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A. Supplementary Methods 

1 Cohort descriptions 

1.1 Case/control cohorts 

Comorbidity and Trauma Study (CATS) 

Sample description: This study consisted of opioid dependent individuals aged 18 and older 

recruited from opioid substitution therapy clinics in the greater Sydney area and genetically 

unrelated individuals with little or no lifetime opioid misuse from neighborhoods in geographic 

proximity to these clinics. All subjects were of European-Australian descent. Additional details 

are available in 1. 

Alcohol dependence measure: All participants were assessed using the Semi-Structured 

Assessment for the Genetics of Alcoholism (SSAGA). Alcohol dependence was defined using 

DSM-IV criteria. For the purposes of these analyses, controls were defined as those who had a 

lifetime history of alcohol drinking but did not meet criteria for alcohol abuse or dependence. No 

other comorbid diagnoses were excluded. 

 

Christchurch Health and Development study (CHDS) 

Sample description: The Christchurch Health and Development study (CHDS)2,3 is a 

longitudinal study of a birth cohort of 1,265 children collected in mid-1977 from urban 

Christchurch, New Zealand. Data on social circumstances, health, development and wellbeing of 

the participants was obtained from the cohort at birth, 4 months, 1 year, annually to age 16 years, 

and at 18, 21, 25, 30, and 35 years. All study information was collected on the basis of signed 

consent from study participants and all information is fully confidential. All aspects of the study 

have been approved by the Canterbury (NZ) Ethics Committee. 
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Alcohol dependence measure: At ages 18, 21, 25, 30 and 35 years cohort members were 

questioned about their substance use behaviours and problems associated with substance use 

since the previous assessment (alcohol, tobacco, cannabis, other illicit drugs), using the relevant 

sections of the Composite International Diagnostic Interview (CIDI) to assess DSM-IV symptom 

criteria for substance use disorders. Using this information, lifetime alcohol dependence was 

classified on the basis of whether the participant met DSM criteria for alcohol dependence at any 

assessment up to age 35.  

 

Collaborative Study on the Genetics of Alcoholism (COGA case/control) 

Sample description: COGA is a multi-site study of alcohol dependent probands and their family 

members. Alcohol dependent probands were recruited from inpatient and outpatient facilities. 

Community probands and their family members were also recruited from a variety of sources. A 

subset of alcohol dependent cases and genetically unrelated controls were genotyped using the 

Illumina HumanMap 1M BeadChip. The sample used here included 847 alcohol dependent cases 

and 552 controls of European-American descent. Additional details are available in 4. 

Alcohol dependence measure: All participants were assessed using the Semi-Structured 

Assessment for the Genetics of Alcoholism5,6. Cases met criteria for a lifetime history of DSM-

IV alcohol dependence. Controls reported a history of alcohol drinking, but did not meet criteria 

for alcohol dependence, abuse or harmful use, nor did they meet criteria for abuse/dependence on 

illicit drugs. 
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Study of Addiction: Genetics and Environment (SAGE), Collaborative Genetic Study of Nicotine 

Dependence (COGEND) & Family Study of Cocaine Dependence (FSCD) 

Sample description: Subjects for the Study of Addiction: Genetics and Environment (SAGE) 

were selected from three large, complementary studies: COGA7, Family Study of Cocaine 

Dependence (FSCD)8, and the Collaborative Genetic Study of Nicotine Dependence 

(COGEND)9. We analyze these subsets separately and remove overlap between cohorts 

(Supplementary Methods). COGA participants were assessed using the Semi-Structured 

Assessment for the Genetics of Alcoholism (SSAGA). FSCD and COGEND participants were 

assessed using polydiagnostic instruments closely based on the SSAGA. Genotyping was 

conducted using the Illumina Human1Mv1_C BeadChips. Further details of the SAGE samples 

are available in 10. 

Alcohol dependence measure:  Cases reported a lifetime history of DSM-IV alcohol 

dependence. Genetically unrelated control subjects reported alcohol drinking but had no 

significant alcohol-dependence symptoms and did not meet criteria for a diagnosis of illicit drug 

dependence. 

 

German Study on the Genetics of Alcoholism (GESGA)  

Sample description: Patients were recruited from consecutive admissions to the psychiatry and 

addiction medicine departments of several German psychiatric hospitals participating in the 

German Addiction Research Network (for detailed description see 11,12). All patients were male 

and of self-reported German ancestry and fulfilled DSM-IV criteria for AD. Control subjects had 

been drawn from three population based cohort studies (KORA: https://www.helmholtz-
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muenchen.de/kora; popgen: https://www.epidemiologie.uni-kiel.de/biobanking/biobank-popgen; 

HNR: https://www.uni-due.de/recall-studie) in Germany and a Munich community sample.  

Alcohol dependence measure: Alcohol dependence was assessed using DSM-IV criteria. 

Patients received a consensus diagnosis of two clinical psychiatrists and were assessed using one 

(dependent on recruiting center) of the following (semi-)structured interviews conducted by 

trained clinical staff members: Semi-Structured Assessment for the Genetics of Alcoholism 

(SSAGA), Composite International Diagnostic Interview (CIDI) or Structured Clinical Interview 

for DSM-IV (SCID). Control samples are mainly population based and can thus comprise 

alcohol dependent individuals. 

 

Gene-Environment-Development Initiative (GEDI) – Duke University (GSMS) 

Sample description: The Duke arm of the NIDA-funded Gene-Environment-Development 

Initiative (GEDI) combined existing phenotypic and environmental data from two large 

prospective studies, the Great Smoky Mountains Study (GSMS) and the Caring for Children in 

the Community (CCC) study. For each of the two population-based contributing studies, 

genome-wide genotyping was conducted using a common platform (Illumina Human660W-

Quad v1), generating a total genotyped sample of ~1300 subjects. Further details of the GEDI-

Duke sample are available in 13,14. 

Alcohol dependence measure: Participants of both studies were assessed via structured 

interviewing using the Young Adult Psychiatric Assessment and its early life extension (i.e., 

YAPA and CAPA), yielding diagnoses and symptom scales for a wide range of substance use 

disorders (SUDs). Alcohol dependence was defined using DSM-IV criteria. For the purposes of 

these analyses, controls were defined as those who had a lifetime history of alcohol drinking but 
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did not meet criteria for alcohol abuse or dependence. No other comorbid diagnoses were 

excluded. 

 

Center on Antisocial Drug Dependence (CADD) 

Sample description: The sample of 1,901 unrelated adolescents were aggregated from several 

studies described elsewhere15–18. This cohort was over-selected for adolescent behavioral 

disinhibition, with half of the participants ascertained specifically from high-risk populations (i.e. 

recruited through substance abuse treatment, special schools, or involvement with the criminal 

justice system; see supplement of 19 for additional criteria for clinical probands). CADD GWAS 

participants had an average age of 16.5 (SD = 1.4, range = 13.0–19.9), 28.9% were female, and 

37.3% of participants reported non-Caucasian ancestry.  

Alcohol dependence measure: Lifetime Alcohol Dependence was assessed with the CIDI-SAM 

and defined as meeting alcohol dependence at any wave for this longitudinal study.  

 

Phenomics and Genomics Sample (PAGES) 

Sample description: Individuals in this study were recruited as part of a large schizophrenia 

case control sample from the Munich greater area and consisted of stable schizophrenia 

inpatients or outpatients and healthy volunteers. All participants were genetically unrelated, 

schizophrenia patients were of Caucasian, psychiatrically healthy volunteers of German descent. 

Candidates with a history of head injury or neurological diseases were excluded. 

Alcohol dependence measure: Alcohol dependence was assessed using DSM-IV criteria using 

the semi-structured interview Structured Clinical Interview for DSM-IV (SCID) conducted by 

trained staff members.  
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Spit for Science (S4S) 

Sample description: Subjects were drawn from longitudinal study of college students attending 

a public university in the mid-Atlantic United States (http://spit4science.vcu.edu)20. The current 

analytic sample consisted of a total of 3,030 cases and controls, including 252 cases and 1863 

controls of European-American ancestry and 74 cases and 841 controls of African ancestry. 

35.8% of the subjects were male and all subjects were at least 18 years old.  

Alcohol dependence measure: Alcohol dependence diagnoses were assessed using items 

adapted from the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA)5. 

Queried each year, cases met DSM-IV criteria for a diagnosis of lifetime alcohol dependence in 

at least one wave of data collection.   

 

NIAAA Intramural (NIAAA) 

Sample description: Participants were recruited under two NIH Institutional Review Board-

approved screening and assessment protocols and were comprehensively assessed at the National 

Institutes of Health Clinical Center (Bethesda, Maryland, USA) between 2005 and 2015. All 

participants provided written informed consent. Genotyping of the participants was conducted at 

the NIAAA Laboratory of Neurogenetics (Rockville, MD, USA). 

Alcohol dependence measure: Lifetime alcohol dependence was assessed using DSM-IV 

criteria. 
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Mayo Clinic Center for Individualized Treatment of Addiction (CITA) 

Sample description: The alcohol dependent patients in this sample were recruited as part of the 

Mayo Clinic Center for Individualized Treatment of Addiction (CITA) pharmacogenomics study 

of acamprosate response. The CITA study was approved by the Institutional Review Board of 

the Mayo Clinic Rochester and Mayo Clinic Health System. All participants signed informed 

consent approved by the Institutional Review Board and gave permission for use of their data in 

future genetic studies of alcohol dependence and related phenotypes. This study recruited men 

and women between the ages of 18 and 80 with a primary diagnosis of current alcohol 

dependence based on DSM-IV-TR criteria with the last drink 5 or more days before enrollment. 

We excluded subjects unable to provide informed consent; those unable to speak English; those 

with psychotic disorders or unstable psychiatric or medical conditions; women who were 

pregnant, lactating, or planning to become pregnant; subjects taking disulfiram; and those 

allergic to acamprosate.  Participants were recruited from community-based residential and 

outpatient treatment programs affiliated with Mayo Clinic in Rochester, Minnesota, and the 

Mayo Clinic Health System sites in Austin, Minnesota, Albert Lea, Minnesota, and La Crosse, 

Wisconsin. In addition, self-referred participants residing in communities adjacent to referral 

sites not enrolled in treatment programs but interested in taking acamprosate, were recruited. 

Detailed description of the study sample, recruitment sites and enrollment procedures are 

described in earlier publications21,22. 

Controls were selected from the Mayo Clinic Biobank23. The biobank participants were mainly 

recruited from internal and family medicine department at Mayo Clinic and provided broad 

consent that allowed use of their biological specimens, health-related questionnaire, and 
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electronic medical records.  Potential controls with ICD9 or ICD10 codes in their electronic 

medical record indicating alcohol use disorders were excluded. 

Alcohol dependence measure:  In the case sample, a semi-structured interview known as the 

Psychiatric Research Interview of Substance and Mood Disorders (PRISM) was conducted by 

trained and certified interviewers and was used to systematically assess for the presence of 

lifetime as well as current Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) 

criteria for alcohol dependence. The control sample was not specifically evaluated for substance 

use disorders as part of this study beyond the ICD code exclusions. 

 

Alcohol Dependence in African Americans (ADAA) 

Sample description: Data from “Alcohol Dependence in African Americans: A Case-Control 

Genetic Study” (ADAA) was funded by NIH grant R01 AA017444. The data were collected 

between 2009 and 2013 and consisted of cases recruited from treatment centers in St. Louis 

Missouri and controls screened for the absence of alcohol use disorder recruited from households 

selected from neighborhoods in proximity to neighborhoods of residence of case participants. 

Alcohol dependence measure: Cases met criteria for DSM-IV alcohol dependence. Controls 

were alcohol-exposed but did not meet criteria for alcohol abuse (DSM-IV). 

 

1.2 Family-based cohorts 

Brisbane Longitudinal Twin Study (BLTS) 

Sample description: Beginning in 1992, the Brisbane Longitudinal Twin Study (BLTS) consists 

of 3,561 individuals: 1,422 twin pairs and 717 additional siblings first enrolled at age 12 years 

and now aged 30 years and older24 (see also 25). The sample is: genetically informative (MZ and 
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DZ twins, and often parents and siblings; genotyped for 610,000 common single nucleotide 

polymorphisms - SNPs); (b) large; (c) longitudinal with many participants have been assessed at 

12, 14, 16 and 21 years of age; (d) well characterized for behavioral and brain-related outcomes; 

(e) rich in biological samples; and includes (f) a subgroup [n=969] who have undergone MRI 

scanning. As part of an ongoing US NIH/NIDA funded project beginning 2009, measures of 

lifetime cannabis use, abuse and dependence data are collected, along with diagnostic data for 

nicotine, alcohol, and other illicit substances, as well as pilot epidemiological data for ecstasy 

and methamphetamine use. The average age at interview is 25.65 years (SD=3.65, range=18-

38yrs). The entire BLTS sample and 1,549 of their parents have GWAS data (Illumina 610k 

chip)26 imputed on the GRCh37 assembly. The final sample included individuals with both 

genotypic and lifetime alcohol use data. 

Alcohol dependence measure: DSM-IV alcohol dependence was coded as the endorsement of 3 

or more dependence criteria. Individuals exposed to alcohol were controls. 

 

Gene-Environment-Development Initiative (GEDI) – Virginia Commonwealth University 

(VTSABD) 

Sample description: The VCU arm of the NIDA-funded Gene-Environment-Development 

Initiative (GEDI) combined existing phenotypic and environmental data from the Virginia Twin 

Study of Adolescent Behavioral Development (VTSABD) study, a population-based multi-wave, 

cohort-sequential twin study of adolescent psychopathology and its risk factors, and two follow-

up studies, the Young Adult Follow Up (YAFU) and the Transitions to Substance Abuse (TSA) 

study. For each of the contributing studies, genome-wide genotyping was conducted using a 
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common platform (Illumina Human660W-Quad v1), generating a total genotyped sample of 

~900 subjects. Further details of the GEDI-VCU sample are available in 13,27. 

Alcohol dependence measure:  Participants were assessed via structured interviewing using the 

Child Adult Psychiatric Assessment (CAPA), a Structured Clinical Interview for DSM-IV 

(SCID)-based assessment of psycho-pathology in young adult twins for YAFU and the Life 

Experiences Interview (LEI) for TSA, yielding diagnoses and symptom scales for a wide range 

of substance use disorders (SUDs). Alcohol dependence was defined using DSM-IV criteria. No 

comorbid diagnoses were excluded. 

 

Minnesota Center for Twin and Family Research (MCTFR) 

Sample description: The MCTFR is a community-based longitudinal sample including 

pedigrees designed to include two rearing parents and two offspring28. Assessments across 

subsets of the study varied but were readily harmonized to DSM-IIIR and DSM-IV diagnoses. 

As part of the GEDI, genotyping was carried out using the Illumina Human660W-Quad array. 

