ref 20 in the text).

Cyclohexene 1a: [1a/3] = +2.37 V versus SCE¹⁶

Photocatalyst **10**: $[D-Acr'/D'^+-Acr'] = +2.24$ V versus SCE, $[D-Acr^+/D-Acr'] = -0.46$ V versus SCE¹⁷ Cr catalyst: [Cr(III)/Cr(II)] = -0.41 V versus SCE¹⁸

5.2 TEMPO trapping experiment

To confirm the generation of an allyl radical, a radical trapping experiment by the addition of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy, free radical) was conducted.

 $CrCl_2$ (6.1 mg, 0.05 mmol, 20 mol %), cyclohexene **1a** (507 µL, 5.0 mmol, 20 eq), benzaldehyde **2a** (25.5 µL, 0.25 mmol, 1 eq), Mg(ClO₄)₂ (55.8 mg, 0.25 mmol, 100 mol %) and photocatalyst **10** (2.5 mg, 0.00625 mmol, 2.5 mol %) were dissolved in degassed CH_2Cl_2 (2.5 mL) in a screw-capped vial under argon atmosphere at room temperature. Then, TEMPO (39.1 mg, 0. 25 mmol, 1 eq) were added to the reaction mixture. The vial was subjected to 430 nm LED irradiation for 12 hours under temperature control (ca. 27–29 °C). Then, the reaction mixture was passed through a pad of silica gel with CH_2Cl_2 . After evaporation, the crude mixture was analyzed by NMR spectroscopy using 1,1,2,2-tetrachloroethane as internal standard. No desired product **8a** was formed, and TEMPO adduct¹⁹ was detected in 6% NMR yield. Therefore, we assume allyl radical is formed as an intermediate of the reaction.

5.3 Radical clock experiment

To deny the involvement of ketyl radicals, a radical clock experiment was performed using 2-phenylcyclopropylcarbaldehyde as electrophile.

CrCl₂ (6.1 mg, 0.05 mmol, 20 mol %) and L5 (17.9 mg, 0.05 mmol, 20 mol %) were dissolved in degassed 1,2-dichloroethane (2.5 mL) in a screw-capped vial under argon atmosphere and stirred for 1 hour at room temperature. 2,3-Dimethyl-2-butene 1d (119 μ L, 1.0 mmol, 5 eq), Mg(ClO₄)₂ (11.2 mg, 0.05 mmol, 20 mol %), 2-phenylcyclopropylcarbaldehyde²⁰ (33 μ L, 0.25 mmol, 1 eq) and photocatalyst 11 (5.2 mg, 0.0125 mmol, 5 mol %) were added to the reaction mixture. The vial was subjected to 430 nm LED irradiation for 12 hours under temperature control (ca. 27–29 °C). Then, the reaction mixture was passed through a pad of silica gel with a CH₂Cl₂ eluent. After evaporation, the crude mixture was analyzed by NMR spectroscopy using 1,1,2,2-tetrachloroethane as internal standard. Desired product 8x was formed (77%, 1.1/1 dr), and no ring opened product was observed. Therefore, we assume that ketyl radicals are not formed in the reaction.

5.4 Alternative pathway of chirality induction

We studied a feasibility of an alternative asymmetric induction mechanism involving in situ-generated $Mg(ClO_4)_2/L5$ as chiral Lewis acid by premixing $Mg(ClO_4)_2$ and L5. However, the desired reaction did not proceed at all, indicating that L5 remains coordinating to the chromium atom.

Mg(ClO₄)₂ (55.8 mg, 0.25 mmol, 100 mol %) and L5 (4.5 mg, 0.0125 mmol, 5 mol %) were dissolved in degassed CH₂Cl₂ (2.5 mL) in a screw-capped vial under argon atmosphere and the mixture was stirred for 1 hour at room temperature. Cyclohexene **1a** (507 μ L, 5.0 mmol, 20 eq), CrCl₂ (1.5 mg, 0.0125 mmol, 5 mol %), benzaldehyde **2a** (25.5 μ L, 0.25 mmol, 1 eq) and photocatalyst **10** (2.5 mg, 0.00625 mmol, 2.5 mol %) were added to the reaction mixture. The vial was subjected to 430 nm LED irradiation for 12 hours under temperature control (ca. 27–29 °C). Then, the reaction mixture was passed through a pad of silica gel with CH₂Cl₂. After evaporation, the crude mixture was analyzed by NMR. However, no desired product **8a** was observed. Therefore, we assume that the asymmetric induction is not due to Mg(ClO₄)₂/L**5**, but due to CrCl₂/L**5**.

