SUPPLEMENTARY INFORMATION

FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein

Atsushi Taguchi¹, Michael A. Welsh¹, Lindsey S. Marmont¹, Wonsik Lee^{1,2}, Megan Sjodt³, Andrew C. Kruse³, Daniel Kahne^{3,4}, Thomas G. Bernhardt^{1,5*} and Suzanne Walker^{1,4*}

¹ Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA

² School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea

³ Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA

⁴ Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA

⁵ Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA

* email: suzanne_walker@hms.harvard.edu; thomas_bernhardt@hms.harvard.edu

			TM1				M2
RodA	Streptococcus thermophilus Staphylococcus aureus Pseudomonas aeruginosa Streptococcus pneumoniae Thermus thermophilus Bacillus subtilis	10 MAKSKNTIESRID MIYSSRQQPDKHWLRK -MRRRASLLQRLH MKYSSRQQPTTHWLRK MSRYKKQQSPFYQG	20 YSILPVLILLV VIWVLVATIAVIA IDGILLLLLIG IDWILIALIMIA YIWGLVFLVAAIV DLIFIFGVFF	30 GMVSIFIAT IFSVLLINS ATGLFVLYS IISVTTIS ALGFVNLGS IISVVSIYA	40 NFDYPK AMGGGQ ASGKS AMGGGQ AGQFGQ AGQFGQ	50 NLVHVMSQQLI YSANFGIRQIF WDMLMKQAT YSANFGIRQII YLLYRQSV YGNTDWIQQIV	WIFLGSV YYYILGAI SFGLGLG YYILGAI VALGLGLL VFYLLGAV
FtsW	Streptococcus thermophilus Staphylococcus aureus Pseudomonas aeruginosa Streptococcus pneumoniae Thermus thermophilus Bacillus subtilis	MKIEKKHL MKNFRSILRYIGKTSKF MLSVLRPFPSPLLSRHGID MKISKRHL MSRGPRPPP MLKKMLKS	LUYTILIPYLIIS ILYPLLVTYIVIS LUFPLLAGCLAIL LNYSILIPYLLIS KRPPPPRLRPHRR YLYSLIFAIVLIC	VVGLIVVY LIGLVMVY GLGLVMVT ILGLIVVY GHGGARPPP GFGLVMVY	TTSARLVT ASMVPATKGTLTG ASSEVAAAQ TTSAILIE GSPPPG SSMITAVS	-FGANPFASVMNQGA GIDVPGTYFYNRQLA SGNPLYFSVRHLI -EGKSALQLVRNQGI RYGVSSNFFFMRQLE	AFWLVSLL AYVIMSFI IYLVIGLI IFWIVSLI GAALL FALIAGGA
RodA	Streptococcus thermophilus Staphylococcus aureus Pseudomonas aeruginosa Streptococcus pneumoniae Thermus thermophilus Bacillus subtilis	60 70 LAFVVMLFNTEFLWKVTPW FAGIIMFISPKKIKHYTYL MMVVIAQIEPRFMA LALIVMISPKKIKNNTYI LAFLLQFLSRRLF AITVLLYFDLEQLEKLSLY	80 90 LYIFG-LGLMVLP LYFLICLLIGLI RWVPLGYLVGVAL WYIFFCILLLGLI GLAYPLYGASLLI IFIIGILSLIILK	10 IVFYSPSLV VIPESPITP IVVVDVI H IIPETPITP IALVLVV R ISPES-IAP	00 110 ASTGAKNAVSIGS INGAKSAYTFGP DAKGATAINIPG INGAKSAYAFGP EINGARAGFVIG- VIKGAKSAFAGR	120 VTLFUESFMKISYI ISIQ-ESEFMKIILI VIRFUESFMKILME ISIQ-ESEFMKILI ISIQ-ESEFMKUGLI ITIQ-ESEFMKVGLI	130 1 ILFLSRIG ILALARVV PMTVAWYL ILALAKIV LLALAKIV LLALAKAL IMMLASVI
FtsW	Streptococcus thermophilus Staphylococcus aureus Pseudomonas aeruginosa Streptococcus pneumoniae Thermus thermophilus Bacillus subtilis	FIFFIYRLKLNFLRKD IVFFIAFLMNVKLLSNI SCGLTMMVPMATWQRW LIALIYKLRLDFLRNE ALVLGHLLPPRLLL LFILMALFPYKALAHQ	KVLGAVIIVEIIL KVQKGMIITIVSL GWKLLLVAFGLLV RLIILVILIEMLI RYALHALVGVLLL KFQKGILLVSVLA	LVVAKFFTK LLLTLVI K LVITPGI R LFLARFI I LVLVLLV D LISLFVF H	EINGENGRIVLGP DINGSKSNINLGF EVNSSMENIGFGL SVNGUYGRISVAG GPGGVRENFYLG- VAGNLQSNFKIGG	L-SFURADYLKVIVV M-NLASDLLIAII F-NI ESDIAKVCVV /-TI PADYLLIII PVALOFSDLAKLALI M-SI FCDFVKLVVI	WYLMHTF ILYIPFMI /IFMMGYL WYLMHRF ILYLSSFV ILYLMAVY
RodA	Streptococcus thermophilus Staphylococcus aureus Pseudomonas aeruginosa Streptococcus pneumoniae Thermus thermophilus Bacillus subtilis	TAG 140 VRAKQKEVTELQDD SRHNQFTFNKSFQSD SKRRNLPPG EGRPIAR GKANPKGV-RTLRDD	150 WLLLFQY LLLFFKI LKHMVIS VWDYALP IHLLLKI	TM5 160 VAVTLPVLG IGVSLVPSI LAIIITPFV IGISLVPMI ALLTLPVVG AGVAVIPVG	170 LVLOG M TALV ILLON L TTLV ILLOP L TAML ILLOP L TAML LLOP L GALV LLOP L GALV	TMS 180 190 FLAILAGIIVVS IS LAAIIAGVMLVS IS LAAIIGGVLFVC LL LCAIIVGIMLVSSIS VLFGVFVVVFVR LL CMFIVLVMVFMS IN	WRIILPV SWRIILPV GWRTLAPI RWRWIVGA FWRILAPI PWRHLLVG WKLIAII
FtsW	Streptococcus thermophilus Staphylococcus aureus Pseudomonas aeruginosa Streptococcus pneumoniae Thermus thermophilus Bacillus subtilis	SKQQ-SAIEHYDYQALTKN SKKM-PRVLSKPKLILSP- IRRQ-QEVRESWMG SKQQ-EELATYDPQVLTQN GRRGE AKKQ-SYIDHLLTGVAPP-	RWIPRTKEEFNDW FFKP QWLPRAFNDW DYPILGP	RYYLLVMIG IVLALGCTF FVVLLPMAG RFVLLVLIG VLAVGSLVG VVMTLIICG	VAIQPILENAAI VFLQKIV QTLL LLREPIFATVV SLGFPILONATI VLVEPIFATAAF IAMOPIFTAMI	IVLTTVVMFSIS ILIILVAIIFYSSIC MMGAAAAMLFLG VC LVLVSLIMYTVSSI LAGLAVLLFVLA IF IGLIATCMILCSFS	SYRWFTAL SVNKV SLFRFGLM AYRWFSTI PWPRLLGM SGKTL