The final GWAS sample included 1,631 genotyped spouse pairs and 1,404 families with 

genotyped parents and offspring (at least 1).29 

Alcohol dependence measure: Cases met criteria for DSM-IIIR alcohol dependence; see 

Supplementary Note B.1 for more details on the relationship between DSM-IIIR and DSM-IV. 

Controls reported lifetime alcohol use. 

 

Center for Education and Drug Abuse Research (CEDAR) – Substance Abuse and the Dopamine 

System Study (SADS)  

Sample description: Participants were recruited from the Pittsburgh, Pennsylvania, metropolitan 

area through newspaper advertisements, social service agencies, substance abuse treatment 
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programs and various other media. For this project, the sample is drawn from two combined 

studies with distinct but related ascertainment schemes, from the same Greater Pittsburgh 

population, joined in the Substance Use Disorder Liability: Candidate System Genes study (R01 

DA019157)30. CEDAR (P50 DA005605) is a longitudinal family/high-risk study of substance 

use disorder (SUD)31. Parents from a sample of nuclear families, ascertained in CEDAR through 

the father who did or did not have a DSM-III-R SUD (DSM-IV was introduced after this study 

started) related to illicit drugs (an illegal substance or nonmedical use of a prescribed 

psychoactive drug), provided a source for male and female cases and controls. All diagnoses 

have been revised using DSM-IV criteria, and the SADS participants were diagnosed 

accordingly. Control subjects had no substance (including alcohol) use disorder, or Axis I or II 

psychiatric disorder. Participants from the SADS study (R01 DA011922) were males 14-18 

years of age having a DSM-IV diagnosis of substance dependence related to use of illicit drugs. 

In both CEDAR and SADS subsamples, probands having a psychiatric disorder other than SUD 

qualified for the study unless they had a lifetime history of psychosis or any other condition 

where valid reporting was uncertain. The vocabulary subscale of WISC-III (subjects below age 

16) or WAIS-III (age 16 and older) was administered prior to implementation of the protocol and 

was required to be in the normal range (>70). Since psychiatric comorbidity is common among 

substance abusers, cases were not excluded for any Axis I or Axis II disorders. The CEDAR and 

SADS subjects were self-identified European-Americans from the same Greater Pittsburgh 

geographic area, and the genomic inflation factor based on all genotyped SNPs, evaluating the 

excess false-positive rate, was satisfactory at .9812. For this analysis, CEDAR-SADS 

contributed a sample of 468 European-Americans (169 females and 299 males), average age 25.8 

(SD=3.73; range 16.0-34.0) genotyped on Illumina Human660W-Quad BeadChips.  
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Alcohol dependence measure: Lifetime alcohol use disorder was diagnosed using an expanded 

version of the Structured Clinical Interview for DSM-III-R-outpatient version (SCID-OP). 

 

Swedish Twin Registry (STR) 

Sample description: From the population-based Swedish Twin Registry, participants of the 

SALT study32 were invited to the TwinGene study in which blood samples were taken and a 

simple health checkup performed between 2004 to 200833. Samples from 9,900 unique genomes 

were genotyped using the Illumina OmniExpress 700K chip.  

Alcohol dependence measure: Cases were defined as individuals endorsing 3 or more DSM-IV 

alcohol dependence criteria. Controls reported alcohol use but did not meet criteria for abuse. 

 

Yale-Penn 

Sample description: Yale-Penn subjects were recruited in the eastern US, predominantly in 

Connecticut and Pennsylvania. They were administered the Semi-Structured Assessment for 

Drug Dependence and Alcoholism (SSADDA)34 to derive DSM-IV diagnoses of lifetime alcohol 

dependence (and other major psychiatric traits). The study received IRB approval from all 

participating institutions and written informed consent was obtained from all study participants. 

Additional information is available in the relevant GWAS publications (e.g. 35–38). 

Alcohol dependence measure: DSM-IV diagnoses from the SSADDA. 

 

COGA (fam) 

Sample description: COGA is a multi-site study of alcohol dependent probands and their 

extended families (details available in 7). Initially, a sample of unrelated alcohol dependent cases 
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(n=847) and alcohol exposed controls aged 25 years or older (n=552) was constructed (COGA-

cc)4. In a follow-up genotyping effort, a subset of the most genetically informative families was 

selected for a family-based GWAS (COGA-fGWAS)39,40. This sample consisted of 118 

European-American families with 2,232 individuals with genotyping data. 

Alcohol dependence measure: All participants were assessed using the Semi-Structured 

Assessment for the Genetics of Alcoholism5. Cases met criteria for a lifetime history of DSM-IV 

alcohol dependence. Controls reported a history of alcohol drinking, but did not meet criteria for 

alcohol dependence, abuse or harmful use. 

 

Australian Alcohol and Nicotine Studies (OZ-ALC-NAG) 

Sample description: Participants were recruited from twins and their relatives who had 

participated in questionnaire- and interview-based studies on alcohol and nicotine use and 

alcohol-related events or symptoms (as described in 41). They were living in Australia and of 

predominantly European ancestry.  

Alcohol dependence measure: Assessed using DSM-IV criteria. Most alcohol-dependent cases 

were mild, with 70% of those meeting alcohol dependence criteria reporting only three or four 

dependence symptoms and fewer than 5% reporting seven dependence symptoms. 

 

Irish Affected Sib Pair Study of Alcohol Dependence (IASPSAD) 

Sample description: Participants in the Irish Affected Sib Pair Study of Alcohol Dependence 

(IASPSAD)42 were recruited in Ireland and Northern Ireland between 1998 and 2002. Briefly, 

probands were ascertained in community alcoholism treatment facilities and public and private 

hospitals. Probands were eligible for inclusion if they met DSM-IV criteria for lifetime AD and 
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if all four grandparents had been born in Ireland, Northern Ireland, Scotland, Wales, or England. 

Probands, siblings, and parents were interviewed by clinically trained research interviewers, 

most of whom had extensive clinical experience with alcoholism. We assessed lifetime history of 

AD using a modified version of the Semi-Structured Assessment of the Genetics of Alcoholism 

(SSAGA) interview, version II5, demographic characteristics, other comorbid conditions, 

alcohol-related traits, personality features, and clinical records. All participants provided 

informed consent. We included 815 probands and siblings in genotyping. Controls were 

genotyped from 2,048 DNA samples from healthy, unpaid volunteers donating blood at the Irish 

Blood Transfusion Service and obtained from the Trinity College Biobank 

https://www.tcd.ie/ttmi/facilities/trinity-biobank/ at Trinity College Dublin. Biobank controls 

were eligible if they denied any problems with alcohol or history of mental illness and if all four 

grandparents had been born in Ireland, Northern Ireland, Scotland, Wales, or England. Because 

of the sample source, controls were not formally screened for AD. Information about age and sex 

was available for these subjects. 

Alcohol dependence measure: DSM-IV criteria for lifetime AD. Because of the sample source, 

controls were not formally screened for AD. 

 

1.3 Summary statistics cohorts 

Netherlands Study of Depression and Anxiety / Netherlands Twin Register (NESDA/NTR) 

Sample description: Unrelated participants of European ancestry from the Netherlands Study of 

Depression and Anxiety (NESDA) and the Netherlands Twin Registry (NTR) were included in 

the analyses (N=2,023). NESDA is a longitudinal study focusing on the course and consequences 

of depression and anxiety disorders. Subjects for NESDA were recruited from three sources, 
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namely the general population, mental health organizations and general practices43. NTR 

participants are ascertained because of the presence of twins or triplets in the family and consist 

of multiples, their parents, siblings and spouses. Twins are born in all strata of society and NTR 

represents a general sample from the Dutch population44,45. 

Alcohol dependence measure: In NESDA, lifetime AD diagnoses according to DSM-IV were 

ascertained using the Composite Interview Diagnostic Instrument. From NESDA, healthy 

controls were selected including participants without lifetime AD and alcohol abuse diagnoses, 

and those never exposed to alcohol. In NTR, controls were added if they score low on CAGE 

(=0) and low heavy drinking over time (low on alcohol consumption: frequency: less than 1 time 

per week, and quantity: less than 1 glass per week).  

 

FinnTwin Nicotine Addiction Genetics (NAG-Fin) 

Sample description: The NAG-Fin participants originate from the Older Finnish Twin Cohort46 

consisting of adult twins born in 1938-1957. Based on earlier questionnaires, twin pairs 

concordant for ever-smoking were recruited along with their family members (mainly siblings) 

for the Nicotine Addiction Genetics (NAG) study47. A total of 747 families including 2,193 

subjects were assessed by DNA sample collection, structured psychiatric interview based on the 

SSAGA (Semi-Structured Assessment for the Genetics of Alcoholism), and additional 

questionnaires. The interview and questionnaires yielded detailed phenotypic information on 

lifetime smoking behavior and alcohol use, including DSM-IV diagnoses for nicotine and 

alcohol dependence. Genotype data was generated with the Illumina Human670-QuadCustom 

BeadChip (at the Wellcome Trust Sanger Institute) and the Illumina HumanCoreExome-12v1-0 

BeadChip (at the Broad Institute of MIT and Harvard). Both co-twins from dizygotic twin pairs 
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were included when available, whereas only one co-twin from each monozygotic pair was 

included. All available siblings were also included. Altogether 1,576 adults (average age 54.1 

(SD 5.9, range 30-79), 59.7% males) were included in the analyses. 

Alcohol dependence measure: Lifetime Alcohol Dependence was assessed using the SSAGA. 

 

FinnTwin12 (FT12) 

Sample description: The FinnTwin12 participants originate from the Younger Finnish Twin 

Cohort. FinnTwin12 is a population-based longitudinal study of five consecutive birth cohorts 

(1983-1987) designed to examine genetic and environmental determinants of health-related 

behaviors, with a particular focus on use and abuse of alcohol46. A total of 1,852 twin individuals 

from 367 monozygotic and 575 dizygotic twin pairs were assessed by DNA sample collection 

and structured psychiatric interview based on the SSAGA (Semi-Structured Assessment for the 

Genetics of Alcoholism) at age 14, and 1,347 of them were interviewed again using the SSAGA 

as young adults. The age 22 interview yielded detailed phenotypic information on lifetime 

smoking behavior and alcohol use, including DSM-IV diagnoses for nicotine and alcohol 

dependence. Genotype data was generated with the Illumina Human670-QuadCustom BeadChip 

(at the Wellcome Trust Sanger Institute) and the Illumina HumanCoreExome-12v1-0 BeadChip 

(at the Broad Institute of MIT and Harvard). Altogether 962 subjects (average age 22.4, SD 0.7, 

range 20-27; 46.8% males) were included in the analyses.  

Alcohol dependence measure: Lifetime Alcohol Dependence was assessed using the SSAGA. 
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National Longitudinal Study of Adolescent to Adult Health (Add Health) 

Sample description: The National Longitudinal Study of Adolescent to Adult Health (Add 

Health) is an ongoing, nationally-representative longitudinal cohort study of 20,000+ adolescents 

followed into adulthood for 20+ years across five interview waves from 1994-2018. Extensive 

longitudinal social, behavioral, environmental, and biological data are available, and the design 

included an embedded genetic subsample of MZ and DZ twins, full sibs, half sibs, and unrelated 

adolescents in the same household. Genome-wide data are available on 9,975 individuals using 

two Illumina platforms (Human Omni1-Quad BeadChip, Human Omni-2.5 Quad BeadChip) 

consisting of 631,990 SNPs.  Add Health is a multiracial and multiethnic sample with substantial 

numbers of individuals with Hispanic and Asian ancestry.  For more information about the 

design of Add Health see 48,49.  

Alcohol dependence measure:  Lifetime DSM-IV alcohol dependence was assessed using 

questionnaire modeled on the Composite-International Diagnostic Interview, Substance Abuse 

Module (CIDI-SAM). 

 

Helsinki Birth Cohort Study (HBCS)  

Sample description: The Helsinki Birth Cohort Study (HBCS) is composed of 8,760 individuals 

born between the years 1934-44 in one of the two main maternity hospitals in Helsinki, Finland. 

Between 2001 and 2003, a randomly selected sample of 928 males and 1,075 females 

participated in a clinical follow-up study with a focus on cardiovascular, metabolic, mental, and 

reproductive health and cognitive function. There were 1,620 women and men (43.4% men) with 

valid genotype and phenotype data. The mean age of the participants was 61.5 years (SD=2.9). 

DNA was extracted from blood samples and genotyping was performed with the modified 
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Illumina 610k chip by the Wellcome Trust Sanger Institute, Cambridge, UK according to 

standard protocols. Detailed information on the selection of the HBCS participants and on the 

study design can be found elsewhere50. Research plan of the HBCS was approved by the 

Institutional Review Board of the National Public Health Institute and all participants have 

signed an informed consent. 

Alcohol dependence measure: Alcohol dependence diagnoses were extracted from the Hospital 

Discharge Register (HDR), which contained data on all hospitalizations in psychiatric and 

general hospitals in Finland between 1969 and 2008. The HDR also includes personal and 

hospital ID numbers, dates of hospital admission and discharge, and primary as well as up to 

three subsidiary diagnoses at discharge. We also identified alcohol dependence diagnoses as 

causes of death from the National Causes of Death-Register (CDR), which contains records of 

primary and subsidiary causes of death from all deaths in Finland. Diagnoses were entered into 

the HDR and CDR according to the International Classification of Diseases, Eighth Revision 

(ICD-8) until 1986, according to the ICD-9 using the Diagnostic and Statistical Manual of 

Mental Disorders, Revised Third Edition (DSM-III-R) criteria until 1995, and according to the 

ICD-10 since 1996. In the current study, the primary diagnoses and subsidiary diagnoses of 

alcohol dependence (ICD-8/9: 303.9 and ICD-10 F10.2) from either register served to index the 

alcohol dependence. In our sample, we identified 36 cases with alcohol dependence based on the 

HDR and CDR (2.2% of the total sample). 
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1.4 Replication cohorts 

FINRISK 

FINRISK is a population-based cohort study designed to assess risk factors for cardiovascular 

disease and other chronic diseases. The study design has been extensively described elsewhere51. 

Briefly, independent random and representative population cohorts have been surveyed and 

interviewed at five-year intervals since 1972. Participants are also linked to population health 

registries. Genotyping was performed in batches over the study waves using standard genotyping 

arrays. For the current study, lifetime alcohol dependence status was inferred from ICD codes for 

hospitalization and cause of death in the linked registry data. 

