SUPPLEMENTARY MATERIALS

Supplementary Materials and Methods

Supplementary Figure 1. Quantification of AST-OPC1 Biodistribution at 2 Days and 3 Months Post-Administration into the Injured Cervical Spinal Cord

Supplementary Figure 2. Allodynia Testing of Nude Rats Following Cervical SCI and Administration of Vehicle or AST-OPC1

Supplementary Figure 3. Representative Photomicrographs of Rat-Derived Keratin Cysts in the Injured Cervical Spinal Cord

Supplementary Figure 4. Assessment of hAlu and Ki67 Staining in Control, Non-AST-OPC1 Tissues

Supplementary Table 1. Locomotor Parameters Assessed using the TreadScan System

Supplementary Table 2. Parameters Examined in the AST-OPC1 Cervical SCI Preclinical Toxicology Studies

Supplementary Materials and Methods

Animal subjects

All procedures used in this study were approved by a board-certified veterinarian and the Geron IACUC committee and were conducted in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals. Adult athymic nude rats (strain Crl:NIH-*Foxn1*^{rnu}) were obtained from Charles Rivers Laboratories (Wilmington, MA). All animal subjects were housed in standard conditions with a 12 hr light/dark cycle, were provided food and water ad libitum, and were allowed to acclimate for a minimum of one week prior to surgery.

Differentiation of AST-OPC1 from hESCs

The WA01 (H1) hESC line was expanded in feeder-free conditions (Xu 2001, Li 2005) and differentiated into AST-OPC1 according to published methods (Priest 2015). Briefly, hESC colonies were lifted with collagenase and manual scraping and then seeded into ultra low attachment flasks (Corning Inc., Corning, NY) in 50% hESC growth medium and 50% glial progenitor medium (GPM) containing 4 ng/ml of basic fibroblast growth factor (bFGF) and 20 ng/ml epidermal growth factor (EGF) to stimulate embryoid body formation. On Day 1 post-seeding, medium was replaced with 50% hESC growth medium/50% GPM containing 20 ng/ml EGF and 10 μ M all-trans-retinoic acid (RA). On Days 2-8, medium was replaced daily with 100% GPM containing 20 ng/ml EGF and 10 μ M RA. On Days 9-26, embryoid bodies were maintained in GPM/EGF without RA, which was replaced every 2 days. On Day 27, embryoid bodies were plated in flasks pre-coated with Matrigel (Corning Inc., Corning, NY) and cultured in GPM/EGF for 7 days with medium exchange every 2 days. On Day 34, cells were harvested

with trypsin, replated in Matrigel-coated flasks, and cultured for an additional 7 days in GPM/EGF, with medium exchange every 2 days. On Day 41, cells were harvested with trypsin, filtered to remove residual cell aggregates, and cryopreserved in liquid nitrogen. All cultures were tested regularly for sterility and mycoplasma, and no contamination was detected. Prior to *in vitro* and *in vivo* testing, AST-OPC1 was thawed and washed in HBSS to remove cryopreservation medium. All studies were performed using cryopreserved and thawed AST-OPC1 cells, in accordance with their use in the subsequent cervical SCI clinical trial.

Cervical spinal cord injury

Following at least one week of acclimation, adult female athymic nude rats (strain = Crl:NIH-Foxn1^{mu}, age = 8-12 weeks] were subjected to a unilateral cervical spinal cord crush/contusion injury at level C5 as described previously (Scheff 2003). Rats were given an intraperitoneal (IP) injection of a 60 mg/kg ketamine/ 7.5 mg/kg xylazine cocktail to induce anesthesia, and then a midline skin incision was made at the C3-C6 level of the cervical spinal cord. The paravertebral muscles were dissected bilaterally to visualize the transverse apophyses. A laminectomy was performed at C5 only, and a unilateral contusion injury on the right side of the spinal cord was induced using the Infinite Horizons Impactor (Precision Systems & Instrumentation, Fairfax, VA) set to deliver a 250 (efficacy study) or 150 (biodistribution and toxicology studies) kdyne force impact for efficacy or biodistribution/toxicology testing of AST-OPC1, respectively. Following contusion injury and wound closure, animals were given a subcutaneous (SC) injection of Lactated Ringer's Solution (LRS; 10 ml) and maintained on an isothermic pad until recovery from anesthesia. Following contusion injury, manual bladder expression was performed 2-3 times daily for each animal until voluntary bladder expression

returned. Animals that exhibited no deficit or severe deficit (i.e., inability to right self or self-feed) were excluded from studies (<5% of animals).