RodA	Streptococcus thermophilus Staphylococcus aureus Pseudomonas aeruginosa Streptococcus pneumoniae Thermus thermophilus Bacillus subtilis	210 VLVFAASIALFIMVFIT FITGIVGAMTVILGILY VSAAVPIAVAMWFF FITVAVLGSSIILAIIY LFALALLVFTAVWP AGSGILLISLILLVMIN	D	220 WGKEILLKL APALIENLL KPSLIEKTL FPD-VAKSV	230 24 GVQTYQINGISAW GVQLYQMGQINSW IMHDYQKQQVLTF HIKMYQMGQINSW NLKPYQRERVLIV GIQDYQIKQVTSW	250 DEFTYADGIAE LD YTYSSGOG LD ESDPLGTGV M YAYSNGOG LD YRDPLGQGE VSASNETQEDSNDSV	FQQTQGMI (HLTESLK VNIIQSKA (HLTESLK FQVIQSTI VQVDQAIM
FtsW	Streptococcus thermophilus Staphylococcus aureus Pseudomonas aeruginosa Streptococcus pneumoniae Thermus thermophilus Bacillus subtilis	FAGIVGLSSAFLGLIAL LRFGIPAVLGFLVVFVI VLLAVGAVVLLIQTQPY LALVSAASVFVLTTISL GLAVALVVLPFSGLYLAQF VRLVILGGIVFILVSPI	VGVQNMAKVPVFG ALMAGWLPSY- RIGVETFSKIPVFG R IYLNQDKILTEG-		YVAKEFAAY LTARFSTL MARLINF YVAKEFSAF YVSERFANF RLARFESL	FNEFKDLTDSGI TDFPQFESGTG TDFWADQF-GAG FNLFADRADAGI VDYLQGESEPGGGA 2DFKYANSSGI	QLSHSYY (HISNSLL (QLSQALI HQLANSYF (QVVQAKK LQVINSYY TM9
RodA	Streptococcus thermophilus Staphylococcus aureus Pseudomonas aeruginosa Streptococcus pneumoniae Thermus thermophilus Bacillus subtilis	260 270 SIGTOGIYOKFNHL HIGSOLLIKYNHG HIGSOLFKK WILGTOSH HIGSOLFKKYNHG HIGSOLFKK YGQGTQAQ HIGSOLFKK YGQGTQAQ	280 DLNV VRESIM F EVYI NH OFF DF PSH OFF GFI FRH OFF KVYV ST F	290 TVIABDFEL SVIGBILEF AVLGBIFEL SVIGBIEF SVWADJWEF SIIGBSFEF	300 3 VEGELVLLTYLFL ISVILILIFLFL VCLLIVLYLLL IAVIILLIFLAL VVVGLLGIYGLL ICAIVVIMFFFL	0 320 IYRM-LRVTFKSN IFHL-IRLAAKIE ISRGLVITAQAQI IFHL-IRLAIKTT LARLFALALACPF IYRL-VVLIDKIHPF	-NR YTFI -DQ NKIF -LYGKLL -SS NKVF R-LSDRLF -NR ASFF
FtsW	Streptococcus thermophilus Staphylococcus aureus Pseudomonas aeruginosa Streptococcus pneumoniae Thermus thermophilus Bacillus subtilis	MSNGWEGL-LGNSIEK IGNGVFCK-LGNSAK FGGGMICM-LGNSIQK MVNGWFGL-LGNSICK LLLGGFFQ-LGSICK ISSGIFGL-LGESIQK	TGYLPEAT DEVE LGYLPEAH DEVE QFYLPEAH DEVE RGYLPEAH DEVE YBHLPEAHNIMVE YGYLPESH DETM	SIVIDƏLƏL Ailodələl Avladələ Sividəfəf Asvvfatew Avla də ləi	IBAGLILALLFFL IGGLUVITLEFFI VALATVALFVFV VASLILALLFFM LGAVVFLLYTLI FCVLFVIFLLGFV	ILRIMIVGVKAF VYRAFQFANKTS SLRALYIGIWAEQAK ILRIILVGIRAE LLRSLAVGLAI VIKGFYIARKCE	RNPONSMM SSYOYKLV QFOSAYV CNPONAMV LKGGERLL CDPOGSLL
RodA	Streptococcus thermophilus Staphylococcus aureus Pseudomonas aeruginosa Streptococcus pneumoniae Thermus thermophilus Bacillus subtilis	330 340 STGLIMMIVFHIFENIAA IVGFVTLLVFHILQIIMT AGGITMTFFVVVVIIMU LIGYISLLVFHILQIIMT LSGFAGMLGFQVVVILVA CVGYTALIVIHTFONIGM	350 36 VILELTGIPEF IQLIPITCIPF SCLEVVCVPFF IQLIPITCIPF ICVMPVTCIPF IIIMEVTCIPFF	D 3' ISQCCSSLI: ISYCCSALW: ISYCCSALW: ISYCCSALW: FSYCCSSLI: VSYCCSSTL:	70 380 SNLIGVGLVLSMA SMMTGIGIVLSTY TLLSGFGVLMSIH SLMLGIGVILSIY ATLAGLGLVLLVH STLIGFGIVYNAS	390 YHTN-LNEENKILLA YHEP-KRYVDLYHPP THRK-WIAQV YHQK-PASKDA DRY-QD VQLT-KYRSYLFNS-	400 AMSRRMRA (SN
FtsW	Streptococcus thermophilus Staphylococcus aureus Pseudomonas aeruginosa Streptococcus pneumoniae Thermus thermophilus Bacillus subtilis	ALGVGALMLMQVFVÄIGI CVGIATYFGSQTFVÄIGI AYGLAFLWIGQFLIJIV ALGVGGMMLVQVFVÄIGI ALGUGLYLALQAALITV AIGISSMIALQSFIÄLGV	SCLIPSTGVTFPF SATIPLTGVPFPF VCLIPTKSLTIPF SCLIPSTGVTFPF LCVLPVTGVPFPL SCLIPITGVTFPF	LSQCCNSLL' ISFCCSSMI LSYCCSSLV LSQCCNSLL' VSYCCSSLL' ISYCCSSLV	VTSVGIAFVLNIA SLSIAMGLLLIVG ICCACLGMLLRIE VLSVAVAFVLNID VSGFAVGLLSRLA LLLGSMGILANIS	ANEK-RDNIVQAIER QIK-VDQQRKKQQ- WERR-THLGSEEYER ASEK-RAKLYR REAAERPRRKGVAR- MFVK-YSENKKKER	EGLSQTQE Q FNEEDFAD E PLAPKGMK
RodA	Streptococcus thermophilus Staphylococcus aureus Pseudomonas aeruginosa Streptococcus pneumoniae Thermus thermophilus Bacillus subtilis	410 420 SGTSKVKAVSKTKTKKNKP	430 SKSAIKASQELVK	440 I AKDTVDKAT	450 I VKLRQTISQIMPS	460 470 HQGKRRKGSKKKPT	'RKH
FtsW	Streptococcus thermophilus Staphylococcus aureus Pseudomonas aeruginosa Streptococcus pneumoniae Thermus thermophilus Bacillus subtilis	LENQNEKIVPLRRSR KVDIRRQFN ER LENQPMNLLLK KKQLKKTVYL					