 

Yale-Penn 2 

Participants of Yale-Penn 2 were recruited and ascertained following the same protocol as Yale-

Penn 1, described above, with a larger proportion of samples coming from unrelated individuals 

rather than families. DSM-IV diagnoses of lifetime alcohol dependence were derived from the 

Semi-Structured Assessment for Drug Dependence and Alcoholism (SSADDA)34. Genotyping 

was performed using Illumina HumanCoreExome. Participants were grouped separately from 

Yale-Penn 1 based on the epoch of recruitment and the platform used for genotyping. Written 

informed consent was obtained from subjects as approved at each site by the respective 

institutional review boards, and certificates of confidentiality were obtained from NIDA and 

NIAAA.   
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COGA African-American Family GWAS (COGA AA fGWAS) 

This cohort from COGA consists of AD probands ascertained through treatment facilities as 

described for the other COGA cohorts above. Individuals from families that self-identified as 

Black/African-American were genotyped on the Illumina 2.5M array. Ancestry was further 

compared across all available EU and AA data and a final set of 2,382 individuals from 482 

families comprised the AA family GWAS sample. The AA family cohort has been further 

described in more detail elsewhere.52 Cases and controls for the replication analysis were defined 

in an identical manner to the primary phenotype for this analysis.  

 

1.5 Polygenic risk score cohorts 

Avon Longitudinal Study of Parents and Children (ALSPAC) 

The Avon Longitudinal Study of Parents and Children (ALSPAC) recruited 14,541 pregnant 

women residing in Avon, UK, with expected dates of delivery April 1, 1991, to December 31, 

1992; 14,541 is the initial number of pregnancies for which the mothers enrolled in the ALSPAC 

study and had either returned at least 1 questionnaire or attended a “Children in Focus” clinic by 

July 19, 1999. Of these initial pregnancies, there was a total of 14,062 live births and 13,988 

children who were alive at 1 year of age. Subsequent phases of enrollment increased the sample 

size over time 14,775 live births and 14,701 children who were alive at 1 year of age. The phases 

of enrollment are described in more detail elsewhere53,54. The study website contains details of 

all the data that is available through a fully searchable data dictionary 

(http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/). Ethical approval for the 
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study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics 

Committees. 

 

ALSPAC participants were administered questionnaires online or via post.  The wave of data 

collection included in the current study was sent to participants at approximately age 23 and 

included questions about past year alcohol use.  Study data were collected and managed using 

REDCap (Research Electronic Data Capture)55 electronic data capture tools hosted at the 

University of Bristol. Individuals who responded that they had never had a full drink of alcohol, 

or that they had not used alcohol within the past year, were coded as missing.  Questionnaire 

items allowed for the calculation of DSM-556 alcohol use disorder (AUD) criteria counts, from 

which a binary diagnosis was then derived based on a cutoff of two or more criteria endorsed.  

Individuals missing data on half or more of the items were coded as missing; those responding to 

at least half of the items, but fewer than all of the items, were assigned a prorated score.  

Phenotypic and genetic data were available for N=2,723 individuals, of whom 337 met criteria 

for AUD diagnosis. 

 

Generation Scotland (GS) 

The Scottish Family Health Study (GS) is a family-based cohort recruited from the general 

population of Scotland from 2006-2011 (N=24,084)57. Genotyping was performed using the 

Illumina OmniExpress BeadChip and after quality control which removed SNPs with a call rate 

<98%, a minor allele frequency (MAF) of <1% or those showing deviation from HWE (p < 5 x 

10-6), 561,125 autosomal SNPs and 19,904 individuals were available for analysis. This study 

obtained informed consent from all participants and was conducted under generic approval from 
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the National Health Service National Research Ethics Service (approval letter dated 17 June 

2011, Ref 11/NW/0382). All components of GS have received ethical approval from the 

National Health Service Tayside Committee on Medical Research Ethics (REC Reference 

Number: 05/S1401/89) and written consent for the use of data was obtained from all participants. 

 

Alcohol consumption was assessed using a preclinical questionnaire and participants identified 

as current drinkers, former drinkers or never drinkers. Alcohol intake was self-reported as units 

consumed in the previous week. The CAGE questionnaire was administered during a re-contact 

of GS in 201558 and consists of 4 questions designed as a screening tool for alcohol problems59. 

After removing former and never drinkers there were 6,906 individuals available for analysis 

with both CAGE data and genotype data. 

 

2 Quality control 

2.1 Case/control cohorts 

Quality control (QC) was performed separately for each case/control cohort using ricopili 

(https://github.com/Nealelab/ricopili).  

 

Following the standardized ricopili pipeline, variants in each cohort were first filtered for call 

rate (<5% missingness), followed by individual-level filters for call rate (<2% missingness) and 

heterozygosity (|Fhet| > .20). If chromosome X variants were available for the cohort the sex 

checks were also performed to ensure concordance with reported sex. Variants were then filtered 

for call rate (<2% missingness), differential missingness between cases and controls (absolute 

difference < 2%), invariant markers, and departure from Hardy-Weinberg equilibrium in cases (P 
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> 1e-10) or controls (P > 1e-6). In cohorts involving multiple genotyping batches, variants were 

also filtered for association with batch controlling for the phenotype. 

 

QC was performed prior to estimation of relatedness and principal components (described 

below). In cases of cryptic relatedness or ancestry outliers, QC was repeated after outlier removal 

to ensure no additional variants or individuals failed QC after removal of the affected 

individuals. 

 

2.2 Family-based cohorts 

QC for family-based cohorts was performed using picopili 

(https://github.com/Nealelab/picopili). This QC, imputation, and analysis pipeline was developed 

for the current analysis with the aim of paralleling the functionality of ricopili 

(https://github.com/Nealelab/ricopili) with appropriate modifications for the analysis of family-

based GWAS cohorts. 

 

QC of the family-based cohorts applied the same basic filters as the case/control QC pipeline 

(i.e. call rates, heterozygosity, discordant sex checks, differential missingness, and departure 

from Hardy-Weinberg equilibrium). Where applicable, tests were based on allele frequencies 

computed from founders in the family-based cohort using PLINK 1.960. In addition, family-

based cohorts were QCed to remove individuals or variants with excessive Mendelian error rates. 

After QC, remaining Mendelian errors were set to missing. 
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As in the case/control cohorts, QC was repeated after stratification by ancestry and removal of 

ancestry outliers and instances of cryptic relatedness.  

 

2.3 Summary statistics 

For cohorts contributing summary statistics, pre-imputation QC was performed by the respective 

studies according to their chosen analysis protocols. For HBCS, pre-imputation QC included 

filtering genotypes for SNP clustering probability for each genotype > 95%, filtering individuals 

and markers for call rate > 95% (99% for markers with MAF < 5%), and filtering markers for 

MAF > 1% and HWE p > 1E-6. Heterozygosity and gender checks were performed for all 

individuals and any discrepancies were removed. In NAG-Fin and FT12, a minimum minor 

allele frequency of >0.01 and missingness <0.05 were set for analyses. Genotyping and pre-

GWAS quality control for NESDA/NTR has been previously described61. Briefly, sample QC 

included filtering for genotyping rate < 90%, absolute heterozygosity statistic (Fhet) greater than 

.075, and excessive Mendelian errors or departure from expected gender. Variants were filtered 

for low minor allele frequency (< .005), departure from Hardy-Weinberg equilibrium (p < 10-12), 

and low call rate (< 95%), along with platform-specific QC. For Add Health, mismatches on 

heterozygosity and sex were removed but no additional sample filtering was conducted prior to 

imputation. 

 

3 Principal components analysis and relatedness estimation 

3.1 Case/control cohorts 

Principal components analysis (PCA) and relatedness estimation were performed within each 

cohort using a more stringently QCed set of variants. Specifically, variants were filtered for 
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allele frequency (minor allele frequency > 5%) and Hardy-Weinberg equilibrium (P > 1e-3), and 

strand ambiguous SNPs and variants in regions of high LD (i.e. the MHC and the chromosome 8 

inversion region) were removed. Remaining variants were then pruned for linkage disequilibrium 

(LD; pairwise r2 < 0.2). Using this strictly QCed set of SNPs, relatedness was then estimated in 

each cohort using PLINK60. Cryptically related pairs of individuals (𝜋" > 0.2) were filtered to 

remove one individual from each related pair, preferentially keeping cases with alcohol 

dependence and dropping individuals related to multiple other individuals in the cohort. 

 

PCA was then performed using EIGENSOFT62,63 to infer ancestry. Where appropriate, 

individuals in a study were stratified by ancestry into European and African ancestry cohorts for 

analysis (Supplementary Table 1). Additional PCA including 1000 Genomes reference samples 

were performed to verify the identity of ancestry clusters.  

 

After stratification by ancestry, the full ricopili pipeline of QC, relatedness estimation, and PCA 

was repeated within each ancestry stratum of each cohort. Remaining PCA outliers within each 

ancestry group were removed as necessary. 

 

3.2 Family-based cohorts 

PCA and relatedness estimation for the family-based cohorts was performed using picopili 

(https://github.com/Nealelab/picopili). Following the same strategy as the case/control cohorts, 

variants were first QCed for missingness (< 2%), minor allele frequency (> 5%), and Hardy-

Weinberg equilibrium (P > 1e-4). The reported pedigree was used to define founders for 

computing these filters in PLINK60. Indels, strand ambiguous SNPs, and variants in previously 
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reported regions of high LD64 were also removed, and remaining variants were pruned for 

pairwise LD.  

 

For PCA in each cohort, a subset of unrelated individuals (𝜋" < .09375; midpoint between 3rd and 

4th degree relatives) was identified using PRIMUS65. To the extent estimates of relatedness may 

be upwardly biased in diverse cohorts, membership in the “unrelated” set will be conservative. 

PCA was then performed in this unrelated set, and the resulting SNP weights were used to 

project PCs for the remaining related samples using EIGENSOFT62,63. This procedure assures 

that the PCA is performed with unrelated individuals, in order to prevent family structure from 

biasing the PCA solution66, while providing results for all individuals. As in case/control cohorts, 

these PCA results were then used to identify and remove ancestry outliers and to stratify cohorts 

by continental ancestry group. PCA including 1000 Genomes reference samples was used to 

confirm the ancestry of each PCA cluster. QC and PCA were repeated within each ancestry 

group after stratification. 

 

Relatedness estimation was then performed to confirm that genetic relatedness was consistent 

with the reported pedigree structure of each cohort and to remove instances of cryptic 

relatedness. In cohorts with a homogeneous population structure after stratification and outlier 

removal (assessed by visual inspection of PCA results), relatedness estimates were computed 

using PLINK60. For cohorts with remaining structure (e.g. AA cohorts, and Finnish admixture in 

STR) relatedness was instead estimated using REAP67. For estimation in REAP, admixture 

solutions were estimated using the previously defined “unrelated” set and projected to remaining 

samples using ADMIXTURE68.  
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Relatedness estimates were compared to the reported pedigree structure to identify possible 

errors or cryptic relatedness. In particular, this filtering aimed to identify: (a) reported 

parent/offspring pairs with estimated identity-by-descent (IBD) proportions not matching 

expectations; (b) apparent parent/offspring pairs from IBD values that were not reported in the 

pedigree; (c) cryptic relatedness (𝜋" > .09375) between individuals reported to be in different 

families; and (d) individuals who were genetically unrelated (𝜋" < .09375) to all other individuals 

of their reported pedigree. Where possible these issues were resolve by confirmation of pedigree 

data from the original cohort. Unresolved relatedness problems, most commonly instances of 

cryptic relatedness between families, were then resolved by filtering individuals. As in the 

case/control cohorts, this filtering prioritized post-QC sample size, preferentially keeping 

individuals with alcohol dependence, individuals without a missing phenotype, and individuals 

in larger pedigrees. 

 

3.3 Summary statistics samples 

In HBCS, relatedness checks were performed to remove any discrepancies from the expected 

relatedness structure. Multidimensional scaling (MDS) components were then computed in 

PLINK. Mismatches between observed and expected relatedness were similarly filtered in 

NESDA/NTR, and principal components were calculated in Eigenstrat with 1000 Genomes 

Phase 3 as a reference set63. In both NAG-Fin and FT12, both co-twins from dizygotic twin pairs 

were included when available, whereas only one co-twin from each monozygotic pair was 

included. NAG-Fin also retained all available siblings. No ancestral outliers were observed in 

either cohort, and a Genetic Relatedness Matrix (GRM) was used to account for any additional 
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potential admixture. Similarly, in Add Health, a GRM was computed in GCTA to account for 

admixture within specified ancestral groups. 

 

4 Imputation 

4.1 Case/control cohorts 

Imputation of case/control cohorts was performed using ricopili 

(https://github.com/Nealelab/ricopili). Prior to imputation, each cohort was aligned to 1000 

Genomes Project Phase 3 reference data69,70. LiftOver71 to human genome build hg19 was 

performed if needed, and matching of chromosome, position, and alleles to the reference data 

was verified. To assist with match strand flips and strand ambiguous SNPs, allele frequencies 

were also checked against 1000 Genomes reference data. For European ancestry cohorts, SNPs 

were excluded if their allele frequency difference by more than 0.15 from 1000 Genomes 

European ancestry individuals; for African ancestry individuals, SNPs were filtered for allele 

frequency differences greater than 0.25 compared to 1000 Genomes African ancestry 

individuals. The looser threshold was specified in African ancestry cohorts to account for 

varying degrees of admixture, and generally yielded higher quality imputation results (data not 

shown). 

 

After alignment to the 1000 Genomes Project Phase 3 reference70, each cohort was phased using 

SHAPEIT72 and imputed using IMPUTE273,74. Imputation dosages and best-guess genotypes 

were saved for analysis, as described below. PCA was performed within each cohort using best-

guess genotypes to compute principal components (PCs) for use as covariates in GWAS 

following the same procedure described above. For this post-imputation PCA, best-guess 
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genotypes were strictly filtered for quality (call rate > 99% for genotype calls with posterior 

probabilities > 0.8, MAF > 5%) and more stringently pruned for LD (pairwise r2 < 0.1, and 

removal of additional previously-identified regions of high LD64). 

 

4.2 Family-based cohorts 

Family-based cohorts were imputed using picopili (https://github.com/Nealelab/picopili) 

paralleling the same procedure described above for case/control cohorts. Each cohort was 

matched to the 1000 Genomes Project Phase 3 imputation reference data following the same set 

of heuristics as are implemented in ricopili. Pre-phasing and imputation were then performed 

with SHAPEIT72 and IMPUTE273,74 with two primary changes to accommodate the family data. 

First, phasing was performed for each chromosome rather than in 3 MB genomic chunks in order 

to assist in identifying any long regions of haplotype sharing between family members. Second, 

the duoHMM algorithm in SHAPEIT75 was enabled to allow use of pedigree information in 

refining haplotype calls. 

 

After imputation, best-guess genotypes were called (minimum posterior probability > 0.8) and 

QCed for call rate (missingness < 2%), INFO score > 0.6, and allele frequency > 0.005. 

(Additional filtering was applied prior to meta-analysis, see below.) Any apparent mendelian 

errors in the imputed pedigrees were set as missing. After QC, post-imputation PCA was then 

performed to compute PCs for use as covariates in the GWAS using the same protocol as the 

PCA performed in the family-based cohorts prior to imputation (see above). 
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4.3 Summary statistics 

All summary statistics cohorts were imputed by their respective studies. For HBCS, NAG-Fin 

and FT12, imputation was performed using the 1000 Genomes Phase I integrated variant set (v3 / 

April 2012; NCBI build 37 / hg19) as the reference sample with IMPUTE273. NESDA/NTR data 

were phased and imputed to 1000 Genomes Phase 3 V5 reference panel has been previously 

described61. After imputation all SNPs were converted to best guess genotypes using Plink 

1.9060. Add Health data were imputed using the Haplotype Reference Consortium on the 

Michigan Imputation Server76. 