AST-OPC1 transplantation in injured nude rats

One week $(7 \pm 1 \text{ d})$ after cervical SCI, AST-OPC1 or vehicle was injected directly into the spinal cord parenchyma adjacent to the injury site. Animals were positioned in a stereotaxic frame, and a 50 µl Hamilton syringe outfitted with a 32 gauge needle (1 inch long, 30° beveled tip) was used to deliver vehicle (Hank's Balanced Salt Solution, HBSS) or AST-OPC1. For the AST-OPC1 efficacy study, one transplant site at the caudal boundary of the contusion injury was used to match the intended administration strategy in the cervical clinical trial, and either 2.4 x 10^5 AST-OPC1 cells in 2.4 µl or an equal volume of vehicle was delivered. For the biodistribution and toxicology studies, two AST-OPC1 doses were tested, including the efficacy dose $(2.4 \times 10^5 \text{ cells as a single injection})$ and a maximum feasible dose $(2.4 \times 10^6 \text{ cells as four})$ injections). Because the maximum feasible dose required a total injection volume of 24 μ l, it was not possible to deliver this a single injection into the rat spinal cord and instead was divided into 4 x 6 µl injections around the perimeter of the contusion injury site. For the biodistribution and toxicology studies, all vehicle control animals also received at total injection volume of 24 μ l, split into 4 x 6 μ l injections. All injections were administered approximately 1 mm ventral to the pial surface of the spinal cord. Cells or vehicle were administered at a rate of approximately $3 \mu l/min.$

The immunosuppressive article, anti-asialo GM1 antibody (GM1Ab, Wako # 986-10001) was administered via an IP injection to all subjects two days prior to transplant surgery, on the day of transplantation, and two days after transplantation, and weekly thereafter as 1 mg/injection in 0.2 ml USP sterile saline for the study duration.

Assessment of locomotor performance with the TreadScan system

Prior to injury, and at 1, 2 and 4 months post-transplantation of AST-OPC1 or vehicle, rats were assessed for locomotor function using the TreadScan system (Clever Sys, Inc., Reston, VA). A separate cohort of sham injured (laminectomy only), non-transplanted rats were also assessed at these time points for comparison with the injured groups/transplanted groups. During testing, each rat was placed on a motorized, clear treadmill and imaged from the ventral plane using a high speed camera during locomotion for 20 seconds. The treadmill speed was adjusted to match each animal's walking ability (speeds ranged from 6-20 cm/sec). The TreadScan Analysis software (Ver. 3.00, Build 20101210) was then used to calculate 90 different parameters of locomotor performance based on aspects of gait from each of the four paws which were then used to determine group means for each locomotor parameter. See Supplementary Table 1 for a complete parameter list and descriptions.

In addition, multivariate analysis was used to compare overall locomotor scores between groups. The first principal component of all 90 TreadScan parameters was then calculated and fit to a linear mixed effects model, with the principal component score as the dependent variable and treatment group as the independent variable with three levels (Sham, Vehicle, AST-OPC1). The first principal component was modeled as a linear function of time starting from 1 month post-treatment and then used to calculate recovery slopes for each treatment group. Recovery slopes for treatment groups were then compared using a Wald test with a t-distribution. All behavior testing and subsequent analyses were performed by investigators who were blinded to the treatment groups.