Supplementary Figure 1: Sequence alignment of FtsW and RodA. Sequence conservation analysis of 20 RodA sequences and 20 FtsW sequences from diverse taxa was performed as described previously.¹ Representative examples of RodA and FtsW from 6 species are shown. Residues with 98%, 80% and 60% identity in the 40 sequences are colored in black, gray and light gray, respectively. Secondary structure elements are shown above the alignment based on the *T. thermophilus* RodA crystal structure.¹ The red asterisk (*) denotes the conserved aspartate residue mutated in this study. The blue asterisk (*) highlights residues that were previously reported to be essential in *B. subtilis* RodA polymerase activity *in vitro*.^{1,2}

Supplementary Figure 2: Coomassie-stained gels of the *Staphylococcus* and *Streptococcus* FtsW and bPBPs with $\sim 2 \mu g$ of total protein loaded per lane. Similar results were obtained three times for FtsW and two times for bPBPs.

St = S. thermophilus; Sp = S. pneumoniae; Sa = S. aureus

 $SpPBP2x^* = SpPBP2x^{S337A}$; $SaPBP1^* = SaPBP1^{S314A}$; $StPBP2x^* = StPBP2x^{S343A}$

 $StPBP2x^{\Delta TM} = StPBP2x^{G53-D755}$

 $StPBP2b^{TM}2x^{\Delta TM} = StPBP2b^{M1-M58}StPBP2x^{G53-D755}$

 $StPBP2x^{TM}2b^{\Delta TM} = StPBP2x^{M1-I52}StPBP2b^{Q59-H704}$

 $SpPBP2b^{TM}2x^{\Delta TM} = SpPBP2b^{M6-Y38}SpPBP2x^{T50-D750}$

 $SpPBP2x^{TM}2b^{\Delta TM} = SpPBP2x^{M1-G49}SpPBP2b^{M39-N685}$

Supplementary Figure 3: *S. aureus* FtsW polymerizes *S. aureus* Lipid II in the presence of its cognate bPBP. *S. aureus* FtsW (2.5 μ M) or SgtB (MGT; 1 μ M) was incubated with Lipid II (10 μ M) and PBP1* (2.5 μ M). Moenomycin (2 μ M) was added to all reactions to eliminate background polymerization by aPBPs or MGTs. The resulting polymer was labeled with BDL and detected by western blot as in Fig. 1c. Bands observed around 45 kDa and 85 kDa correspond to *E. faecalis* PBPX and *S. aureus* PBP1*, respectively, which bind BDL. A representative blot of four independent experiments is shown. An asterisk indicates a catalytically inactive variant. FtsW* = *Sa*FtsW^{D287A}; PBP1* = *Sa*PBP1^{S314A}

Supplementary Figure 4: *S. thermophilus* FtsW polymerizes *E. faecalis* Lipid II in the presence of moenomycin. *S. thermophilus* FtsW (0.5 μ M), *S. aureus* SgtB (MGT; 0.5 μ M) and *S. pneumoniae* PBP1a (aPBP; 0.5 μ M) were incubated with Lipid II (10 μ M). Moenomycin (5 μ M) was added to the indicated samples. Polymer was labeled with BDL using *Ef*PBPX and detected by western blot as in Fig 1c. A representative blot of two independent experiments is shown. An asterisk indicates a catalytically inactive variant. PBP2x* = *St*PBP2x^{S343A}

Supplementary Figure 5: *S. thermophilus* FtsW requires divalent cations for PGT activity. (a) *S. thermophilus* FtsW (0.5 μ M) and PBP2x* (1 μ M) were combined with *E. faecalis* Lipid II (10 μ M) in a reaction buffer supplemented with EDTA (10 mM) and the indicated metal chloride (12.5 mM). Analogous reactions were conducted with *S. aureus* SgtB (MGT; 0.5 μ M) and *S. pneumoniae* PBP1a (aPBP; 0.5 μ M). The polymer products were labeled with BDL using *Ef*PBPX and detected by western blot as in Fig. 1c. A representative blot of three independent experiments is shown. An asterisk indicates a catalytically inactive variant. PBP2x* = *St*PBP2x^{S343A}

(b) *E. faecalis* Lipid II (10 μ M) was pre-labeled with BDL (2 mM) using *EfPBPX* (10 μ M) in a reaction buffer supplemented with EDTA (10 μ M). After heat-inactivation of *EfPBPX*, *S. thermophilus* FtsW (0.5 μ M) and PBP2x (1 μ M) were added to the reaction along with the indicated concentration of metal chloride (MCl₂). The polymerization reaction was quenched after 15 min and the product was detected via western blot. In contrast to other cations tested, Zn²⁺ was unable to rescue polymerase activity. A representative blot of two independent experiments is shown.