 

5 Cross-cohort relatedness and ancestry confirmation 

After imputation, QCed best-guess genotypes from each cohort were merged to allow filtering 

for cryptic relatedness between cohorts. Imputed genotypes were filtered for allele frequency and 

imputation quality (i.e. INFO score, call rate at posterior probability > .80) within each cohort, 

and then merged and filtered to variants passing QC across cohorts. As in the within-cohort 

relatedness checks, the passing variants were then pruned for LD and used to estimate genetic 

relatedness between all pairs of individuals. Relatedness among EU cohorts was estimated using 

PLINK60, while relatedness with AA cohorts was estimated using REAP67 to account for varying 

admixture. 

 

In cases of observed cross-cohort cryptic relatedness (𝜋 > 0.1), individuals were removed from 

each related pair as in the within-cohort relatedness filtering. In order to maximize effective 

sample size, priority was given to keeping individuals with an alcohol dependence diagnosis, 

individuals in cohorts with small sample sizes, and individuals who were part of a pedigree in a 
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family-based study. Individuals with cryptic relatedness to a large number of other samples were 

prioritized for removal. Instances of known overlap between the cohorts (e.g. among the cohorts 

in SAGE) were also verified and filtered accordingly. 

 

Unrelated individuals were also used to verify ancestry assignment of the EU and AA cohorts, 

respectively, by merging the cohorts of each ancestry with 1000 Genomes Project reference 

samples and performing PCA. PCA results from the merged genotyped samples confirm that the 

AA (Supplementary Figure S12A) and EU cohorts (Supplementary Figure S12B) cluster with the 

European and African ancestry reference samples, respectively, with the AA cohorts showing 

evidence of admixture between European and African ancestry that is consistent with other 

published studies of African-American individuals77,78. 

 

Table 1 reports final sample sizes for analysis after filtering for cross-cohort relatedness. GWAS 

were performed separately in each cohort (and for EA and AA within a cohort) using the set of 

individuals who passed this relatedness check. 

 

6 Genome-wide association 

 

6.1 Case/control cohorts 

Genome-wide association studies (GWAS) were performed in each case/control cohort using 

PLINK60. Logistic regression was performed to test association between alcohol dependence and 

the imputed additive dosage of each variant, controlling for sex and principal components (PCs). 

Sex was excluded as a covariate in GESGA due to a lack of female cases; instead variants were 
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filtered to remove any variants with substantial allele frequency differences between male and 

female controls. 

 

The number of PCs included as covariates to control for confounding from population structure 

varied by ancestry and sample size. In EU cohorts, the number of PC covariates was determined 

by cohort sample size in order to reflect differential power of PCA to detect true population 

structure79. Specifically, in EU cohorts with fewer than 2000 samples or fewer than 500 cases, 

the first 5 PCs were included as covariates; larger cohorts included the first 10 PCs. The number 

of cases was included as a criterion to prevent over-fitting to PCs in large cohorts with strongly 

skewed case/control ratios (e.g. S4S).  

 

In AA cohorts, we included as covariates the top PCs associated with genome-wide population 

structure, as opposed to local ancestry tracts, up to a maximum of 5 or 10 PCs based on the same 

sample size thresholds as in EU cohorts (see Supplementary Note B.2). In practice, this resulted 

in the use of between 1 and 5 PCs in each cohort (Supplementary Table S1).  

 

6.2 Family-based cohorts 

GWAS was performed in each family-based cohort using imputed genotypes for each variant. 

The association model used to test association for each variant was selected based on the 

complexity of the pedigree structure in each cohort’s family-based design. Cohorts with a simple 

pedigree structure were tested using generalized estimating equations (GEE). Cohorts with more 

complex pedigrees that performed poorly in the GEE model were tested using generalized linear 
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mixed models (GLMM). Both models are described below. Sex and PC covariates were included 

following the same protocol as described above for case/control cohorts. 

 

Generalized Estimating Equations (GEE) 

GWAS of family-based cohorts with simple pedigrees (Supplementary Table 1) were performed 

using the GEE model80. For family i with individual j the logistic GEE model specifies the mean 

and variances of phenotype Y 

𝐸$𝑌&'(𝒙&'* = 𝜋&' =
𝑒𝒙-.

/ 𝜷

1 + 𝑒𝒙-.
/ 𝜷

 

𝑉𝑎𝑟$𝑌&'(𝒙&'* = 𝜋&'(1 − 𝜋&') 

with correlation structure 

𝐶𝑜𝑟𝑟$𝑌&', 𝑌<=(𝒙&' , 𝒙<=* = >𝜌, 𝑖 = 𝑘
0, otherwise 

where x includes an intercept term, the SNP to be tested, and any desired covariates. In other 

words, the covariance matrix for the observed phenotypes Y is block diagonal with the blocks 

defined by individuals in the same family. This exchangeable correlation structure within family 

is likely to be correctly specified when all individuals within a family have the same degree of 

relatedness and that structure is the same across families (e.g. a sib-pair design). For more 

complex family structures this simple covariance structure is unlikely to hold, which motivates 

the use of a more flexible generalized mixed model (see below). 

 

GEE models were fit in R using geepack81. Imputed variants were fit in the model using QCed 

best-guess genotypes. Robust sandwich standard errors were used to account for possible 
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misspecification of the block diagonal correlation matrix. GWAS results for a given SNP were 

evaluated based on the Wald test of the corresponding regression coefficient 𝛽. 

 

Generalized Linear Mixed Model (GLMM) 

For more complex pedigrees, GWAS was performed using a generalized linear mixed model 

with logistic link function (i.e. a logistic mixed model82). Unlike the GEE, the GLMM is 

implemented with an arbitrary covariance matrix between individuals, allowing for more 

complex and varied correlation structures from relatedness within families. 

 

The logistic mixed model is specified similar to a conventional logistic regression, with an added 

random effects term similar to a linear mixed model. In the generalized form, 

𝜂& = 𝑔(𝜇&) = 	𝐺&𝛽 + 𝑋&𝛼 + 𝑏& 

where G are observed genotypes, X are other observed covariates, and g() is the standard logistic 

link function. 

𝑔(𝜇&) = ln V
𝜇&

1 − 𝜇&
W 

The random effects term bi is assumed to follow 

𝑏	~	𝑁(0, 𝜏𝑲) 

where K is the genetic relatedness matrix (GRM). Arbitrary specification of this GRM K is a key 

feature of the GLMM model. 

 

We fit the GLMM using best-guess genotypes with the package GMMAT in R83. The GRM K is 

estimated in PLINK60 using the same strictly QCed set of SNPs used for post-imputation PCA 

(see above). As is recommended for mixed models, GRMs are generated following a leave-one-
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chromosome-out (LOCO) approach that omits the chromosome containing the SNP to be tested 

from the calculation of the GRM to prevent confounding84. Each SNP in the GWAS is evaluated 

using a score test; this is necessary to maintain computational feasibility for the GWAS but 

forgoes calculation of effect sizes and standard errors for each variant83. 

 

Comparing the GLMM and GEE models, it may be noted that the GLMM implies structured 

covariance on the latent scale rather than on the observed scale as in the GEE. Both models 

include logistic regression as a special case, but the GLMM and GEE models are not nested with 

one another. As might be anticipated by the model differences, simulations show mixed results 

for which model is preferable depending on the choice of simulation setting83,85. Empirically, we 

do observe less inflation of genome-wide test statistics in cohorts with complex pedigrees when 

using the GLMM model compared to the GEE model (data not shown). For the current study we 

rely on both models to maintain compatibility with the conventional logistic regression model for 

GWAS and choose the most appropriate model for each cohort based on pedigree structure with 

attention to practical benefits (e.g. interpretable effects sizes, computational tractability) and 

appropriateness of the accompanying model assumptions (i.e. exchangeable correlations within 

family).  

 

GWAS of Unrelated Individuals 

In addition to the primary family-based analyses, a subset of unrelated individuals was selected 

from each family-based cohort to perform a conventional case/control GWAS. Unrelated 

individuals were chosen to maximize the effective sample size for case/control analysis within 

each cohort. GWAS was then performed using logistic regression with the imputed genotypes in 
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PLINK60. Sex and PC covariates were included following the same protocol as the case/control 

GWAS, as described above. In EU cohorts, the subset of unrelated individuals was also used to 

perform sex-specific GWAS, subject to the same sample size requirements as the case/control 

cohorts.  

 

6.3 Summary statistics 

GWAS was performed separately within each summary statistic cohort following standard 

protocols for the respective studies. In HBCS, association analyses were conducted using the 

score test from SNPTEST286, with covariates including sex, age and the first 3 MDS 

components. NAG-Fin and FT12 were analyzed using Genome-wide Efficient Mixed Model 

Association (GEMMA v0.94)87 with sex and age as covariates and with the computed GRM used 

to control for any remaining ancestry structure and relatedness.  The NESDA/NTR GWAS was 

conducted using a mixed linear model as implemented in GCTA84,88 (--mlma-loco) with 

adjustment for sex, age, age squared, and four principal components of genetic ancestry as 

covariates. Add Health data were similarly analyzed using a mixed linear model association 

framework within GCTA84,88 with sex as a covariate.  

 

7 Genome-wide meta-analysis 

We performed three batches of primary meta-analyses. First, we perform meta-analysis of all 

samples (including related individuals and summary statistic cohorts). Second, we perform meta-

analysis of unrelated individuals (i.e. using the GWAS of unrelated individuals rather than GEE 

or GLMM results for family-based cohorts). Third, we perform meta-analysis of unrelated 

genotyped samples only (i.e. excluding summary statistic cohorts). Within each of these batches 
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we stratify by ancestry. The full set of meta-analysis designs is described in Supplementary 

Table S2.  

 

7.1 Meta-analysis with related samples 

The primary discovery meta-analysis is performed using all available samples, including related 

individuals and summary statistic cohorts (14,904 cases, 37,944 controls). In addition to this 

primary meta-analysis across ancestries, meta-analysis is also performed within AA cohorts 

(3,335 cases, 2,945 controls) and EU cohorts (11,569 cases, 34,999 controls) separately.  

 

These meta-analyses were performed using p-values with weights defined by the effective 

sample size of each cohort. These weights were defined to account for the differences in 

case/control balance and degree of relatedness within each cohort, while allowing meta-analysis 

without comparable effect size estimates from the GLMM or summary statistic cohorts (see 

Supplementary Note B.3 for more detail). 

 

For meta-analysis, results from each cohort were filtered for imputation INFO score (> 0.8), 

minor allele frequency (> 1%), and expected minor allele count (MAC) in cases and controls (> 

5). GWAS results from summary statistics cohorts were filtered according to the same criteria 

after being aligned to match the same genomic reference as the genotyped cohorts (e.g. matching 

rsids, positions, and alleles). Cohorts with an extreme case/control ratio (i.e. STR and HBCS) 

were more strictly filtered to require MAF in controls corresponding to MAC >5 alleles in cases 

and MAC >10 alleles in cases and controls. This stricter filtering addressed observed instability 

in the results for these cohorts at low allele counts. Results from each meta-analysis were further 
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filtered to only report results for variants with an effective sample size > 1000 and > 15% of the 

maximum effective sample size for the meta-analysis, as well as requiring expected minor allele 

counts of at least 20 across the included cohorts. These filtering criteria were also applied to 

subsequent meta-analyses.  

 

7.2 Meta-analysis with unrelated samples 

To support planned secondary analyses, we also performed genome-wide meta-analyses 

restricting to primarily unrelated samples. In particular, for family-based cohorts the case/control 

GWAS of unrelated individuals was included in the meta-analysis rather than the family-based 

GEE or GLMM analysis. This analysis was performed separately for each ancestry group. Final 

sample sizes for these meta-analyses of unrelated individuals were 2,991 cases and 2,808 

controls for AA, and 10,206 cases and 28,480 controls for EU. 

 

These meta-analyses were designed to allow secondary analysis with methods that depend on the 

relationship between sample size and p-values as an indicator of effect size but do not directly 

require effect size estimates. For the current paper, this principally includes LD score 

regression89 and gene-based analysis with MAGMA90. As appropriate for these analyses, we also 

focus on ancestry-specific meta-analyses to allow modelling of the different LD structure within 

each ancestry. 

 

We note that the inclusion of the summary statistic cohorts in this meta-analysis means the 

included individuals are not fully unrelated. Most of the summary statistic cohorts included some 

number of related individuals, most frequently within a mixed model framework. Throughout 
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this paper, however, we treat the summary statistic cohorts as analyses of unrelated individuals 

since information on the degree of relatedness within the cohort is unavailable, i.e. to compute 

effective sample sizes. Therefore we included them in this analysis of unrelated individuals as 

well. We note however that comparison of LD score regression results to analysis excluding the 

summary statistic cohorts suggests that the impact of this inclusion is minimal (see below), with 

a primary benefit of increasing sample size and thus improving precision. 

 

7.3 Meta-analysis with unrelated genotyped samples 

Meta-analysis of unrelated genotyped samples was performed using conventional inverse-

variance weighted fixed effects meta-analysis in METAL91. This analysis excluded the summary 

statistic cohorts and restricted the family-based cohorts to unrelated individuals only. Meta-

analysis was performed for both European (EU) and African (AA) ancestry cohorts. Total 

sample sizes for this meta-analysis were 8,485 cases and 20,272 controls in EU cohorts, and 

2,991 cases and 2,808 controls in AA cohorts. 

 

This analysis was primarily intended to provide estimates of variant effect sizes, and also served 

as the baseline for conditional analysis of independent effects in the chromosome 4 locus. This 

restricted set of samples is necessary for estimation of effect sizes because many of the summary 

statistic cohorts relied on GWAS with a linear rather than logistic link function and thus do not 

have comparable effect sizes to the genotyped cohorts, and because effects sizes are unavailable 

for the family-based cohorts with complex pedigrees analyzed using the GLMM score test. 
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7.4 Trans-ancestral modelling 

To fully evaluate the pattern of genetic effects between the EU and AA ancestry cohorts we 

considered multiple models for trans-ancestral meta-analysis. These methods have been 

developed to identify genetic effects that may not be well represented by conventional fixed 

effects meta-analysis. In particular, this includes any instances of ancestry-specific effects or 

ancestry-specific differences in the magnitude of an effect which could be related to differences 

in allele frequency, LD structure, or other factors. 

 

Specifically, we evaluated the modified random effects model proposed by Han & Eskin92 and 

MANTRA, a Bayesian method proposed by Morris93. We apply both methods since they have 

both been evaluated to perform well for trans-ancestral modelling94 but are based on distinct 

models. 