Animal perfusion and tissue processing for histology

Spinal cord and brain tissues were collected at autopsy and immersion fixed in 10% formalin for paraffin-embedding. For spinal cord, the approximate rostral and caudal extent of the affected spinal cord tissue, corresponding to approximately 1 cm rostral and 1 cm caudal to the contusion epicenter or site of administration, was dissected en bloc during necropsy. The tissue was processed for paraffin embedding using standard procedures. Spinal cord tissue was sectioned in the longitudinal/horizontal plane by microtome and 5 µm sections were obtained and mounted onto slides for subsequent hematoxylin and eosin (H&E) staining, in situ hybridization (ISH) and immunohistochemistry (IHC).

Myelin staining with Eriochrome cyanine

To identify myelinated fibers within the spinal cord, tissues were stained with Eriochrome cyanine solution and counterstained with Eosin-Y. Stained slides were imaged with an Axiocam MRc5 camera mounted on an Observer D1 microscope (Carl Zeiss, Gottingen, Germany).

Characterization of transplanted AST-OPC1 by in situ hybridization and immunohistochemistry

All animals that received AST-OPC1 transplantation were assayed for the presence of human cells in the spinal cord by ISH with a human Alu DNA repeat sequence probe (Life Technologies # Q151P.9900). Parallel tissue sections were stained by IHC for Ki67 (Abcam # ab833) using standard methodology.

Cavitation area measurements in the injured spinal cord

Measurements of cavity formation were performed on formalin fixed paraffin embedded spinal cord tissues sectioned in the longitudinal (horizontal) plane and stained with Eriochrome cyanine/Eosin-Y by an investigator who was blinded to the treatment groups. For each animal, all longitudinal sections containing the injury site were examined (each comprising approximately 3 cm of cervical spinal cord tissue), and the section containing the maximal cavitation area was used for quantification. Cavitation area measurements were performed using ImageJ software, and statistical comparisons and graphical constructions were performed using JMP 11 (SAS, Cary, NC).

Biodistribution of transplanted AST-OPC1 by histology and quantitative PCR

For both biodistribution studies, adult female nude rats were subjected to cervical SCI and transplantation surgeries as described above. In the first study, conducted in accordance with cGLP, whole spinal cord and brain was collected from each animal at 2 days, 3 months, 6 months, or 9 months post-administration and processed for paraffin embedding and hALU labeling by ISH as described above. Spinal cord and brain tissues were examined for positive hALU labeling by an investigator who was blinded to the treatment groups.

In the second biodistribution study, spinal cord, brain, CSF, and blood collected from each animal at 2 days, 3 months, or 6 months, flash frozen in isopentane chilled on dry ice and stored at –80 °C. The presence of human DNA was assayed by amplifying a 232 base pair sequence of the human ALU repeat sequence using the ABI Prism 7700 Sequence Detection System. All qPCR analyses were performed in accordance with cGLP by Althea Technologies (San Diego, CA).

Clinical and toxicological assessments of AST-OPC1-treated, contused rats

Toxicology studies of AST-OPC1-treated, female athymic nude rats were performed at MPI Research (Mattawan, MI) in accordance with cGLP. Observations for morbidity, mortality, injury, and the availability of food and water were conducted at least twice daily for all animals enrolled in toxicology studies. Clinical observations were conducted and body weights were measured and recorded twice weekly during the study. At study termination, necropsy examinations were performed, organ weights were recorded, blood and urine samples were collected for clinical pathology evaluations and spinal cord and brain tissues were examined microscopically by a board-certified veterinary pathologist who was blinded to animals' treatment groups.

Allodynia measurements in AST-OPC1-treated, contused rats

As part of one toxicology study, at approximately 4 and 8 months post-transplantation, subjects from each treatment group (2.4×10^5 AST-OPC1, 2.4×10^6 AST-OPC1 or HBSS) were evaluated for allodynia or hypersensitivity in response to normally non-noxious warm or cold

stimuli (Hulsebosch 2000). Warm and cold sensitivity testing were conducted by placing the animal on a controlled temperature platform (combination hot/cold plate, Stoelting Company, Wood Dale, IL) and recording the hind paw withdrawal latency at both 49 °C and 8 °C, to a maximum test length of 60 seconds per animal per temperature. Test sessions for the warm and cold stimuli were conducted in random order by an investigator who was blinded to the treatment groups, and for individual animals, were separated by at least 2 hours.