Supplementary Figure 6: The predicted complexes between FtsW and its cognate bPBP are largely governed by steric compatibility. (a) Predicted model of *E. coli* FtsW-FtsI (PBP3) interface based on evolutionary covariation. The TM and first alpha helix (H1) of FtsI (green) displays strong evolutionary couplings to TM8 and TM9 of FtsW. FtsW is colored according to electrostatic potential. The model is adapted from Ovchinnikov *et al.*³ (b) Sequence alignment of FtsW and its cognate bPBP from diverse bacterial taxa. For clarity, only regions with strong inter-protein evolutionary covariation (TM-H1 and TM8-9 for bPBPs and FtsW, respectively) are shown. Red residues are shared by *S. thermophilus*, *S. pneumoniae* and *S. aureus* FtsW/bPBP. Blue residues are shared by *S. thermophilus* and *S. pneumoniae* FtsW/bPBP. Secondary structure prediction is based on the predicted models of *E. coli* FtsW and FtsI, and multiple sequence alignment was performed by Clustal X.^{3,4} (c) Example of a species-specific steric compatibility at the predicted interface between FtsW and its cognate bPBP. (d) A S37F substitution in the *St*PBP2x TM helix predicted to destabilize FtsW-bPBP interaction results in the reduction of polymerase activity. A compensatory L345G substitution in *St*FtsW predicted to relieve the steric hindrance restores polymerase activity. A representative blot of two independent experiments is shown.

Supplementary Figure 7: *S. aureus* FtsW requires its cognate bPBP for PGT activity. *S. aureus* FtsW (2.5 μ M) was incubated with *S. aureus* Lipid II (10 μ M) and a bPBP from *S. aureus* (*Sa*PBP1, 2.5 μ M), *S. pneumoniae* (*Sp*PBP2x, 2.5 μ M) or *S. thermophilus* (*St*PBP2x, 2.5 μ M) in the presence of moenomycin (2 μ M). The polymer products were labeled with BDL using *Ef*PBPX and detected by western blot as in Fig. 1c. Bands observed around 45 kDa and 85 kDa correspond to self-labeling by *E. faecalis* PBPX and *S. aureus* PBP1*, respectively. A representative blot of four independent experiments is shown. An asterisk indicates a catalytically inactive variant.

 $FtsW^* = SaFtsW^{D287A}; SpPBP2x^* = SpPBP2x^{S337A}; SaPBP1^* = SaPBP1^{S314A}; StPBP2x^* = StPBP2x^{S343A}; StPBP2x^* = StPBP2x^* = StPBP2x^{S343A}; StPBP2x^* = StPBP$

Supplementary Figure 8: *S. thermophilus* FtsW requires the TM helix of its cognate/near-cognate bPBP for PGT activity. *S. thermophilus* FtsW (0.5 μ M) and bPBP (1 μ M) were combined in a reaction buffer and the polymer products were detected by western blot as in Fig. 1c. A representative blot of three independent experiments is shown. *St*FtsW^{*} = *St*FtsW^{D292A}

 $2b^{TM}2x^{\Delta TM}$ = Chimeric PBP containing the TM domain of PBP2b and the extracellular domain of PBP2x $2x^{TM}2b^{\Delta TM}$ = Chimeric PBP containing the TM domain of PBP2x and the extracellular domain of PBP2b

Supplementary Figure 9: Active FtsW-bPBP complexes can be co-purified. Coomassie staining shows the co-expression and purification of (a) *P. aeruginosa* FtsW and PBP3 and (b) *S. aureus* FtsW and PBP1* (see methods). Representative gels of two independent purifications are shown. Identity of the proteins was assigned by western blot. Note that *Pa*PBP3 purifies as a doublet of bands that both bind Bocillin-FL. The doublet may result from C-terminal processing as has been observed for *E. coli* PBP3.⁵ PBP1* = *Sa*PBP1^{S314A}

Supplementary Figure 10: Overexpression of FtsW* causes impaired fitness. (a) *S. aureus* cultures in mid-log phase were normalized to $OD_{600} = 0.2$ and serially diluted before 5 µL of each sample was spotted on TSB plates containing erythromycin supplemented with the indicated concentration of IPTG. (b) *P. aeruginosa* overnight cultures were normalized to $OD_{600} = 2.4$ and serially diluted before 5 µL of each sample was spotted on LB plates containing gentamycin supplemented with the indicated concentration of IPTG. Representative results of two independent experiments are shown for both *S. aureus* and *P. aeruginosa*. An asterisk indicates a gene encoding a catalytically inactive variant. *SaftsW*⁺ = *SaftsW*^{D287A}; *PaftsW*⁺ = *PaftsW*^{D275A}

Supplementary Figure 11: Representative electron microscopy images of *S. aureus* strains from two independent experiments. Cells overexpressing FtsW* revealed aberrant morphology (a & b). Images of cells (strain AT196) lacking inducer (c) and cells (strain AT195) overexpressing wild-type FtsW (d) are shown for comparison. Scale bar = 500 nm. See Supplementary Table 3 for strain genotypes.

S. pneumoniae $\Delta ftsWP_{zn}$ -SpftsW

Supplementary Figure 12: Phase contrast images of *S. pneumoniae* strains in the presence of the indicated inducer. Representative images of two independent experiments are shown. Scale bar = $1 \mu m$.

Supplementary Figure 13: Chemical structures and mass spectra of the muropeptide products of *S*. *thermophilus* bPBP crosslinking reactions following mutanolysin digestion and reduction. Representative mass spectra of five independent experiments are shown.