 

The Han & Eskin random effects model92 combines the test of mean effects for a variant in a 

random effects model with the test for heterogeneity at the variant. This combined test evaluates 

a null hypothesis that the variant has no association with the phenotype in all cohorts, with an 

alternative hypothesis that there may be either a non-zero average association across cohorts or 

variation between cohorts (which implies the association must be non-zero in at least one 

cohort). This contrasts with a traditional random effects model, which treats cross-cohort 

variability with zero mean effect as a null result. We perform the trans-ancestral meta-analysis 

using the Han & Eskin model92 as implemented in Metasoft 

(http://genetics.cs.ucla.edu/meta/index.html) and evaluate significance with the conventional 5E-

8 p-value threshold.  
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MANTRA93 is a Bayesian model that considers potential clustering of effects by ancestry. True 

marginal effects within each cluster are assumed to be normally distributed, with a prior 

geometric distribution on the number of clusters. Clustering of populations is informed by the 

pairwise genetic distance (FST) between the populations. The fitted model is compared to the null 

hypothesis that the variant’s marginal effect is zero in all ancestries and evaluated using Bayes’ 

Factor (BF) for this model comparison. We defined genome-wide significance for this test as 

log(BF) > 6.1 based on previous work suggesting that this BF threshold provides a similar false 

positive rate and statistical evidence against the null hypothesis as the p < 5E-8 threshold for 

GWAS94. For the current study MANTRA was implemented using software provided by the 

method’s author93. Default priors were used for the probability of heterogeneity across ancestry 

(0.5), and the mean (uniform) and variance (exponential with expected value of 1) parameters for 

the distribution of effect sizes within each ancestry cluster. As previously noted93, these priors 

are intentionally weak and used for computational efficiency. Estimation is performed using a 

Metropolis-Hastings Markov chain Monte Carlo (MCMC) algorithm with default burn-in and 

convergence criteria. 

 

Because both the MANTRA and Han & Eskin methods involve modelling differences in the 

estimated effect size between ancestries they can only be evaluated among the meta-analysis 

cohorts with effect size estimates, namely the analyses of unrelated individuals from genotyped 

cohorts (11,476 cases, 23,080 controls; Supplementary Table S2). Inverse-variance weighted 

meta-analysis was performed within each ancestry group (i.e. EU and AA) before trans-ancestral 

meta-analysis of those two sets of results. For comparison, we also perform fixed effects meta-
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analysis of the EU and AA results using conventional inverse-variance weights as a baseline for 

evaluating the impact of additional modelling for trans-ancestral effects.  

 

For these analyses we apply the same per-cohort GWAS QC (e.g. INFO score, MAF) as in the 

meta-analysis of unrelated individuals. Variants are excluded from the trans-ancestral meta-

analyses if they aren’t present in both EU and AA ancestries, if the effective sample size is less 

than 15% of the total effective sample size, or if the expected minor allele count in cases is < 20.   

 

All three trans-ancestral meta-analyses (fixed effects, Han & Eskin random effects, and 

MANTRA) yielded genome-wide significance for the chromosome 4 ADH1B locus, as indexed 

by rs1229984 (Supplementary Figure S1), and rs9571413 on chromosome 13 (not shown). The 

results for the three meta-analysis methods are highly similar both genome-wide and for specific 

associations in the ADH1B locus. There is no evidence of associations identified by the trans-

ancestral models that are sufficiently heterogeneous across ancestries that they go undetected by 

the fixed effects model. This provides reassuring evidence to support the use of the fixed effects 

model for the primary meta-analysis of EU and AA cohorts in the full data where use of the 

random effects or MANTRA methods is prevented by the lack of effect size estimates.  

 

The chromosome 13 SNP, rs9571413, is an uncommon intergenic SNP. The results suggest that 

the minor allele is a risk variant (fixed effects OR=1.326) just surpassing genome-wide 

significance in each analysis (fixed effects p=3.90E-8; random effects p=4.83E-8; MANTRA 

log(BF)=6.11). In contrast, this variant only nominally approached significance in the primary 

discovery meta-analysis (p=1.54E-5), reflecting much stronger evidence of association among 
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EU case/control cohorts (p=5.19E-6) than in EU family cohorts (p=.0743), summary statistic 

cohorts (p=0.979), or AA cohorts (p=.118). These differences are insufficient to demonstrate 

significant heterogeneity between all cohorts (I2=20.5, p=.196) or between EU case/control and 

family cohorts (I2=69.7, p=.069) but do cast doubt on the nominally significant association 

observed among unrelated genotyped individuals. Considering the weaker result for rs9571413 

in the primary discovery meta-analysis, along with the nominal significance of the SNP (which 

would not survive correction for the multiple meta-analysis versions in the current paper nor 

adjustment for genomic control), we do not reject the null hypothesis for association of 

rs9571413 with alcohol dependence in the current paper. 

 

8 Cross-cohort heterogeneity 

While the trans-ancestral meta-analysis methods aim to use trans-ancestral differences for fine-

mapping and to improve sensitivity to loci with varying effect sizes across cohorts, is it also 

important to evaluate potential systematic differences between cohorts related to other study 

design factors. Such study is particularly important to identify areas where the fixed effects 

meta-analysis may be misleading. 

 

For that reason, we evaluated heterogeneity using Cochran’s Q test95 for both the omnibus test of 

heterogeneity between all cohorts and targeted comparisons with fewer degrees of freedom 

between sets of cohorts defined by differences in study design. In particular, we evaluated: 

• The omnibus test of heterogeneity between all cohorts in the discovery meta-analysis 

(Supplementary Figure S6) 

• The omnibus test of heterogeneity among AA cohorts (Supplementary Figure S7A) 
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• The omnibus test of heterogeneity among all EU cohorts (Supplementary Figure S7B) 

• The 1 degree of freedom test of heterogeneity between EU and AA cohorts 

(Supplementary Figure S7C) 

• The 1 degree of freedom test of heterogeneity between the EU family-based cohorts with 

simple (GEE model) versus complex (GLMM model) pedigrees (Supplementary Figure 

S8A) 

• The 1 degree of freedom test of heterogeneity between family-based and case/control EU 

cohorts (Supplementary Figure S8B) 

• The 1 degree of freedom test of heterogeneity between genotyped and summary statistic 

EU cohorts (Supplementary Figure S8C) 

All tests of heterogeneity were done based on the meta-analysis of P values under a fixed effects 

model with weights defined by effective sample size.  

 

One variant, rs4673609, reached genome-wide significance for heterogeneity among the African 

ancestry cohorts (p=8.78e-10). Heterogeneity for this variant primarily reflects opposing trends 

for association of the A allele in FSCD (OR=1.62, p=1.42E-3) and CADD (OR=3.93, p=7.32E-

4) compared to NIAAA (OR=0.53, p=5.92E-4) and COGEND Nico (OR=.37, p=2.04E-4). The 

European ancestry meta-analysis does not show any trend towards association (p=.545) or 

heterogeneity (p=.760) for this variant, nor is there a trend towards association in any individual 

cohort (p > 0.1 in all cohorts). Heterogeneity at this variant in AA cohorts may reflect differences 

in background haplotypes, statistical artifacts from the small cohorts with the observed trends, or 

other study-specific factors, but nevertheless the observed heterogeneity appears restricted to this 

single variant. 
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Apart from this single variant, none of these comparisons identified significant inflation of 

genome-wide heterogeneity statistics between the different study designs in the discovery 

GWAS (Supplementary Figures S6-S8). This broad consistency across study designs supports 

the use of the fixed effects meta-analysis as the primary discovery GWAS results for the current 

study of alcohol dependence. 

 

9 Assessment of genome-wide significant loci 

9.1 Conditional analysis of the ADH1B region 

Clumping GWAS results from the primary discovery meta-analysis suggested that the 

chromosome 4 locus may contain multiple independent effects, both within and between 

ancestry. Supplementary Figures S2A and S2B illustrate the pattern of LD in the chromosome 4 

locus in European and African ancestry reference data, respectively. Estimated D’ values suggest 

a primary central haplotype structure covers most of the locus, but with partially independent 

clusters of additional variants on both sides of that core signal. 

 

To further evaluate the possibility of independent effects we performed conditional analysis for 

all variants in the locus controlling for the lead variant. Specifically, we performed GWAS in 

European ancestry cohorts controlling for rs1229984 as a covariate; for African ancestry cohorts 

conditional analyses controlled for rs2066702 and also included rs1229984 as a covariate in 

cohorts where it passed imputation quality filters. Other covariates were kept the same as the 

primary GWAS in each cohort. Analysis was performed using unrelated genotyped samples to 

enable comparison of effect sizes between the conditional and marginal GWAS results and 
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because individual-level data were not available for conditional analysis in the summary statistic 

cohorts. 

 

We compare results in each ancestry and trans-ancestral analysis under the fixed effects model 

with inverse variance weights (Supplementary Figure S3). Detailed results for the putative 

independent effects, based on LD clumping in each population of the discovery GWAS, are 

reported in Supplementary Table S3. We also note that two of the SNPs identified by LD 

clumping, are in strong LD with known missense variants rs698 and rs1693482 in ADH1C; 

results for conditional analysis of these two coding SNPs are also reported in Supplementary 

Table S3.  

 

No variants reached genome-wide significance in the conditional analysis (Supplementary Figure 

S3), including the variants identified as potentially independent signals in the full discovery 

GWAS (i.e. LD r2 < 0.1 with the ADH1B index SNP in the relevant population in 1000 Genomes 

reference data). However, the suggested independent variants also are not significant in the 

marginal analysis of the unrelated genotyped samples available for the conditional meta-analysis 

(Supplementary Table S3), reflecting the reduced sample size of meta-analysis in the unrelated 

genotypes samples compared to the full discovery GWAS used to identify the suggested 

independent variants. When directly comparing the marginal and conditional GWAS in the 

unrelated genotypes samples, most of the suggested independent variants have a modestly 

attenuated effect size and an increased standard error in the conditional analysis, leading to less 

significant results (i.e. higher P values). The effect sizes weren’t fully attenuated to the null in 

the conditional analysis, however, and variants rs3811802 and rs894368 did not show attenuation 
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in the conditional trans-ancestral analysis. In addition, the conditional trans-ancestral analysis 

suggests rs112346244 as an alternative lead variant, as part of a highly correlated haplotype, 

versus those identified by LD clumping of the discovery GWAS. While none of these results are 

conclusive evidence of an independent signal at any specific variant in the region, it is suggestive 

and worthy of attention in future analyses. 

 

9.2 Association with eQTLs for expression of ADH1B 

Given the association of AD with ADH1B coding variants, we also tested whether variants 

affecting ADH1B expression (eQTLs) were associated with AD. Considering data from the 

Genotype-Tissue Expression (GTEx) project96 (V7; available at https://www.gtexportal.org/), 

262 variants were reported to affect ADH1B expression in different human tissues (FDR q<0.05), 

although not significant in liver. After LD-informed clumping and the exclusion of variants in 

LD with the genome-wide significant coding alleles (i.e., rs1229984 and rs2066702), three 

variants (i.e., rs11939328, rs10516440, rs7664780) were considered with respect to their 

association with AD.  

 

SNP rs10516440 showed a genome-wide significant association with AD with contribution from 

both AA and EA analyses (trans-ancestry p = 4.72E-8; EA p = 3.97E-6; AA p = 1.97E-3). The 

other two LD-clumped eQTLs, rs11939328 and rs7664780, did not show any association with 

AD (p > 0.05). Located in the intergenic region between ADH1C and ADH7, rs10516440 is a LD 

proxy (r2 > 0.9) of rs6827898 (Table 2) in populations of European and African descent. The 

rs10516440*A allele was associated with reduced AD risk and increased ADH1B expression, in 

line with the effect of the coding variants where the protective allele is associated with increased 
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ADH1B enzymatic activity. The association of rs10516440*A with expression of ADH1B was 

consistent across multiple tissues (multi-tissue p = 1.42E-76). The same rs10516440 variant is 

also an eQTL for ADH1A (multi-tissue p = 6.72E-33), and ADH1C (multi-tissue p = 1.9E-39).  

 

9.3 Evaluation of novel association on chromosome 3 (rs7644567) 

Because the observed association (p < 5E-8) of rs7644567 with AD in the discovery meta-

analysis is novel but has concerning statistical properties (e.g. lack of other associated SNPs in 

the locus, few cohorts contributing to the association) we carefully scrutinized rs7644567. As 

described below, we find that rs7644567 clearly passes QC thresholds for inclusion in the current 

meta-analysis but has limited supporting evidence for association from LD proxies and fails to 

replicate in three external cohorts. 

 

QC metrics for rs7644567 

Rs7644567 is rare in non-Finnish European populations (non-Finnish European ancestry 

MAF=.007, Finnish ancestry MAF=.066) and relatively common in those of African ancestry 

(MAF=.329; based upon 1000 Genomes populations69). We observed allele frequencies 

consistent with the reported population allele frequencies within each of these ancestries. For the 

discovery meta-analysis, results for rs7644567 reflect contributions from six genotyped AA 

cohorts and two summary statistics cohorts from Finland. In the two remaining AA cohorts 

rs7644567 failed to reach the imputation quality threshold (INFO .74-.77). Nearly all of the 

European ancestry cohorts either failed to impute rs7644567 with sufficient quality (INFO < 0.8; 

12 cohorts) or the variant was too rare (MAF < .01 or expected MAC < 5; 12 cohorts). In the one 

remaining European ancestry cohort logistic regression failed to converge for the variant. The 
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large number of cohorts where rs7644567 failed to meet MAF and MAC thresholds for inclusion 

in the meta-analysis is consistent with the limited MAF, along with the limited number of 

variants in LD with rs7644567, as described below. By comparison, rs7644567 was well imputed 

in the 6 passing AA cohorts (INFO 0.96-1.05) and two summary statistics cohorts from Finland 

(INFO 0.96-0.98). The 2 AA cohorts with lower imputation quality are distinguished by having 

fewer and less informative (in terms of LD with rs7644567) genotyped SNPs in the region. 

 

In sum, the availability of results passing QC for rs7644567 are fully consistent with the 

expected population allele frequencies and available variants for imputation, and the variant 

easily passes QC criteria in the included cohorts.  

 

LD proxies of rs7644567 

The regional Manhattan plot of rs7644567 (Supplementary Figure S4A) highlights the lack of 

other genome-wide significant variants in the locus. Focusing on the results from AA cohorts, we 

observed a handful of variants with meaningful LD to rs7644567 that nevertheless have limited 

association with AD (Supplementary Figure S4B). The strongest observed LD proxy was 

rs13098461 (r2 = .877 in African ancestry populations from 1000 Genomes), with a limited 

number of other proxies in the region (4 variants with r2 > .60; proxies identified with LDlink97), 

consistent with the variants present in the AA meta-analysis.  