Supplementary Figure 1. Dot plots of AST-OPC1 biodistribution at 2 days and 3 months postadministration into the injured cervical spinal cord as determined by quantitative real-time PCR for hAlu. (A) At 2 days post-administration, the highest density of human cells was detected in the cervical spinal cord, consistent with the administration site. In the case of high dose AST-OPC1, some human cells were detected most rostrally in the pons/medulla and most caudally in the thoracic spinal cord. Given the short time frame (2 days), this likely resulted from partial eflux of cells during administration and subsequent migration via the cerebral spinal fluid rather than intraparenchymal migration. (B) At 3 months post-administration, higher numbers of human cells were detected in the cervical spinal cord relative to 2 days, whereas the maximal rostral-caudal migration of human cells was reduced. This reduced migration profile at 3 months may indicated that AST-OPC1 cells initially disseminated by eflux did not persist or then migrated more proximal to the injury site. Note: The y-axes in (B) and Figure 3 are the same; the y-axis in (A) is 10-fold lower. Abbreviations: V, vehicle; L, low dose AST-OPC1 (2.4 x 10^5 cells/rat); H, high dose AST-OPC1 (2.4 x 10^6 cells/rat); CSF, cerebral spinal fluid.

Supplementary Figure 2. Allodynia testing of nude rats subjected to cervical SCI and administration of AST-OPC1 or vehicle using warm and cold stimuli. At 4 and 8 months post-treatment, subjects were assessed for sensitivity to thermal stimuli by placing animals on a temperature controlled platform set to a warm (49°C) or cold (8°C) temperature. Hind paw withdrawal latency was assessed at each temperature up to a maximum of 60 seconds per animal per temperature. Test sessions for warm and cold stimuli were conducted in random order, were separated by at least 2 hours, and were performed by an operator who was blinded to the treatment groups. (A) On the warm platform test, a statistically significant reduction was observed in all three groups at 8 months post-treatment relative to 4 months, indicating decreased

tolerance to the warm floor plate with increasing time post-injury/treatment (two-tailed Student's t-test: Low dose AST-OPC1, $p = 5.8 \times 10^{-5}$; High dose AST-OPC1, $p = 1.3 \times 10^{-6}$; Vehicle, p = 0.002). However, at each time point, no significant differences were observed between treatment groups (Single Factor ANOVA: 4 months, p = 0.24; 8 months, p = 0.29). (B) On the cold platform test, no significant differences were observed between treatment groups (Single Factor ANOVA: 4 months, p = 0.97) or between treatment groups (Single Factor ANOVA: 4 months, p = 0.97) or between time points (two-tailed Student's t-test: Low dose AST-OPC1, p = 0.32; High dose AST-OPC1, p = 0.34; Vehicle, p = 0.55). At both 4 months and 8 months post-treatment, most animals did not exhibit any paw withdrawal for the maximum testing time (60 s), indicating no changes in sensitivity to cold stimuli.

Supplementary Figure 3. Representative photomicrographs of non-human (rat) ectopic tissue present in the spinal cord of nude rats following cervical SCI and administration of AST-OPC1 or vehicle. (A)-(C) An example of a rat-derived keratin cyst in the spinal cord of a rat subjected to cervical SCI and treated with high dose AST-OPC1. (A)-(B) The keratin cyst is detectable by H&E staining as a single layer of epithelial-like cells surrounding a large amount of keratin-rich material. (C) The keratin cyst was determined to be of rat origin based on a lack of labeling with hALU by ISH. (D)-(I) Additional examples of rat keratin cysts observed in the injured spinal cord of animals treated with AST-OPC1 or vehicle are shown by H&E staining. Black boxes in (A), (D), (F), and (H) indicate regions of higher magnification in corresponding panels.