Supplementary Figure 14: *S. thermophilus* bPBPs do not require their native TM domain for crosslinking peptidoglycan. SgtB (1 μ M) or *S. thermophilus* FtsW (0.5 μ M) was incubated with *S. thermophilus* bPBP (1.25 μ M) in a reaction buffer containing *E. faecalis* Lipid II (20 μ M). The resulting polymer was digested with mutanolysin and analyzed by LC-MS as in Fig 3a. Crosslinking is detected by the appearance of peak C, a crosslinked muropeptide. Representative chromatograms of two independent experiments are shown.

 $PBP2b^{TM}2x^{\Delta TM} = StPBP2b^{M1-M58}StPBP2x^{G53-D755}$ $PBP2x^{TM}2b^{\Delta TM} = StPBP2x^{M1-I52}StPBP2b^{Q59-H704}$ $PBP2x^{\Delta TM} = StPBP2x^{G53-D755}$ $FtsW^* = StFtsW^{D292A}$

Supplementary Figure 15: Full membrane and gel images from Fig. 1d (a), Fig. 1e and Supplementary Fig. 5 (b), Fig. 1f (c), Fig. 2a (d), Fig 2b (e), Supplementary Fig. 3 (f), Supplementary Fig. 4 (g). Supplementary Fig. 5b (h), Supplementary Fig. 6d (i), Supplementary Fig. 7 (j), Supplementary Fig. 8 (k), Supplementary Fig. 9a (l) and Supplementary Fig. 9b (m). Black boxes indicate the cropped region for each figure.

S. aureus	% of cells with septal defects (# of cells)
WT No inducer (245)	0 % (0)
WT + 1 mM IPTG (234)	0 % (0)
D287A No inducer (203)	0 % (0)
D287A + 1 mM IPTG (212)	~19 % (40)

Supplementary Table 1: Only *S. aureus* cells overexpressing FtsW* displayed aberrant septal formation. Every cell in the electron micrograph field was analyzed for septum formation defects. The total number of cells analyzed is shown in parenthesis.

P. aeruginosa	Cell length (µm)	Cell width (µm)
WT No inducer (295)	3.55 ± 0.75	1.02 ± 0.09
WT + 1 mM IPTG (181)	3.65 ± 0.70	1.01 ± 0.05
D275A No inducer (380)	3.65 ± 0.71	1.02 ± 0.04
D275A + 1 mM IPTG (183)	11.54 ± 4.79	0.91 ± 0.11

Supplementary Table 2: Measurement of the cell length and width of *P. aeruginosa* samples (Mean \pm SD, Oufti).⁶ Cells overexpressing FtsW* displayed a statistically significant difference in cell length compared to other samples (p < 0.0001, one-way ANOVA with Bonferroni's post hoc test, GraphPad Prism 7.0). The total number of cells measured is shown in parenthesis.

Strain	Description [*]	Reference
E. coli		
XL1-Blue	Host strain for plasmid cloning	Stratagene
DH5a	Host strain for plasmid cloning	Invitrogen
BL21(DE3)	Expression strain for protein production	7
C43(DE3)	BL21(DE3) derivative strain for protein production	8
CAM333	C43(DE3) $\Delta ponB$, $\Delta pbpC$, $\Delta mtgA$	2
S. aureus		
RN4220	Wild-type	9
AT194	RN4220 pLOW; Erm ^R	This study
AT195	RN4220 pLOW- <i>SaftsW</i> ; Erm ^R	This study
AT196	RN4220 pLOW- <i>SaftsW</i> ^{D287A} ; Erm ^R	This study
P. aeruginosa		
PAO1	Wild-type	C.S. Harwood
LSM7	PAO1 pPSV38- <i>PaftsW</i> ; Gent ^R	This study
LSM8	PAO1 pPSV38- <i>PaftsW</i> ^{D275A} ; Gent ^R	This study
S. pneumoniae		
D39	Δcps	10
AT030	D39 Δcps , $\Delta bgaA::erm$; Erm ^R	11
AT031	D39 Δcps , $\Delta bgaA::kan$; Kan ^R	11
R6	Wild-type	10
AT202	R6 cpsO::(P _{zn} -SpftsW, kan)::cpsN; Kan ^R	This study
AT203	R6 $cpsO$::(P _{2n} -SpftsW, kan):: $cpsN$, $\Delta ftsW$:: erm ; Erm ^R , Kan ^R	This study
AT204	R6 $cpsO$::(P _{2n} -SpftsW, kan):: $cpsN$, $\Delta ftsW$:: erm ,	This study
	$\Delta bgaA::(P_{fucose}-SpftsW, tet); Erm^{R}, Kan^{R}, Tet^{R}$	5
AT205	R6 cpsO::(P _{zn} -SpftsW, kan)::cpsN, ΔftsW::erm,	This study
	$\Delta bgaA::(P_{fucose}-SpftsW^{D289A}, tet); Erm^{R}, Kan^{R}, Tet^{R}$	
AT206	R6 $cpsO::(P_{zn}-SpftsW, kan)::cpsN, \Delta ftsW::erm,$	This study
	$\Delta bgaA::(P_{fucose}-SaftsW, tet); Erm^R, Kan^R, Tet^R$	
A1207	R6 $cpsO::(P_{2n}-SpftsW, kan)::cpsN, \Delta ftsW::erm,$	This study
AT208	ΔυguA::(P _{fucose} -StfisW, tet); Erm [*] , Kan [*] , 1et [*]	This study
A1200	$\Delta bgaA::(P_{fucose}-StftsW^{D292A}, tet); Erm^{R}, Kan^{R}, Tet^{R}$	This study