 

The lead proxy variant, rs13098461, had an estimated effect size similar to rs7644567 in the 

unrelated AA individuals (rs13098461*T OR=1.238, p=2.2E-3; compared to OR=1.229, p=4.3E-

5 for rs7644567*A) but remained much less significant due to a lower available sample size 
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from cohorts where the variant passes QC. On the other hand, rs13098461 is more common in 

European ancestry populations (MAF=.061) and is the best available proxy for rs7644567 in 

European populations with MAF > .01 (identified with LDlink97). Specifically, the 

rs13098461*C allele remains predominantly on the same haplotype as rs7644567*G, though 

with a weaker correlation due to the difference in allele frequency (r2=.298, D’=1.0).  The 

association of rs13098461 with AD showed a much weaker effect size in unrelated genotyped 

EU individuals (OR=1.073, p=.275) and no evidence of association in the full EU discovery 

meta-analysis (p=.786). As a result, the full discovery meta-analysis reports weaker evidence of 

association with AD for rs13098461 than rs7644567 despite a much larger available sample size 

in the current meta-analysis (rs7644567 p = 1.36E-8, effective N = 6,204; rs13098461 p = .2358, 

effective N = 22,246). This result doesn’t rule out association of rs7644567 with AD, but it does 

suggest any true association of rs7644567 is through effects poorly tagged by rs13098461 in 

European ancestry individuals. 

 

Replication analysis 

We tested whether the observed association of rs7644567 with AD replicated in three external 

cohorts: FINRISK, Yale-Penn 2, and COGA AA fGWAS. Full descriptions of each cohort are in 

Section 1.4 above. These cohorts allow evaluation of the association in both African and Finnish 

ancestries, the two ancestries contributing to the significant result in the discovery GWAS.  

 

Results for the test of association of the rs7644567*G allele with AD in each of the three 

replication cohorts are reported in Supplementary Table S4. In all three replication cohorts the 

rs7644567*G allele trends towards association with a risk-increasing effect, as indicated by the 
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sign of the Z scores, as opposed to the risk-decreasing effect reported for that allele in the 

discovery meta-analysis. In the FINRISK cohort this reversed effect is nominally significant 

(p=.019), though would not survive multiple testing correction for three replication cohorts. 

Taken together, these sign discordant effects and nominally significant trend in the opposed 

direction clearly do not replicate the association of rs7644567 with AD reported by the discovery 

meta-analysis. As a result, we conclude that the current study has insufficient evidence to firmly 

reject the null hypothesis for association of rs7644567 with AD. 

 

Biological annotation of rs7644567 

Although the evidence for association of rs7644567 with AD is inconclusive in the current meta-

analysis, we briefly review existing evidence for the biological effects of this variant.  

 

rs7644567 is an intergenic SNP located 120 kb upstream of RBMS3. It has not been significantly 

associated with any other phenotypes in GWAS Catalog98. Given that rs7644567 is rare in 

European populations however, it is unlikely to be well-covered in many genome-wide studies.  

 

Among the brain regions available in GTEx96 V7, eQTL results suggest the rs7644567*A allele 

is nominally associated with increased expression of RMBS3 in cerebellar hemisphere (p = 9.9E-

3). Analysis of Hi-C data with HUGIn99–101 suggests the region containing rs7644567 has 

Bonferroni significant chromatin contact with RBMS3 and its promoter region in the liver and a 

neural progenitor cell line, and may also have contact with RBMS3 and its promoter region in 

hippocampus (FDR < .05; Supplementary Figure S5). RBMS3 encodes an RNA-binding protein 

that is upregulated in liver fibrosis102 and has been suggested as a tumor suppressor gene for 
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multiple cancers103–105. The HUGIn analysis also indicates chromatin contacts of the rs7644567 

region with points near and within GADL1 in liver. GADL1 encodes a glutamate decarboxylase-

like protein involved in taurine synthesis rather than glutamate decarboxylation106, and variants 

in GADL1 are strongly associated with blood metabolite levels107.  

  

10 Power analysis 

10.1 Power to detect loci at p < 5e-8 and p < 1e-6 

Power calculations for the current meta-analysis were performed using CaTS108, which is freely 

available for download (http://csg.sph.umich.edu/abecasis/cats/download.html). CaTS estimates 

the power of GWAS of a dichotomous phenotype to detect a risk variant with a given allele 

frequency and effect size (i.e. relative risk [RR]) at a specified significance threshold given the 

number of cases and controls and the population prevalence of the phenotype.  

 

For the current study we evaluated the power for common variants (MAF > .01) with odds ratios 

(ORs) between 1.05 and 1.3. ORs in this range are consistent with the effects of top loci 

identified for other complex traits (though it is likely that many additional variants have effect 

sizes below this range). We convert ORs to RRs following the approximation derived by 109: 

𝑅𝑅 = 	
𝑂𝑅

(1 − 𝐾) + (𝐾 ∗ 𝑂𝑅) 

where K is the population prevalence of the phenotype. 

 

We consider power for the full discovery meta-analysis, as well as the ancestry-specific 

discovery meta-analyses for EU and AA. For power analysis in EU and AA we assume the 

population prevalence of AD in alcohol-exposed individuals is .159 and .111, respectively110. For 
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power analysis of the full discovery meta-analysis we take a weighted average of these 

prevalences, proportional to sample size in the current study, yielding K=.151.  

 

Sample sizes for the current meta-analysis were specified using the effective sample size 

calculations used for weighting the meta-analysis (see Section B.3). Consistent with those 

derived sample sizes we assume the effective sample size is consistent with a GWAS of equal 

numbers of cases and controls. For example, we compute power for the full discovery sample 

(Neff=31,844) assuming it is equivalent to a GWAS of 15,922 cases and 15,922 controls. 

 

The results for these power calculations are shown in Supplementary Figure S11. As reported in 

Supplementary Figure S11, we estimated power to reach genome-wide significance (p < 5E-8) in 

the current meta-analysis of AD, as well as power to reach p < 1E-6. The latter threshold is of 

interest due to the observation that relatively few loci in the current study reach this threshold 

compared to GWAS of other complex traits. Thus although power to identify genome-wide 

significant effects in the current GWAS may be somewhat limited, there is better power to 

identify suggestive evidence for loci at p < 1E-6. Therefore, the limited number of loci reaching 

the more liberal threshold provides stronger evidence that remaining variants associated with AD 

that are not detected in the current analysis (but whose existence are implied by the significant 

polygenicity and SNP-heritability estimates in EU and AA from LDSR) are expected to have 

smaller ORs and/or lower MAF. 
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10.2 Comparison to GWAS effect sizes of other disorders 

To provide additional perspective on the power in the current GWAS of AD, we compared the 

current power analysis to reported effect sizes from large GWAS of other disorders. This 

analysis aims to provide better intuition about the meaning of the range of effect sizes that the 

power analysis indicates the current GWAS of AD would be well powered to detect at either the 

level of genome-wide significance or p < 1E-6.  

 

For this comparison, we evaluated the number of loci the current GWAS of AD would be 

expected to identify if the top loci for AD have effect sizes and allele frequencies comparable to 

each of three disorders: schizophrenia111, class I obesity112, and major depression113. We first 

tabulated the reported independent genome-wide significant loci from the largest available 

GWAS of each disorder111–113, including the reported OR and MAF of the index variant in each 

locus. Where possible (schizophrenia and obesity), we focused on the reported OR from the 

replication portion of the study to avoid biasing of effect sizes by winner’s curse. For 

schizophrenia we also restricted to loci that are genome-wide significant in the initial discovery 

GWAS to further protect against winner’s curse. From the available results this yielded ORs and 

MAFs for 105 reported loci for schizophrenia, 25 loci for class I obesity, and 44 loci for major 

depression. 

 

For the reported loci, we then computed power to detect effects with the given OR and MAF in 

the current discovery GWAS of AD, as well as power in the EU discovery GWAS and the 

GWAS of unrelated EU samples. Assuming the loci are independent, this power per locus can 

then be summarized by using the binomial probabilities to compute the expected number (and 
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95% confidence interval) of loci from the observed distribution of OR and MAF from each of the 

disorders that would be detected at a given alpha level in the current GWAS of AD. 

 

Supplementary Table S8 reports the number of loci the current GWAS of AD would be expected 

to detect (and corresponding 95% confidence intervals) at p < 1E-6 and p < 5E-8 if the true 

effect sizes of top loci in AD matched the effect sizes and odds ratios reported for top loci in 

schizophrenia111, class I obesity112, or major depression113. These can be interpreted as a lower 

bound on the number of loci the current AD GWAS would be expected to detect if the full 

distribution of effect sizes matched these disorders, since the reported numbers do not account 

for additional loci with true effects that have not been identified as genome-wide significant in 

the respective disorders. The expected number of loci also does not include the probability of 

loci reaching the given alpha under the null (e.g. given one million independent loci that all have 

null effects we would expect on average one locus to reach p < 1e-6 in a given GWAS).  

 

The results shown in Supplementary Table S8 suggest that the current discovery GWAS of AD 

observes significantly fewer loci at the genome-wide significance threshold or at p < 1E-6 than 

would be expected if the top loci for AD had effect sizes similar to schizophrenia or class I 

obesity. The same pattern is observed when focusing on the GWAS of unrelated EU samples, 

suggesting that mild heterogeneity in the trans-ancestral or family-based analysis would not be 

sufficient to explain few observed loci in the current GWAS if true effect sizes resembled 

schizophrenia or obesity. Instead, the GWAS results for AD could be more consistent with the 

top true effect sizes for AD being similar to, or perhaps slightly larger than, the effect sizes 

reported for top loci in major depression. We also note that AD also has a prevalence and SNP-
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heritability more similar to major depression than schizophrenia. In sum, the comparative power 

analysis suggests that sample sizes somewhere between those for class I obesity (55,229 cases 

and 104,894 controls to identify 25 significant loci) and major depression (130,664 cases, 

330,470 controls to identify 44 loci) may be required to identify a larger number of top common 

variant loci associated with AD similar to these other disorders. 

 

11 LD score regression intercept and SNP heritability 

The proportion of variance explained by all common SNPs – i.e. the SNP-heritability h2g was 

estimated using LD score regression (LDSR)89 with the python package ldsc 

(https://github.com/bulik/ldsc). All SNP heritability estimates are reported on the liability scale 

assuming a population prevalence of alcohol dependence of 15.9% in alcohol-exposed 

individuals of European ancestry110. The heritability estimates were converted to the liability 

scale using the standard correction factor 

𝐾(1 − 𝐾)
𝑧a

𝐾(1 − 𝐾)
𝑃(1 − 𝑃)  

Where K is the population prevalence, P is the in-sample prevalence, and z is the density of the 

normal distribution at the Kth quantile114. 

 

For EU cohorts, LDSR was performed using pre-computed LD scores based on 1000 Genomes 

Project reference data69 on individuals of European ancestry (available for download at 

https://data.broadinstitute.org/alkesgroup/LDSCORE/). Evaluation of the intercept in the meta-

analysis of unrelated EU individuals (10,206 cases, 28,480 controls) suggests modest inflation 

(intercept = 1.018, one-sided p=2.25e-3) though polygenic signal remains the primary source of 

deviation from the null hypothesis genome-wide (LDSR confounding ratio = 0.298). Partitioning 
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heritability using functional categories and selection-related metrics115,116 does not meaningfully 

decrease the intercept (intercept = 1.015, one-sided p=.033, ratio = .256), suggesting that the 

intercept is not primarily inflated due to LDSR model misspecification. The inflation also does 

not appear to be due to cryptic relatedness in the summary statistic cohorts, since LDSR of the 

results from the meta-analysis of unrelated genotypes samples shows nominally higher inflation 

(intercept = 1.023, p=7.74e-5). The estimate of SNP heritability is similar robust, with generally 

consistent estimates from univariate LDSR of the meta-analysis for unrelated EU individuals 

(ℎda=.090, 8.02e-7), partitioned LDSR for those results (ℎda=.119, p=7.69e-5), or univariate 

LDSR of the results for unrelated genotyped EU samples (ℎda=.085, p=1.94e-4). 

 

We also performed LDSR using the AA meta-analysis results. Identifying an appropriate 

reference sample for computing LD scores is complicated by the admixture in this population. 

The pattern of LD blocks genome-wide may vary widely depending on the mosaic of local 

ancestry tracts, and those ancestry patterns are likely to vary between individuals and between 

cohorts (see Supplementary Note B.2 regarding similar complications in PCA). Therefore we 

evaluated LDSR in the AA results with multiple reference panels built from 1000 Genomes 

Project reference data: European ancestry individuals, African ancestry individuals, and African 

ancestry individuals in the American Southwest (ASW). 

 

LDSR suggests nominally significant genetic signal from polygenic effects, rather than other 

sources of confounding, in regression with LD scores from African (ℎda=.286, p=.0168) or 

European (ℎda=.116, p=.0402) ancestry individuals. Regression with ASW samples showed a 

similar trend but was non-significant (ℎda=.153, p=.0597). All SNP heritability estimates are 
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given assuming a population prevalence of alcohol dependence of 11.1% among alcohol-exposed 

African American individuals110. Given the instability of these estimates depending on the choice 

of LD reference panel, as well as the clear methodological concerns of performing this analysis 

in an admixed ancestry cohort, we specifically do not endorse any of these point estimates of 

heritability. This instability also prevents further analysis of cross-ancestry genetic correlation 

using a method such as popcorn117. We do however note the general trend of significance for 

these estimates, suggesting a correlation between the genome-wide meta-analysis results that is 

consistent with the presence of true polygenic effects in the AA cohorts. The LD score regression 

intercept in AA also indicates that there is no evidence of inflated results from population 

stratification or other confounding regardless of the choice of LD reference panel (African 

ancestry intercept=0.9911, se=0.0057; European ancestry intercept=0.9952, se=0.0062; ASW 

intercept=0.9966, se=0.005). Hopefully future analyses will clarify appropriate methods for 

estimating SNP heritability in cohorts of admixed ancestry and increasing samples sizes for AA 

cohorts will allow improved precision in estimating the contribution of polygenic effects to 

alcohol dependence in this population to accompany the corresponding EU ancestry estimates.  

 

12 Gene-level association testing 

Gene-level association tests were performed with MAGMA90 using FUMA118. Analysis was 

performed with default settings for 19,436 protein-coding genes with 1000 Genome Phase 3 

reference data69. Because these tests depend on the LD structure around each gene they were 

performed separately in European and African ancestry cohorts. Results from GWAS of 

unrelated individuals only (i.e. sub-sampling within family cohorts) were used as input to ensure 

valid inference from the input sample sizes and P values for MAGMA. The top results from 
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these gene-based tests are reported in Supplementary Table S5. No genes reach Bonferroni-

corrected significance (P < 2.57E-6 = 0.05 / 19,346 genes) in either ancestry.  