Supplementary Figure 4. Assessment of hALU and Ki67 Staining in Control, Non-AST-OPC1 Tissues

Supplementary Figure 4. Representative staining of human Alu DNA repeat sequences (hALU) and Ki67 antigen in control, non-AST-OPC1 tissues. Panels A, C, and E show hALU labeling by ISH with Eosin-Phloxine counterstain of non-cancerous human colon (A), a cartilaginous structure within an undifferentiated H1 cell-derived teratoma at 68 days post-transplant in the mouse thoracic spinal cord (B), and the absence of staining in the injury/transplant site of nude rat following cervical SCI and treatment with vehicle only (E). Panels B, D, and F show labeling with the proliferation marker Ki67 by IHC of the same control tissues, respectively. In Panel B, a crypt containing some Ki67-positive basal epithelial goblet cells (black box) and a presumptive lymph nodule within the submucosal layer (asterisk) are indicated. In Panel D, several Ki67-positive cells are visible within and around the cartilaginous structure. In Panel F, non-specific Ki67 labeling of presumptive vasculature is indicated (arrows).

Supplementary Table 1. Locomotor Parameters Assessed using the TreadScan System

(adapted from TreadScan User Manual, V3.0)

Category/TreadScan Measure	Parameter Description	
Individual Foot Measures		
Stride Time	The stride time is the time elapsed between two successive	
	initiations of stances. It is sum of stance time and swing time.	
Stance Time	The stance time is the time elapsed while the foot is in contact	
	with the floor (treadmill surface), in its stance phase.	
Swing Time	The swing time is the time elapsed while the foot is in the air,	
	in its swing phase.	
Stride Length	The stride length is the distance between successive	
E E	touchdowns or plantings of the same foot.	
Brake and Propulsion Time	The brake time is the time elapsed between the start of a	
1	stance and the instance the foot reaches the normal stance	
	position of the front feet. The normal stance position is the	
	position of the paw relative to the body when the animal is	
	standing still with all 4 feet planted. The propulsion time is	
	the time elapsed between the instance the foot reaches the	
	normal stance position and the time when it leaves the floor	
	surface. The sum of Brake Time and Propulsion Time will be	
	same as Stance Time. The Brake Time is the first phase of a	
	stance where the foot is planted in front of the torso and is	
	used to brake/apply force when the body moves forward.	
	while the Propulsion Time is the second phase of a stance.	
	where the force is applied to propel the body further forward.	
Percentage of Stance	The percentage of stride time spent in the stance phase.	
Percentage of Swing	The percentage of stride time spent in the swing phase.	
Average Print Area	The average print area is the average of the size of the foot	
C	print over the entire stance. Its unit is the pixel area.	
Body to Foot Measures (Range	of motion parameters for each foot)	
Minimum Lateral Deviation	The closest distance during the stance that the foot attained	
	relative to the long body axis (nose to tail axis). This is the	
	essentially the closest the foot got to the body axis.	
Maximum Lateral Deviation	The farthest distance during the stance that the foot attained	
	relative to the long body axis (nose to tail axis). This is the	
	essentially the farthest the foot got away from the body axis.	
Minimum Longitudinal	The closest distance during the stance that the foot attained	
Deviation	relative to the short body axis (waist axis). This is the	
	essentially the closest the foot got to the waist.	
Maximum Longitudinal	The farthest distance during the stance that the foot attained	
Deviation	relative to the short body axis (waist axis). This is the	
	essentially the farthest the foot got away from the waist.	
Inter-Foot Distance Measures (Base of support/stride width parameters)		
Front Track Width	The front track width (Stride Width/Base of Support) is the	