Supplementary Table 3. Bacterial strains used in this study

* See Supplementary Table 4 for list of abbreviations

Plasmid	Description [*]	Reference	
pET28b(+)	pET28b(+) IPTG-inducible protein expression vector; Kan ^R		
pATPL107	His6-StFtsW expression vector; Kan ^R	This study	
pATPL121	His ₆ -StFtsW ^{D292A} expression vector; Kan ^R	This study	
pATPL185	His6-StFtsW ^{L345G} expression vector; Kan ^R	This study	
pMW2179	His ₆ -SaFtsW expression vector; Kan ^R	This study	
pMW2193	His ₆ -SaFtsW ^{D287A} expression vector; Kan ^R	This study	
pMW2194	SaPBP1-His6 expression vector; Kan ^R	This study	
pMW2180	SaPBP1 ^{S314A} -His ₆ expression vector; Kan ^R	This study	
pET22b(+)	IPTG-inducible protein expression vector; Carb ^R	Novagen	
pATPL091	StPBP2x-His ₆ expression vector; Carb ^R	This study	
pATPL123	StPBP2x ^{G53-D755} -His ₆ expression vector; Carb ^R	This study	
pATPL112	<i>St</i> PBP2x ^{S343A} -His ₆ expression vector; Carb ^R	This study	
pATPL180	StPBP2x ^{S37F} -His ₆ expression vector; Carb ^R	This study	
pATPL169	StPBP2b-His ₆ expression vector; Carb ^R	This study	
pATPL172	StPBP2b ^{M1-M58} StPBP2x ^{G53-D755} -His6 expression vector; Carb ^R	This study	
pATPL173	StPBP2x ^{M1-I52} StPBP2bQ59-H704-His6 expression vector; Carb ^R	This study	
pATPL017	SpPBP2x-His6 expression vector; Carb ^R	This study	
pATPL067	SpPBP2x ^{S337A} -His ₆ expression vector; Carb ^R	This study	
pATPL084	SpPBP2b-His ₆ expression vector; Carb ^R	This study	
pATPL170	SpPBP2b ^{M6-Y38} SpPBP2x ^{T50-D750} -His ₆ expression vector; Carb ^R	This study	
pATPL171	<i>Sp</i> PBP2x ^{M1-G49} <i>Sp</i> PBP2b ^{M39-N685} -His ₆ expression vector; Carb ^R	This study	
pATPL044	SpPBP1a-His ₆ expression vector; Carb ^R	This study	
pATPL051	SpPBP1a ^{S370A} -His ₆ expression vector; Carb ^R	This study	
pETDuet-1	IPTG-inducible protein expression vector containing two multiple cloning sites; Carb ^R	Novagen	
pETDuet-FLAG	Modified pETDuet-1 containing a N-terminal His6-SUMO-FLAG tag at the first site and C-terminal His6 tag at the second site; Carb ^R	This study	
pLSM3	His ₆ -SUMO-FLAG-PaFtsW & PaPBP3-His ₆ expression vector; Carb ^R	This study	
pLSM6	His6-SUMO-FLAG- <i>Pa</i> FtsW ^{D275A} & <i>Pa</i> PBP3-His6 expression vector; Carb ^R	This study	
pMW2144	His ₆ -SUMO-FLAG-SaFtsW & SaPBP1 ^{S314A} -His ₆ expression vector;	This study	
pMW2176	His6-SUMO-FLAG-SaFtsW ^{D287A} & SaPBP1 ^{S314A} -His6 expression vector: Carb ^R	This study	
pAM174	Encodes arabinose-inducible Ulp1 ^{L403-K621} protease; Cm ^R	2	
pMW1010	E. faecalis His6-PBPX expression vector; Kan ^R	12	
pPBP4	S. aureus His ₆ -PBP4 expression vector; Kan ^R	13	
pMgt1	S. aureus SgtB-His6 expression vector; Carb ^R	14	
pET24bSgtBY181D	S. aureus SgtB ^{Y181D} -His ₆ expression vector; Kan ^R	15	
pLOW	S. aureus expression vector containing IPTG-inducible P_{spac} promoter; Erm ^R	16	
pLOWftsW	S. aureus P _{spac} -SaFtsW expression vector; Erm ^R	This study	
pLOWftsWD287A	S. aureus P _{spac} -SaFtsW ^{D287A} expression vector; Erm ^R	This study	

Supplementary Table 4. Plasmids used in this study

^{*}Abbreviations: Carb^R, ampicillin/carbenicillin resistance; Cm^R, chloramphenicol resistance; Erm^R, erythromycin resistance; Gent^R, gentamycin resistance; Kan^R, kanamycin resistance; Tet^R, tetracycline resistance

Description*	Reference
<i>P. aeruginosa</i> expression vector containing IPTG-inducible P _{lacUV5} promoter; Gent ^R	17
P. aeruginosa PlacUV5-PaFtsW expression vector; Gent ^R	This study
P. aeruginosa PlacUV5-PaFtsWD275A expression vector; Gent ^R	This study
S. pneumoniae bgaA integration vector containing zinc-inducible P_{czc} (P_{zn}) promoter; Carb ^R , Tet ^R	11
S. pneumoniae bgaA::Pzn-SpFtsW integration vector; Carb ^R , Tet ^R	This study
<i>S. pneumoniae bgaA</i> integration vector containing fucose-inducible $P_{fcsK}(P_{fucose})$ promoter; Carb ^R , Tet ^R	11
S. pneumoniae bgaA::Pfucose-SpFtsW integration vector; Carb ^R , Tet ^R	This study
S. pneumoniae bgaA::Pfucose-SpFtsWD289A integration vector; Carb ^R , Tet ^R	This study
S. pneumoniae bgaA::Pfucose-SaFtsW integration vector; Carb ^R , Tet ^R	This study
S. pneumoniae bgaA::Pfucose-StFtsW integration vector; Carb ^R , Tet ^R	This study
S. pneumoniae bgaA::Pfucose-StFtsWD292A integration vector; Carb ^R , Tet ^R	This study
	Description*P. aeruginosa expression vector containing IPTG-inducible P_{lacUV5} promoter; GentRP. aeruginosa P_{lacUV5} -PaFtsW expression vector; GentRP. aeruginosa P_{lacUV5} -PaFtsW expression vector; GentRP. aeruginosa P_{lacUV5} -PaFtsW expression vector; GentRS. pneumoniae bgaA integration vector containing zinc-inducible P_{czc} (P_{zn}) promoter; CarbR, TetRS. pneumoniae bgaA::Pzn-SpFtsW integration vector; CarbR, TetRS. pneumoniae bgaA::Psn-SpFtsW integration vector; CarbR, TetRS. pneumoniae bgaA::Pfucose-SpFtsW integration vector; CarbR, TetRS. pneumoniae bgaA::Pfucose-SaFtsW integration vector; CarbR, TetRS. pneumoniae bgaA::Pfucose-StFtsW integration vector; CarbR, TetR

Supplementary Table 4. Plasmids used in this study (cont.)