5.5 Transient absorption analysis

Nanosecond time-resolved transient absorption measurements were carried out using the laser system provided by UNISOKU Co., Ltd. Measurements of nanosecond transient absorption spectrum were performed according to the following procedure. A deaerated solution containing a sample in a quartz cell (1 cm × 1 cm) was excited by a Nd:YAG laser (Continuum SLII-10, 4-6 ns fwhm, λ ex = 355 nm, 5mJ/pulese). The photodynamics were monitored by continuous exposure to a xenon lamp (150 W) as a probe light and a photomultiplier tube (Hamamatsu 2949) as a detector. The solution in a quartz cuvette was deoxygenated by nitrogen purging for 10 min prior to measurements. In following experiments, the sample containing Mg(ClO₄)₂ was prepared using saturated Mg(ClO₄)₂ solution in DCM. (Mg(ClO₄)₂ (2 mg) was added to DCM (10 ml) and sonicated 30 min at room temperature. The supernatant was used as saturated Mg(ClO₄)₂ solution in DCM.)

6. References

1) C. Chen, K. Tagami, Y. Kishi, J. Org. Chem. 1995, 60, 5386.

- 2) W. Chen, Q. Yang, T. Zhou, Q. Tian, G. Zhang, Org. Lett. 2015, 17, 5236.
- 3) M. Kurosu, M. -H. Lin, Y. Kishi, J. Am. Chem. Soc. 2004, 126, 12248.
- 4) J. L. Hofstra, A. H. Cherney, C. M. Ordner, S. E. Reisman, J. Am. Chem. Soc. 2018, 140, 139.
- 5) M. Hatano, K. Moriyama, T. Maki, K. Ishihara, Angew. Chem. Int. Ed. 2010, 49, 3823.
- 6) A. G. Griesbeck, S. Stadtmiiller, J. Am. Chem. Soc. 1991, 113, 6923.
- 7) G. P. Howell, A. J. Minnaard, B. L. Feringa, Org. Biomol. Chem. 2006, 4, 1278.
- 8) W. Wang, T. Zhang, M. Shi, Organometallics 2009, 28, 2640.
- 9) H. C. Brown, K. S. Bhat, P. K. Jadhav, J. Chem. Soc., Perkin Trans. 1, 1991, 0, 2633.
- 10) M. Kimura, D. Nojiri, M. Fukushima, S. Oi, Y. Sonoda, Y. Inoue, Org. Lett. 2009, 11, 3794.
- 11) a) E. Skucas, J. F. Bower, M. J. Krische, J. Am. Chem. Soc. 2007, 129, 12678. b) F. Amemiya, K. Fuse, T. Fuchigamia, M. Atobe, Chem. Commun. 2010, 46, 2730.
- 12) N. Hayashi, H. Honda, M. Yasuda, I. Shibata, A. Baba, Org. Lett. 2006, 8, 4553.
- 13) W. Wang, T. Zhang, M. Shi, Organometallics 2009, 28, 2640.
- 14) T. Ichibakase, M. Nakajima, Org. Lett. 2011, 13, 1579.
- 15) R. Zhou, H. Liu, H. Tao, X. Yu, J. Wu, Chem. Sci. 2017, 8, 4654.
- 16) H. G. Roth, N. A. Romero, D. A. Nicewicz, Synlett 2016, 27, 714.
- 17) T. Tsudaka, H. Kotani, K. Ohkubo, T. Nakagawa, N. V. Tkachenko, H. Lemmetyinen, S. Fukuzumi, *Chem. Eur. J.* **2017**, *23*, 1306.
- 18) A. Fürstner, N. Shi, J. Am. Chem. Soc. 1996, 118, 12349.
- 19) L. Li, Z. Yu, Z. Shen, Adv. Synth. Catal. 2015, 357, 3495.
- 20) A. Weber, K. Doehl, J. Sachs, A. C. M. Nordschild, D. Schroeder, A. Kulik, T. Fischer, L. Schmitt, N. Teusch, J. Pietruszka, *Biomol. Med. Chem.* 2017, 25, 6115.

7. NMR Charts

S-35

OH

OH

DFILE fuse180922798spectra13C-1-1.als COMNT

OH Me Me Me (*R*)-8q