	distance between the midpoint of the front left foot stride and	
	the midpoint of the front right foot stride. It is essentially the	
	distance between the front two feet.	
Rear Track Width	The rear track width (Stride Width/Base of Support) is the	
	distance between the midpoint of the rear left foot stride and	
	the midpoint of the rear right foot stride. It is essentially the	
	distance between the rear two feet.	
Left Foot Base	The left foot base is the distance between the midpoint of the	
	front left foot stride and the midpoint of the rear left foot	
	stride. It is essentially the distance between the left feet pair.	
Right Foot Base	The right foot base is the distance between the midpoint of the	
Tright I oot Duse	front right foot stride and the midpoint of the rear right foot	
	stride It is essentially the distance between the right feet pair	
Run Sneed/Stride FrequencyMeasures		
Instantaneous Running Speed	The instantaneous running speed of a stride is the ratio of the	
Instantaneous Running Speed	stride length to the stride time.	
Average Running Speed	The average running speed is the average of all the	
	instantaneous running speeds of strides. Note that this	
	measure is a mean of multiple instantaneous speed samples.	
Overall Running Speed	The overall running speed is obtained by dividing the total	
	distance traveled by the center of the animal by the time it	
	took to travel that distance.	
Absolute Stride Number	The number of valid strides collected for the analysis for the	
	given foot.	
Normalized Stride Number	The normalized stride number or the stride frequency is the	
(Stride Frequency)	ratio of the number of strides to the sum of the stride times of	
	these strides. The yields the number of strides per second	
	(Hz) for the given foot.	
Coordination/Phase Dispersion	Coupling Measures/Regularity Index	
Homologous Coupling (Phase	Homologous coupling parameter is the fraction of the stride of	
Dispersion)	a reference foot, when the given foot on the same half (front	
_	half/girdle or rear half/girdle) starts its stride. It is the same as	
	the coordination between a left and right foot on the same	
	girdle.	
Homolateral Coupling (Phase	Homolateral coupling parameter is the fraction of the stride of	
Dispersion)	a reference foot, when the given foot on the same side (left	
	side or right side) starts its stride. It is the same as the	
	coordination between a front and rear foot on the same side.	
Diagonal Coupling (Phase	Diagonal coupling parameter is the fraction of the stride of a	
Dispersion)	reference foot, when the given foot diagonally opposite to the	
	reference foot starts its stride. It is the same as the	
	coordination between a front and diagonally opposite rear	
	foot.	
Support Times (Null, Single,	The percentage of the analysis time during which a certain	
Double, Triple, and Quad)	number of feet are touching the floor. For example, Double	
	Support Time measures the percentage of analysis time during	

	which only 2 feet were on the floor.	
Gait Angle	The gait angle is the angle between the line connecting the	
	plant position of one rear foot to the next plant position of the	
	same foot and the line connecting the plant position of that	
	same rear foot to the next plant position of the opposite rear	
	foot. It is a combined singular measure of Stride Width and	
	Length.	
Full Body Rotation/Movement Data		
Body Rotation Average	The average body rotation is the average orientation direction	
	measured in degrees with the 0 orientation direction being the	
	straight front direction with respect to the animal. This	
	essentially measures the overall orientation of the animal. If	
	an animal has an average body rotation of +5 degrees, it has a	
	tendency to walk with the body angled on average 5 degrees	
	clockwise.	
Body Rotation Standard	The standard deviation of the body rotation measures the	
Deviation	amount of sway the animal in terms of body rotation from its	
	average orientation. In the same example above, if the	
	standard deviation is 3, then, the animal has a tendency to	
	sway, say, from +8 degrees to +2 degrees.	
Longitudinal Movement	The average longitudinal movement yields the average	
Position	position of the center of mass of the animal along its major	
	body axis (front to back axis) with respect the image. It is the	
	average X coordinate of the center of mass of the animal, in	
	mm, with respect to the Calibration information.	
Lateral Movement Position	This average lateral movement yields the average position of	
	the center of mass of the animal along its minor body axis	
	(side-to-side axis, waist axis) with respect the image. It is the	
	average Y coordinate of the center of mass of the animal, in	
	mm, with respect to the Calibration information.	
Longitudinal Movement	The standard deviation of the longitudinal movement	
Standard Deviation	measures the amount of variability of the animal's center of	
	mass along the animal major body axis. It essentially	
	measures the amount of front and back movement within the	
	chamber. It is measured in mm.	
Lateral Movement Standard	The standard deviation of the lateral movement measures the	
Deviation	amount of variability of the animal's center of mass along the	
	animal minor body axis (waist axis). It essentially measures	
	the amount of side-to-side body shifting movement within the	
	chamber. It is measured in mm.	