^{*}Abbreviations: Carb^R, ampicillin/carbenicillin resistance; Cm^R, chloramphenicol resistance; Erm^R, erythromycin resistance; Gent^R, gentamycin resistance; Kan^R, kanamycin resistance; Tet^R, tetracycline resistance

Primer	Sequence (5'-3')*
oAT01	GTA <u>CATATG</u> AAAATTGAAAAGAAACATCTTTTGG
oAT02	ACT <u>AAGCTT</u> CTAACGACTTCTTCTCAAAGGTA
oAT03	CCTTTGTGTTTTCAATTGTTATTGAAGAGTT
oAT04	CTGTTGTTGCTTCTGGGAGATAAC
oAT05	TCTCATGGGGATGCAAGTTTTTGTTAATATCGGTG
oAT06	TGCATCCCCATGAGAGCCCCCACACC
oAT07	GTA <u>CATATG</u> AACAGACTTAAAAAACTTAAACAT
oAT08	ACT <u>AAGCTT</u> GTCTCCTAAAGTAATGGTAATCTT
oAT09	GTA <u>CATATG</u> GGAACCGATAGTAAGTTTGGTGTTG
oAT10	AGCCAGGGGCAACCATGAAAGTGATGCTCTTGT
oAT11	TGGTTGCCCCTGGCTCATACTGAGCTTCA
oAT12	TATTTTATCTTTTTGTTTTTATTATCAAC
oAT13	AAGAGAACCATCAGGTTCTG
oAT14	GTA <u>CATATG</u> ACATCATTTTGGGAAAAAAATAGTCAAA
oAT15	ACT <u>AAGCTT</u> GTGAGTATTTTGATAAAGTTCCATGATAG
oAT16	CATATAGGTCAAACGCGCAAAA
oAT17	TTTTGCGCGTTTGACCTATATGGGAACCGATAGTAAGTTTGGTGTTG
oAT18	AATAATTACCACAAAGTTGATAATAAAA
oAT19	TTTTATTATCAACTTTGTGGTAATTATTCAGGTTTATAACAAATCTTTTTATACTAA
oAT20	GTA <u>GCTAGC</u> ACTGAATATATGAAGAATTTTAGAAGTATTTTACGG
oAT21	ACT <u>GCGGCCGC</u> TTAATTAAATTGTCTTCTTATATCAACTTTTTGTTG
oAT22	ACCACATACAGCATTTATTTTGCAATTATTTG
oAT23	TCTGGTAAATAGCCCAATTTC
oAT24	AGGAGATATACCATGGGCAAGCAAAAAATTAAAAATTAAAAAAA
oAT25	TGCTCGAGTGCGGCCGCGTCCGACTTATCCTTGTC
oAT26	CGAGCCTGGAGCAACATTTAAATC
oAT27	TATGTGTTTTGATAAAGGTCATTTG
oAT28	GTA <u>CATATG</u> AAGTGGACAAAAAGAGTAATCCGTT
oAT29	ACT <u>AAGCTT</u> GTCTCCTAAAGTTAATGTAATTTTTTTAATG
oAT30	GCCACTATGAAAGTGATGATGTTG
oAT31	ACCTGGCTCATAGTTACTTTGG
oAT32	GTA <u>CATATG</u> AGAAAATTTAACAGCCATTCGATTCC
oAT33	ACT <u>AAGCTT</u> ATTCATTGGATGGTATTTTTGATACAGA
oAT34	ATACAACAAACGACCAATAATG
oAT35	CATTATTGGTCGTTTGTTGTATACAGGCACTCGCTTTGGAAC
oAT36	CCCAATAATGACCGCAAAATT
oAT37	AATTTTGCGGTCATTATTGGGATGCAGGTTTTGAACAAGGATT
oAT38	GTA <u>CATATG</u> AACAAACCAACGATTCTGC
oAT39	ACTC <u>CTCGAG</u> TGGTTGTGCTGGTTGAGGAT

Supplementary Table 5. Oligonucleotide primers used in this study

* Underlined sequences are restriction sites introduced in primers.

Primer	Sequence (5'-3')*
oAT40	GCAACTATGAAACCGATCACAGACTATGCTCC
oAT41	TCCCCAGTCGCGGTTTGTTT
oAT42	TTTCAAGGCCCTGGGGGGGTCATCCATGCTGTCGGTGTTGCGCCC
oAT43	TTAAGCATTATGCGGCCGCAAGCTTTTACCTTTCATCGGCAAAGTCCTCTTC
oAT44	TATATTAGTTAAGTATAAGAAGGAGATATACATATATGAAACTGAATTATTTCCAGGG CGCC
oAT45	GGTGCTCGAGTGCGGCCGCAAGCTTGCCACGCCCTCCTTTTGCGG
oAT46	GCGCCCGCAAAAGGAGGGCGTGGCAAGCTTGCGGCCGCACTCGA
oAT47	AAGGGGCGCAACACCGACAGCATGGATGACCCCCCAGGGCC
oAT48	AGTTCAACGAAGAGGACTTTGCCGATGAAAGGTAAAAGCTTGCGGCCGCATAATGCT TAA
oAT49	GGCGCCCTGGAAATAATTCAGTTTCATATATGTATATCTCCTTCTTATACTTAACTAAT ATACTAAGAT
oAT50	CTGCCGGAGGCGCACACCGCCTTCGTCTTCGCCGTGCTT
oAT51	CCTGGGGGGGTCATCCACTGAATATATGAAGAATTTTAGA
oAT52	CTCGAATTCGGATCCTTAATTAAATTGTCTTCTTATATCA
oAT53	GGAGATATACATATGGCGAAGCAAAAAATTAAAAATTAAAA
oAT54	AGACTCGAGGGTACCTCAGTGGTGGTGGTGGTGGTGCTCGAGTGCGGCCGCAAGCTTG TCCGACTTATCCTTGTCAGT
oAT55	GGATCCGAATTCGAGCTCGGC
oAT56	GGATGACCCCCAGGGCC
oAT57	GGTACCCTCGAGTCTGGT
oAT58	CATATGTATATCTCCTTCTTATAC
oAT59	ATT <u>GTCGAC</u> ATTGTAGAATTGGATGACTGAATATATGAAGAAT
oAT60	TAA <u>GGATCC</u> TTACTTGTCGTCATCGTCTTTGTAGTCATTAAATTGTCTTCTTATATCAAC TTTTTG
oAT61	TTACCAGAACCACATACAGCATTTATTTTTGCAATTATTTGCGAAGAA
oAT62	ATTGCAAAAATAAATGCTGTATGTGGTTCTGGTAAATAGCCC
oAT63	TAAT <u>GAGCTC</u> ACGGGAGGAAAGATGCTGTCGGTGTTGCGCCC
oAT64	TAAT <u>TCTAGA</u> TTACCTTTCATCGGCAAAGTCCTCTTC
oAT65	ACTC <u>CTCGAG</u> AAAGGAGGTAAGAAAAATGAAGATTAGTAAGAGGCACTT
oAT66	ACT <u>GGATCC</u> CTACTTCAACAGAAGGTTCATTGGT
oAT67	GGTAAACCCATCCTAGCCCA
oAT68	GGAGATCCCCAAGTAATCGTGGGTCTAGAGATGATTTTAATTACAGG
oAT69	GAGAGCACAGATACGGCGTTTCTAATATGTAACTCTTCCCAATATAG
oAT70	TCCATTATGTTTACGAGAACTTTC
oAT71	CACGATTACTTGGGGATCTCC
oAT72	TCCTGCCTTTCCTCCCATGTATACCACTTGGGCGC
oAT73	GAGGGAGGAAAGGCAGGA
oAT74	CGCCGTATCTGTGCTCTC
oAT75	ACCCGATAAGAGGTTTCATCCG