 

13 Genetic correlation 

Genetic correlation of common variant risk for AD with common genetic effects on other traits 

was estimated using LDSR119. Given that the vast majority of available GWAS results of other 

traits of interest is for European-ancestry samples, as well as the issues with LD in admixed AA 

samples as noted above, analysis was restricted to genetic correlation with the GWAS of 

unrelated EU individuals (Ncase=10,206, Ncontrol=28,480).  

 

Where possible, genetic correlation with publicly available GWAS results was computed using 

LD Hub. Traits from LD Hub (http://ldsc.broadinstitute.org/)120 were selected for inclusion in 

this analysis based on relevance to AD and the expected power for LDSR analysis of that trait 

(e.g. based on the reported z-score of the SNP-heritability estimate for the trait). In the interest of 

maximizing power for analysis of correlation with traits of interest to AD, traits were 

additionally filtered to avoid redundancy between traits (e.g. excluding earlier GWAS of 

educational attainment in favor of the most recent published results) to limit the multiple testing 

burden of the overall genetic correlation analysis. Ultimately, LD Hub was used to estimate 

genetic correlation for 24 traits: smoking initiation (i.e. ever vs. never smoked), cessation (i.e. 

former vs. current smoker) and cigarettes per day121; depressive symptoms, neuroticism, and 

subjective well-being122; cross-disorder analysis of 5 disorders from the Psychiatric Genomics 

Consortium123; schizophrenia111; bipolar disorder124; Alzheimer’s disease125; age of first birth and 

number of children126; parents age at death127; coronary artery disease128; Type 2 Diabetes129; 
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heart rate130; HDL cholesterol131; leptin132; serum creatinine133; HbA1C levels134; adult height135; 

body mass index136; and chronotype and sleep duration137.  

 

Genetic correlation for 21 additional traits was computed using the python package ldsc 

(https://github.com/bulik/ldsc). This selection of traits was evaluated using the same criteria as 

the list of traits selected from LD Hub. Analysis was performed with ldsc rather than LD Hub in 

cases where the latest available GWAS data for the trait had not been publicly released and/or 

included in LD Hub’s repository of results at the time of this analysis. GWAS results in this 

category include: cannabis use initiation138; nicotine dependence139; two analyses of alcohol 

consumption140,141; AUDIT scores142; attention deficit/hyperactivity disorder (ADHD)143; major 

depressive disorder113; anorexia nervosa144; autism spectrum disorder145; obsessive-compulsive 

disorder146; educational attainment147; delay discounting148; risk-taking behavior149; Townsend 

deprivation score; liver enzymes GGT, ALT, AST, and ALP150; and intracranial, caudate, and 

putamen brain volumes151. The GWAS of Townsend deprivation score is from an initial 

phenome-wide analysis of 337,199 genotyped individuals from UK Biobank152 

(https://github.com/Nealelab/UK_Biobank_GWAS), and assesses the socioeconomic status of an 

individual’s neighborhood at the time of participation.  

 

For analyses using ldsc, genetic correlation was estimated using GWAS results for common 

HapMap3 SNPs and previously-computed LD scores from 1000 Genomes Project reference data 

on individuals of European ancestry (i.e. conventional “./eur_w_ld_chr/” scores). These LD 

scores are freely available for download from 
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https://data.broadinstitute.org/alkesgroup/LDSCORE/. Both the heritability and genetic 

correlation intercept terms in the regression were left unconstrained for all analyses. 

 

Genetic correlation results for all 45 traits are reported in Supplementary Table S6. All 

correlations were tested for difference from rg=0 and evaluated for nominal (p <0.05) and 

Bonferroni-adjusted (p < 1.11E-3 for 45 traits) significance. Genetic correlation between AD and 

the two alcohol consumption GWAS were additionally tested for rg<1.  

 

We note that there is substantial known sample overlap between our meta-analysis of AD and the 

cohorts including in the GWAS for many of the traits in this genetic correlation analysis. As 

previously described89, the intercept term of LDSR analysis of genetic correlation can be 

interpreted as an index of sample overlap or other correlated confounding between the two 

studies. Evaluation of the intercept term in the current analysis shows noteworthy covariance 

intercepts for many traits, especially for other analyses of psychiatric disorders in the Psychiatric 

Genomics Consortium (Supplementary Table S6). These results are generally consistent with the 

known sample overlap with those studies and highlight the importance of leaving the intercept 

term unconstrained in these LDSR analyses. 

 

14 Polygenic Risk Score Prediction 

In order to evaluate how well polygenic signal in the current meta-analysis generalize beyond 

our cohorts we analyzed polygenic risk scores (PRS) in three external cohorts: ALSPAC, GS, and 

COGA AA fGWAS. Each of these cohorts are described in Section 1.4 and 1.5 above. In addition 

to assessing whether PRS created from the current meta-analysis are predictive of AD-related 
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outcomes, we consider predictive accuracy across ancestry and controlling for the ADH1B 

functional variants or variants associated with alcohol consumption.  

 

14.1 PRS analysis methods  

ALSPAC 

SNPs from the meta-analysis of AD in unrelated genotyped EU individuals (Ncase=8,485, 

Ncontrol=20,272) were clumped to identify independent loci. Summary statistics (p-values and 

log-transformed odds ratios) were then used to derive PRS for ALSPAC participants at 7 p-value 

thresholds: p=0.001, 0.01, 0.10, 0.20, 0.30, 0.40, and 0.50. These scores were tested for 

association with past year alcohol use disorder (AUD) symptom count and diagnosis, with 10 

principal components and sex included as covariates. We report Nagelkerke’s R2 differences 

between a model including the PRS and a model including only principal components and sex as 

predictors of the outcome (AUD diagnosis or symptom count).  

 

GS 

In the GS data, PRS were generated using PRSice153 using the weights from the meta-analysis of 

AD in unrelated genotyped EU individuals (Ncase=8,485, Ncontrol=20,272). An independent PRS 

for alcohol consumption was created using the summary statistics from a previous GWAS of 

alcohol consumption in the UK Biobank141. Clumping of SNPs in GS was performed using an r2 

threshold of 0.1 and a 250 kb window. Thirteen PRS were created using p-value thresholds of 

0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1. PRS were scaled to have a mean 

of 0 and a standard deviation of 1 prior to statistical analyses, such that the β for association 

reported are scaled. Association analyses between PRS and CAGE score was performed in AS-
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REML-R and an inverse relationship matrix created from the kinship information in GS used to 

control for relatedness in the sample. Age, sex and 4 ancestral MDS components were fit as 

covariates. The r2 value within the mixed model was calculated as described by 154 by 

multiplying the PRS by its regression coefficient and dividing this by the variance of CAGE to 

give a coefficient of determination between 0 and 1. For the joint analysis of AD and alcohol 

consumption the most predictive PRS created from each of the two GWAS were entered 

simultaneously into the regression model to estimate their independent effects on CAGE scores.  

 

COGA AA fGWAS 

In the COGA AA fGWAS cohort (N=2,828), an independent sample of African ancestry, PRS 

were created using the summary statistics from the GWAS of unrelated genotyped AA 

individuals (Ncase=2,991, Ncontrol=2,808). PRSice-2153 was used to generate PRS using SNPs with 

minor allele frequency > 0.01, missing genotype rate < 0.1 and HWE p-values > p=1E-06. 

Clumping was done with respect to the linkage disequilibrium (LD) pattern in the 1000 Genome 

Phase 3 African ancestry sample using an r2 threshold of 0.1 and a 250 kb window. A series of 

scores was calculated in COGA that included SNPs meeting increasing p-value thresholds from 

the discovery GWAS sample (p<0.001, p<0.01, p<0.05, p<0.10, p <0.20, p <0.30, p <0.40, p 

<0.50). PRS were also constructed following the same protocol with the results of the GWAS of 

unrelated genotyped EU samples for comparison. Association of each PRS with AD in the 

COGA AA fGWAS was tested using logistic mixed effect models controlling for the first three 

principal components, birth cohort, and sex, and including family id as a random effect to 

account for familial clustering. PRS were scaled to have a mean of 0 and a standard deviation of 

1 prior to statistical analyses. To account for the strongest genome-wide finding in AA, 
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rs2066702 in ADH1B, analyses were rerun for the most predictive threshold in the target sample 

(threshold of p < 0.5, associated with AD at p = 1.92e-7) while including rs2066702 genotype 

(coded 0/1/2) as an additional covariate.  

 

14.2 PRS results 

PRS based on the meta-analysis of AD were significantly predictive of AD outcomes in all three 

tested cohorts. In ALSPAC, the AD PRS nominally predicted up to 0.55% of the variance in 

AUD symptom count (PT<0.10, p=0.0195) and up to 0.51% of the variance in AUD diagnosis 

(PT<0.10, p=0.0169; Supplementary Figure S10A). The AD PRS was also significantly 

predictive of CAGE in GS (maximum R2=0.3%, PT<0.2, p=7.9E-6; Supplementary Figure 

S10B). PRS derived from the AA GWAS of AD predicted up to nearly 1.7% of the variance in 

DSM-IV alcohol dependence in the independent COGA AAfGWAS sample (PT<0.5, R2=1.65 

%, p=1.92E-7; Supplementary Figure S10C). In all three cohorts the best prediction is observed 

when using a moderate p-value threshold, suggesting that polygenic effects on AD risk are 

present in variants beyond the top observed hits in ADH1B. 

 

Notably, the AD PRS still yielded significant variance explained after controlling for other 

genetic factors. In GS, when both the AD and consumption PRS were entered into the same 

regression model the AD PRS continued to significantly predict variance in CAGE (dependence 

PRS: R2=0.0029, p=1.0E-5; consumption PRS: R2=0.0028, p=1.3E-5) with R2 similar to the 

model without the alcohol consumption PRS, suggesting independent effects in the current AD 

PRS. In the COGA AAfGWAS, even after the inclusion of rs2066702 genotype in the model the 

alcohol dependence PRS remained significantly associated with alcohol dependence (p = 2.5E-
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07) and accounted for 1.61% of the variance, again suggesting the current AD GWAS does 

capture polygenic effects beyond the rs2066702 ADH1B coding variant.  

 

Lastly, the PRS results demonstrate the better predictive accuracy of ancestry-matched PRS. PRS 

generated from the unrelated EU discovery GWAS only predicted modest variance in alcohol 

dependence in the COGA AAfGWAS sample (maximum Nagelkerke R2 of 0.37%, p=0.01; 

Supplementary Figure S10D), unlike the nearly 1.7% of variance explained by the PRS 

computed from AA GWAS results. Importantly, this better prediction is observed despite the 

substantially smaller discovery sample size for the AA PRS (Ncase=2,991, Ncontrol=2,808) 

compared to the EU PRS (Ncase=8,485, Ncontrol=20,272). This result is consistent with previous 

work showing poor performance of PRS when applied to ancestries differing from the GWAS 

discovery sample155.  
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B. Supplementary Note 

1 Relationship of DSM-IV alcohol dependence to other potential case 

definitions 

Save one study (MCTFR) that defined cases using DSM-IIIR criteria, all other cases were 

defined using DSM-IV criteria. There are subtle distinctions between the two diagnostic 

classification versions. For instance, DSM-IIIR requires the endorsement of ≥3 of 9 criteria, 

(DSM-IV requires ≥3 of 7 in the same 12 months) of which 8 criteria are identical to the DSM-

IV criteria (with withdrawal being further divided into experience of symptoms and use of 

substance to alleviate the symptoms) while 1 criterion (intoxication or withdrawal hindering role 

obligations and in hazardous situations) broadly reflects DSM-IV abuse criteria. Thus, there is a 

measure of criterion redundancy in DSM-IIIR but across-classification concordance has been 

shown to be high in adults156,157 (e.g., kappa 0.92) and adolescents158 (e.g., kappa 0.96). The 

recent DSM-5 classification system eliminates the diagnosis of dependence in favor of a severity 

continuum (i.e., alcohol use disorder) based on the sum of the 7 DSM-IV dependence criteria, 3 

DSM-IV abuse criteria (without legal problems) and craving (0-1: unaffected; 2-3 mild; 4-5 

moderate; 6-11 severe). Application of DSM-5 criteria modestly increased the prevalence of 

AUD potentially due to the inclusion of individuals with 2 or more criteria159; studies also report 

that those diagnosed under the DSM-5 but not meeting criteria for DSM-IV dependence may 

also be less severely affected159,160. Thus, given that a majority of our studies preceded the 

development of DSM-5 criteria, we opted to use DSM-IV dependence as our case definition. 
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2 Principal components analysis in recently admixed samples 

Principal components from PCA are commonly used as covariates in GWAS to control for 

population structure within a sample in order to protect against inflated results due to population 

stratification63. As part of this PCA, it is important to prune markers for LD in order to avoid 

regions of high LD having disproportionate influence on the PCA solution64. This pruning also 

improves the correlation of PCs with geographic population structure161.  

 

One common diagnostic for proper LD pruning in PCA is to test the correlation of genome-wide 

SNPs with each computed PC (e.g. in ricopili). Strong genome-wide signal is generally 

consistent with genetic drift along the PC’s axis of variation, while strong association with 

individual loci is likely to reflect either artifacts from LD among SNPs in that region or 

selection62. For instance, SNPs in the LCT (lactase) region of chromosome 2 will often strongly 

correlate with PCs reflecting northern vs. southern European ancestry.  

 

In applying this diagnostic in PCA of the AA cohorts we observed a pattern of strong association 

between PCs and SNPs in broad loci (e.g. Supplementary Figure S13A in ADAA cohort). Such 

loci were consistently observed for association with PCs within each cohort after the first few 

dimensions. The locations of these loci across the genome were not consistent across cohorts, as 

might be expected if these loci represented signatures of selection in the African-American 

population. More importantly, the pattern of loci associated with each PC was not consistent 

when performing PCA with different random subsets of SNPs or when removing individual 

chromosomes from the PCA computation. More stringent LD pruning prior to PCA also did not 
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remove the pattern of association with PCs. Together, this suggests that the strong association of 

these loci with a given PC does not indicate selection along some dimension of genetic ancestry. 

 

Instead we hypothesize that the loci reflect regions where local genetic ancestry deviates from 

the individual’s genome-wide average ancestry. In other words, if the first 1-2 PCs in an AA 

cohort capture the relative overall admixture between European and African ancestry, then the 

next set of PCs may capture deviations from that grand mean admixture proportion at the scale of 

regional ancestry tracts. The inconsistent genomic location of SNPs correlated with these PCs 

would thus be hypothesized to reflect the relatively stochastic variation in which regions of the 

genome show similar enough patterns of deviation from average admixture across individuals 

such that they form a primary axis of genetic variation in a given cohort. This hypothesis is also 

consistent with the top SNPs in these PC-associated loci being strongly ancestry informative 

(e.g. rs1991442, lead SNP on chromosome 3 for association with PC 8 in ADAA; ancestral A 

allele frequency 97% in African ancestry and 44% European ancestry). 

 

To evaluate this hypothesis, we performed local ancestry calling in the ADAA cohort following 

the protocol of Martin et al.155 (available at https://github.com/armartin/ancestry_pipeline). 