Supplementary Table 2. Parameters Examined in the AST-OPC1 Cervical SCI Preclinical Toxicology Studies

Endpoint Type & Parameter	Parameter Details	
In-Life Endpoints (0-9 months post-treatment	t)	
Morbidity, Mortality, Injury	Assessed twice daily for study duration.	
Detailed Clinical Observations	Assessed twice weekly for overall health,	
	including evaluation of skin, fur, eyes, ears,	
	nose, oral cavity, thorax, abdomen, external	
	genitalia, limbs and feet, respiratory and	
	circulatory effects, autonomic effects such as	
	salivation, nervous system effects including	
	tremors, convulsions, reactivity to handling,	
	unusual behavior, and palpitation of masses.	
Manual Bladder Expression	Following cervical SCI, bladders were	
	manually voided twice daily until reflexive	
	voiding returned.	
Body Weights	Measured weekly for study duration	
Allodynia	Assessed for sensitivity to warm and cold	
	stimuli at 4 and 8 months post-treatment.	
Clinical Pathology (immediately prior to necr	opsy)	
Hematology	Assessed blood levels of the following:	
	leukocytes, erythrocytes, hemoglobin,	
	hematocrit, platelets, reticulocytes, neutrophils,	
	lymphocytes, monocytes, eosinophils,	
	basophils, large unstained cells.	
	Assessed overall morphology of blood cells	
	and specifically of erythrocytes.	
Clinical Chemistry	Assessed blood or urine levels of the	
	following: sodium, potassium, chloride,	
	phosphorus, calcium, alkaline phosphatase,	
	bilirubin, gamma-glutamyl transferase,	
	aspartate amino transferase, afanine amino	
	transferase, urea mirogen, sorbitol,	
	alebulin, abelesteral, aluessa, katenas	
	giobulii, cholesteloi, giucose, ketolies,	
	gravity urine pH	
Coogulation Times	Assessed activated partial thrombonlastin time	
Coaguration Times	Assessed activated partial thromooplasum time	
Post Morton Evaluations (0 months post tree	tmont or at time of outbonasia)	
Post-informent Evaluations (9 months post-treatment or at time of euthanasia)		
Organ weights	adronal gland brain boart kidnov liver lung	
	with bronchi overy nituitory selivery gland	
	(mandibular) spleen thyroid gland (with	
	narathyroid)	

Macroscopic Pathology Evaluations ^b	Assessments at time of necropsy for external
	abnormalities (e.g., palpable masses),
	subcutaneous masses, abnormalities in the
	abdominal, thoracic, or cranial cavities.
Microscopic Pathology of Spinal Cord and	Microscopic examination of fixed H&E-
Brain ^b	stained paraffin tissue sections including entire
	length of the spinal cord and the following
	brain regions: cerebrum, midbrain, cerebellum,
	medulla/pons, and olfactory bulbs.
	Tissue sections assessed for teratomas, tumors,
	ectopic tissue formation, and any other
	apparent abnormalities.
	Tissue sections of spinal cord and brain
	assessed for AST-OPC1 engraftment/migration
	based on hAlu labeling by ISH.
	Any observed ectopic structures of human
	origin assessed for proliferative capacity based
	on Ki67 labeling by IHC.
	Parenchymal cavitation in the cervical spinal
	cord assessed using H&E-stained sections.

Abbreviations: H&E, hematoxylin and eosin; hAlu, human Alu DNA repeat sequence probe; IHC, immunohistochemistry; ISH, in situ hybridization.

^aTo exclude potential differences in organ weights due to age, animals found dead or euthanized in extremis prior to the 9 month scheduled necropsy were not included in the organ weights analyses. ^bRegardless of the time of death/euthanasia, all animals were subjected to full necropsy and microscopic pathology of spinal cord and brain by a board-certified veterinary pathologist who was blinded to the treatment groups.