Supplementary Table 5. Oligonucleotide primers used in this study (cont.)

* Underlined sequences are restriction sites introduced in primers.

Primer	Sequence (5'-3')*
oAT76	GCAGATGTATTGGTAACTCTCTCA
oAT77	TCCTGCCTTTCCTCCCTCCATAGTATCACCACTCTACTAGGATAC
oAT78	GAGAGCACAGATACGGCGCTAAGTTGTACCGAGAATTGGAAA
oAT79	TCTCTGACTTGCTGAC
oAT80	GAGAGATTTGAGGGAAGATCACG
oAT81	ACTC <u>CTCGAG</u> AAAGGAGGTAAGAAAAATGAAGAATTTTAGAAGTATTTTACGGTAT
oAT82	ACT <u>GGATCC</u> TTAATTAAATTGTCTTCTTATATCAACTTTTT
oAT83	ACTC <u>CTCGAG</u> AAAGGAGGTAAGAAAAATGAAAATTGAAAAGAAACATCTTTTGG
oAT84	ACT <u>GGATCC</u> CTAACGACTTCTTCTCAAAGGTA
oAT85	CCTTTGTCTTTCTATCGTGATTGAAGA
oAT86	CTGTATGAGCTTCTGGCAAATAACC
oAT87	CCACTATCACAAGGTATTACAAACG
oAT88	GAACATTATTCAAGTAAGCGTTCAC

Supplementary Table 5. Oligonucleotide primers used in this study (cont.)

Underlined sequences are restriction sites introduced in primers.

Supplementary References

- 1. Sjodt, M. *et al.* Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis. *Nature* **556**, 118–121 (2018).
- 2. Meeske, A. J. *et al.* SEDS proteins are a widespread family of bacterial cell wall polymerases. *Nature* **537**, 634–638 (2016).
- 3. Ovchinnikov, S. *et al.* Large-scale determination of previously unsolved protein structures using evolutionary information. *Elife* **4**, 1–25 (2015).
- 4. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).
- 5. Nagasawa, H. *et al.* Determination of the cleavage site involved in C-terminal processing of penicillin-binding protein 3 of Escherichia coli. *J. Bacteriol.* **171,** 5890–5893 (1989).
- 6. Paintdakhi, A. *et al.* Oufti: An integrated software package for high-accuracy, high-throughput quantitative microscopy analysis. *Mol. Microbiol.* **99**, 767–777 (2016).
- 7. Studier, F. W. & Moffatt, B. A. Use of bacteriophage T7 RNA polymerase to direct selective highlevel expression of cloned genes. *J. Mol. Biol.* **189**, 113–130 (1986).
- 8. Miroux, B. & Walker, J. E. Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. *J. Mol. Biol.* **260**, 289–298 (1996).
- 9. Kreiswirth, B. N. *et al.* The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. *Nature* **305**, 709–712 (1983).
- 10. Lanie, J. A. *et al.* Genome sequence of Avery's virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. *J. Bacteriol.* **189**, 38–51 (2007).
- Fenton, A. K., Mortaji, L. El, Lau, D. T. C., Rudner, D. Z. & Bernhardt, T. G. CozE is a member of the MreCD complex that directs cell elongation in Streptococcus pneumoniae. *Nat. Microbiol.* 2, 16237 (2016).
- 12. Welsh, M. A. *et al.* Identification of a functionally unique family of penicillin-binding proteins. *J. Am. Chem. Soc.* **139**, 17727–17730 (2017).
- 13. Qiao, Y. *et al.* Detection of lipid-linked peptidoglycan precursors by exploiting an unexpected transpeptidase reaction. *J. Am. Chem. Soc.* **136**, 14678–14681 (2014).
- 14. Heaslet, H., Shaw, B., Mistry, A. & Miller, A. A. Characterization of the active site of S. aureus monofunctional glycosyltransferase (Mtg) by site-directed mutation and structural analysis of the protein complexed with moenomycin. *J. Struct. Biol.* **167**, 129–135 (2009).
- 15. Rebets, Y. *et al.* Moenomycin resistance mutations in Staphylococcus aureus reduce peptidoglycan chain length and cause aberrant cell division. *ACS Chem. Biol.* **9**, 459–467 (2014).
- 16. Liew, A. T. F. *et al.* A simple plasmid-based system that allows rapid generation of tightly controlled gene expression in Staphylococcus aureus. *Microbiology* **157**, 666–676 (2011).
- 17. Vvedenskaya, I. O. *et al.* Growth phase-dependent control of transcription start site selection and gene expression by nanoRNAs. *Genes Dev.* **26**, 1498–1507 (2012).