Briefly, QCed pre-imputation genotype data for ADAA was merged with genotype data for 

individuals of European or African ancestry from 1000 Genomes Phase 3 (excluding Americans 

of African Ancestry in the Southwestern United States [ASW])69. The merged data was then 

phased using HAPI-UR162 and local ancestry tracts were called using RFMix163 to identify 

African and European ancestry haplotypes for each individual. These local ancestry tracts were 

then processed to estimate each individual’s global (genome-wide) proportion of African and 
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European ancestry as well as the proportions in each chromosome. Chromosome 6 was excluded 

due to the computational complexity of calling local ancestry across the HLA region in the full 

ADAA cohort. 

 

Supplementary Figure S13B shows the test of association between an individual’s proportion of 

African ancestry on each chromosome and the calculated value of the 8th principal component, 

controlling for the individual’s global (genome-wide) proportion of African ancestry is included 

as a covariate. Comparison to the plot of SNP associations with this PC in Supplementary Figure 

S13A suggests that when loci on a given chromosome are strongly associated with the PC there 

is a strong relationship of that PC with local African vs. European ancestry proportions on that 

chromosome. Similar patterns were observed for other PCs in the ADAA cohort. These findings 

are highly consistent with our hypothesis that these PCs directly reflect these variations in local 

ancestry. 

 

 If these PCs are indeed measures of deviation of local ancestry proportion from the individual’s 

global ancestry proportion, should they still be included as covariates in the GWAS for each 

cohort? We note that the purpose of PC covariates is to protect against population stratification. 

Thus for these local ancestry PCs their value as covariates depends on whether local ancestry, 

beyond the global ancestry proportions, are correlated with non-genetic factors related to alcohol 

dependence (AD) risk or study ascertainment. This could occur for example if local ancestry 

patterns differentiate between AA sub-populations or if ancestry-informative markers in those 

regions are strongly associated with AD. 
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If, however, control for local ancestry is needed in the AA GWAS, that would imply a need for 

more than the handful of standard PC covariates. Indeed the 8th PC shown in Supplementary 

Figure S13A would not be included as a covariate under our current protocol. Instead, if control 

for local ancestry is desired it may be preferable to call local ancestry directly within each cohort 

for use as a covariate rather than using these later PCs as a proxy for that structure. 

 

To evaluate whether such control is necessary in our data, we considered the impact of including 

or omitting these local ancestry PCs as covariates in GWAS for each AA cohort, up to the 

normal number of PCs for each cohort under our current analysis protocol (i.e. based on sample 

size). To that end, we performed GWAS of each AA cohort with either the full set of PCs or a 

reduced set of PCs that omits PCs after the first that showed the characteristic pattern of strong 

association between the PC and particular loci (i.e. see Supplementary Table S1). Each set of 

GWAS was then meta-analyzed following the same procedure as the primary meta-analysis, and 

inflation of genome-wide test statistics was compared.  

 

We observed effectively identical inflation of GWAS results with all PCs (𝜆fg  = 0.9930) vs. 

GWAS excluding PCs that appear to reflect local ancestry (𝜆fg  = 0.9935). QQ plots of the 

GWAS results also did not show any substantive differences in the tail of the distribution 

(Supplementary Figure S14). Notably the GWAS with limited PCs appears well controlled for 

population structure in an absolute sense as well as in comparison to the full PC analysis. 

 

On this basis, we adopted the analysis with only top PCs (i.e. PCs without localized SNP 

associations likely to reflect local ancestry) as the primary analysis method for the AA cohorts. 
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Using this approach, there was negligible evidence of inflation of GWAS results in the AA 

cohorts (lambda=1.007). Further work may want to evaluate whether this approach is beneficial 

in other AA cohorts and whether controlling directly for local ancestry provides additional 

benefits. For the present analysis, however, we anticipate that this procedure controlling for only 

top PCs is sufficient to control for population stratification in the AA cohorts. 

 

3 Effective sample size in family-based association models 

3.1 Motivation 

For the genome-wide meta-analysis of AD it is necessary to define weights for the contribution 

of each cohort to the meta-analysis. In the general case, fixed effects meta-analysis for SNP j 

with Z statistics resulting from studies k=1,…,K can be given by 

𝑍' =
∑ 𝑍'<𝑤'<<

∑ 𝑤'<<
 

Ideally, i.e. to maximize power, the weights wjk should be proportional to the inverse of the 

sampling variance of zjk. When comparable effects sizes (e.g. odds ratios) are available for all 

studies then the inverse standard error of the effects size can be used (wjk = 1/SE2jk). 

Alternatively, weights defined using sample size (wjk = Njk) may asymptotically equivalent to 

inverse variance weights when the study design and trait distribution is identical across 

studies164,165. 

 

For the current meta-analysis, however, comparable effect sizes are not universally available, 

and the study design is not consistent across all cohorts. As a result, weighting by simple sample 

size would not be optimal to maximize power in the meta-analysis. This is true even in the 
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absence of the family-based cohorts, since simple sample size weighting would not account for 

differences in the case/control ratio across cohorts91. Instead we define weights based on 

estimates of the effective sample size of each cohort, accounting for the differences in study 

design and case/control balance. 

 

3.2 Defining weights 

Unrelated case/control cohorts 

For GWAS of unrelated cases and controls, the effective sample size is given by 

𝑁kk =
4

1
𝑁km

+ 1
𝑁kn

 

Where Nca and Nco are the number of cases and controls in the study, respectively91,166. The 

resulting value can be interpreted as the expected sample size that would be required to have the 

same statistical power as the observed study if equal numbers of cases and controls were 

included instead of the observed case/control ratio.  

 

Intuitively, this calculation is consistent with the test of association for a given SNP being a test 

of the difference in allele frequency between cases and controls. In particular, it reflects the 

reduced power to distinguish allele frequencies when Nca is small compared to Nco due to the 

large uncertainty about frequency in cases regardless of the certainty about the control allele 

frequency (or equivalently when Nco is small). 
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For meta-analysis, we define weights 𝑤'< = 𝑁kk,< based on this effective sample size for GWAS 

of unrelated case/control cohorts. This effective sample size also serves as our baseline for 

defining weights for the other study designs. 

 

Simple family-based cohorts (GEE) 

To define effective sample size weights for the family-based cohorts analyzed with the GEE 

model we want to account for (a) the impact of relatedness on power for the GEE model and (b) 

the case/control balance. The goal is to define an effective sample size that is roughly 

comparable to the 𝑁kk,<  defined for case/control cohorts. 

 

It can be shown167,168 that asymptotically the GEE model has power proportional to 

𝑏o
𝑁pmq
𝑣s

 

given the true effect size b, the number of family clusters Nfam, and the robust sampling variance 

vR. Following the previous derivations167,168 we can evaluate vR under a simplified model with a 

binary exposure that occurs with probability π, with the binary outcome occurring with 

probability P0 when the exposure is absent and P1 when the exposure is present. This corresponds 

to the simple case where a given SNP is rare enough to have no observed homozygotes with the 

minor allele (making the SNP exposure binary) but is easily generalizable. Assuming that the 

working correlation structure R has been correctly specified with compound symmetry 

(exchangeable) correlations within family, then we can fill in for vR  

𝑣s =
1

𝟏u𝑹wx𝟏 y
1

𝜋𝑃z(1 − 𝑃z)
+

1
(1 − 𝜋)𝑃x(1 − 𝑃x)

{ 
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=
𝑁pmq

∑ 𝑛&
1 + (𝑛& − 1)𝜌&

y
1

𝜋𝑃z(1 − 𝑃z)
+

1
(1 − 𝜋)𝑃x(1 − 𝑃x)

{ 

where 1 is a Nx1 vector of ones, ni is the number of individuals within each family i, and 𝜌 is the 

within-family phenotypic correlation167,168. Returning to the expression for power in the GEE 

model, this yields  

𝑏
}

𝑁pmq
𝑁pmq

∑ 𝑛&
1 + (𝑛& − 1)𝜌&

y 1
𝜋𝑃z(1 − 𝑃z)

+ 1
(1 − 𝜋)𝑃x(1 − 𝑃x)

{
 

Assuming the effect of a single SNP in small P0≈P1, allowing us to simplify 

𝑏
}

𝑁pmq
𝑁pmq

∑ 𝑛&
1 + (𝑛& − 1)𝜌&

y 1
𝜋𝑃(1 − 𝑃) +

1
(1 − 𝜋)𝑃(1 − 𝑃){

 

= 𝑏
}

1
1

∑ 𝑛&
1 + (𝑛& − 1)𝜌&

y 1
𝜋(1 − 𝜋)𝑃(1 − 𝑃){

 

= 𝑏~𝜋(1 − 𝜋)~𝑃(1 − 𝑃)o�
𝑛&

1 + (𝑛& − 1)𝜌&

 

We note that π is a function of the minor allele frequency for the SNP, and can be thought of as 

standardizing the effect size b. The remaining terms reflect the impact of case/control balance 

(i.e. P[1-P]) and the effective sample size for the related individuals. In particular, the last term 

simplifies to √𝑁 if each family only contains 1 individual (i.e. ni = 1) or if there is no correlation 

between family members, making the observations functionally independent (𝜌 = 0). At the other 
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extreme, if all family members are perfectly correlated (𝜌 = 1) then the last term reduces to the 

number of families. The denominator of this term is sometimes known as the design effect. 

 

To align this with the effective sample size for unrelated case/control cohorts defined above, we 

note that the effective sample size function for unrelated cohorts can be rewritten as a function of 

P(1-P). 

𝑁kk =
4

1
𝑁km

+ 1
𝑁kn

=
4

1
𝑃𝑁 +

1
(1 − 𝑃)𝑁

=
4
1

𝑃(1 − 𝑃)𝑁
= 4𝑃(1 − 𝑃)𝑁 

The scaling by 4 ensures that the effective sample size equals the sample size in a balanced 

case/control design (i.e. P=0.5). Combining this scaling with the above derivation for the power 

for association testing in the GEE model implies a corresponding effective sample size of 

𝑁d�� = 4𝑃(1 − 𝑃)	�
𝑛&

1 + (𝑛& − 1)𝜌"&

 

where the estimated within-family 𝜌", computed under the null model with no SNP effects, is 

substituted for the true 𝜌 to enable estimation of Ngee. As desired, this expression for Ngee clearly 

reflects the impact of case/control balance and family structure on the effective sample size of 

the GEE model. We thus use 𝑤'< = 𝑁d��,< for as meta-analysis weights for the family-based 

cohorts analyzed with the GEE model. 

 

Complex family-based cohorts (Logistic mixed model) 

To define an effective sample size for the logistic mixed model consistent with the above values 

for the GEE and case/control models, we first note that specifying vR as a function of 1’R-11 in 

the above derivation for the GEE model allows generalization to other correlation structures R. 

Derivations by Dang et al.169 show that the power of generalized linear mixed models (GLMMs) 
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indeed depends on 1’R-11, where R is the marginal phenotypic correlation matrix (i.e. not 

conditional on random effects), with remaining scaling parameters matching the existing 

derivation for the GEE167. 

For the mixed model fit in the current study (described in Supplementary Methods Section 5.2), 

it is evident that under the null hypothesis of no effect for the target SNP 

𝑐𝑜𝑟(𝑌∗) ∝ 𝜏𝑲 +	
𝜋a

3 𝑰 

Substituting observed values and assuming that the kinship matrix K is standardized to have 

diag(K)=1, we can then compute 

𝑹� =
1

𝜏̂ + V𝜋
a

3 W
�𝜏̂𝑲� +	

𝜋a

3 𝑰� 

and following the same derivation as the GEE model approximate the effective sample size for 

the logistic mixed model as: 

𝑁d=qq = 4𝑃(1 − 𝑃)	𝟏u𝑹�wx𝟏 

For this calculation we use GRMs computed from genome-wide data to estimate K, with the 

observed GRM standardized to a correlation matrix. For numerical stability in inverting R, 

estimated relationships between families and pairwise relatedness values < 0.05 in K (after 

standardization) were set to zero. The variance parameter 𝜏 is estimated in each cohort under the 

null model with no covariates. We use the resulting estimated effective sample size as weights 

for meta-analysis (𝑤'< = 𝑁d=qq,<). 

 

Summary statistic cohorts 

For cohorts contributing summary statistics rather than genotyped data, we choose to define 

weights using Ncc as if they were unrelated case/control samples. This is likely sub-optimal since 
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most of the summary statistic cohorts are tested using some form of linear mixed model 

(Supplementary Table S1). It is a pragmatic solution, however, since variance component 

estimates for these cohorts are generally unavailable to estimate effective sample sizes analogous 

to Nglmm.  

 

3.3 Limitations 

It’s important to emphasize that these effective sample size estimates are somewhat heuristic and 

are only intended as an approximation for the purpose of weighting the relative power between 

the cohorts. This is especially true of Nglmm, where we largely rely upon analogy to a GEE-based 

derivation for effective sample size, and for the pragmatic use of Ncc for summary statistic 

cohorts. In addition, it may be noted that our effective sample size calculations do not account 

for: 

• Differences in allele frequency between cohorts. Inverse standard error-based weights are 

expected to reflect these differences, but sample size-based weights do not. The impact of 

this is likely most notable in the trans-ancestral analysis, which is part of the motivation 

for the secondary trans-ancestral meta-analysis with more thorough modelling of effect 

sizes. 

•  Residual correlation structure captured by robust sandwich standard errors in the GEE 

model. Specifically, the above derivation of Ngee assumes that the working correlation 

structure is correctly specified. The use of robust sandwich SEs in the GEE model 

provides some protection for inference in genome-wide association when the working 

correlation is misspecified, but our estimate of the effective sample size does not have the 

same protection. 
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• Uncertainty in estimating 𝜌 and 𝜏. We use plug-in estimates for both parameters under 

the null model, but this does create uncertainty in our estimate of the effective sample 

size for each cohort. 

 

Despite these limitations, the defined effective sample sizes appear to perform reasonably well. 

The estimated values appear consistent with expectations given the sample size, case/control 

balance, and degree of relatedness in each cohort. In addition, informal simulations suggest that 

Ngee and Nglmm scale as intended with test statistics across subsamples of the COGA-fam cohort 

under the GEE and logistic mixed models, though with some indication that the family-based 

cohorts are modestly under-weighted compared to case/control cohorts (data not shown).  

 

Importantly, the choice of these effective sample size weights wjk is only expected to affect the 

power of the meta-analysis. The meta-analysis for null SNPs (i.e. SNPs with no true association 

with AD) will still have the desired null distribution and Type I error rate with sub-optimal 

weights. Thus any minor biases in our approximations used to define wjk only serve to attenuate 

power in the meta-analysis. Still, we anticipate our estimated effective sample sizes are a good 

approximation for the relative power of each study, and thus should at least approach optimal 

power for the genome-wide meta-analysis in the current study. 
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