Supplementary information

TG-interacting factor 1 (Tgif1)-deficiency attenuates bone remodeling and blunts the anabolic response to parathyroid hormone

Saito et al.

Supplementary Fig. 1 TG-interacting factor 2 (Tgif2) expression is unchanged in the absence of TG-interacting factor 1 (Tgif1). **a** Relative expression of *Tgif1* and *Tgif2* mRNA in calvarial osteoblasts obtained from *Tgif1^{+/+}* and *Tgif1^{-/-}* mice. (*Tgif1^{+/+}* N = 2, *Tgif1^{-/-}* N = 2). **b** Immunoblot of Tgif1 and Tgif2 protein expression in calvarial osteoblasts obtained from *Tgif1^{+/+}* and *Tgif1^{-/-}* mice. Immunoblot for Actin was used as a loading control. Normalized fold expression and molecular weight in kilo Dalton (kDa) are indicated (representative image of 2 experiments), ND = non-detectable

Supplementary Fig. 2 TG-interacting factor 1 (Tgif1)-deficiency in osteoblasts attenuates bone remodeling. a Representative images of the fourth lumbar vertebrae of 8-week-old male mice with the genotypes $Tgif I^{+/+}$, $Tgif I^{+/-}$ and Tgifl^{-/-} after von Kossa staining. **b** Histomorphometric quantification of the bone mass (BV/TV, bone volume/tissue volume) of the fourth lumbar vertebrae of 8-week-old male mice with the genotypes $Tgifl^{+/+}$, $Tgifl^{+/-}$ and $Tgifl^{-/-}$ (N = 9, 7 and 8). c Representative images of the proximal tibiae of 8-week-old male mice of the genotypes Osx- Cre^{Tg} ; $Tgifl^{+/+}$ and Osx- Cre^{Tg} ; $Tgifl^{fl/fl}$, i.e. deletion of the Tgifl gene in osteoblasts of early differentiation stages, after von Kossa staining and fluorescence double labeling to visualize bone formation (insets). d Histomorphometric analysis of the proximal tibiae of 8week-old male mice with the genotypes $Osx-Cre^{Tg}$; $Tgifl^{1/f}$ and $Osx-Cre^{Tg}$; $Tgifl^{1/f}$ (N = 7, 8). For abbreviations see the legend to Fig. 1. *p<0.05, ***p<0.001 vs. Osx-Cre^{Tg}; Tgif1^{+/+}. e Representative images of the fourth lumbar vertebrae of 8week-old male mice with the genotypes $Osx-Cre^{Tg}$; $Tgifl^{+/+}$ and $Osx-Cre^{Tg}$; $Tgifl^{fl/fl}$ after von Kossa staining. f Histomorphometric quantification of the BV/TV of the fourth lumbar vertebrae of 8-week-old male mice with the genotypes $Osx-Cre^{Tg}$; $Tgifl^{1//1}$ and $Osx-Cre^{Tg}$; $Tgifl^{1//1}$ (N = 8, 8). g Representative images of the fourth lumbar vertebrae of 8-week-old male mice with the genotypes Dmp1-Cre; Tgif1^{fl/fl} and Dmp1-Cre^{Tg}; Tgif1^{fl/fl}, i.e. deletion of the Tgif1 gene in mature osteoblasts and osteocytes, after von Kossa staining. h Histomorphometric quantification of the BV/TV of the fourth lumbar vertebrae of 8-week-old male mice with the genotypes $Dmp1-Cre^{-T}gifl^{fl/fl}$ and $Dmp1-Cre^{T}g;Tgifl^{fl/fl}$ (N = 11, 6). Scale bars indicate 1 mm a, e, g, and 1 mm (black) and 50 µm (white) c. Error bars represent the s.e.m. Two-tailed Student's t-test was used to compare two groups d, f, h, and analysis of variance (ANOVA) followed by Newman-Keuls post-hoc analysis was used to compare three groups b

Tgif1+/+

Tgif1-/-

Supplementary Fig. 3 Semaphorin 3E (Sema3E) expression is increased in TG-interacting factor 1 (Tgif1)-deficient osteoblasts and suppressed by siRNA. Relative Rankl and Opg mRNA expression and the calculated Rankl/Opg ratio in a tibiae, **b** calvarial osteoblasts and **c** long bone osteoblasts obtained from $Tgifl^{+/+}$ and $Tgifl^{-/-}$ mice (N = 4, 4). **d** Relative mRNA expression of indicated genes in long bone osteoblasts isolated from $Tgifl^{+/+}$ and $Tgifl^{-/-}$ mice (N = 4, 4). e Relative Sema3E mRNA expression in long bone osteoblasts isolated from $Tgifl^{+/+}$ and $Tgifl^{-/-}$ mice 24 hours after transfection with Sema3E siRNA (siSema3E) or scrambled (scr) control siRNA at a final concentration of 50 nM or 100 nM (N = 3). **p<0.01, ***p < 0.001 vs. $Tgif I^{+/+}$ scr. Error bars represent the s.e.m. Two-tailed Student's t-test was used to compare two groups a-d, and analysis of variance (ANOVA) followed by Newman-Keuls post-hoc analysis was used to compare more than two groups e

Supplementary Fig. 4 Deletion of TG-interacting factor 1 (Tgif1) blunts the bone anabolic effect of Parathyroid hormone (PTH) treatment. **a** Representative images of the proximal tibiae of 12-week-old $Tgif1^{+/+}$ and $Tgif1^{+/+}$ male mice after von Kossa staining and fluorescence double labeling to visualize bone formation (insets). $Tgif1^{+/+}$ and $Tgif1^{-/-}$ mice were treated with PTH or vehicle (Veh) for 4 weeks. Scale bars indicate 1 mm (black) and 50 μ m (white). **b** Histomorphometric analysis of the trabecular bone in proximal tibiae of 12-week-old male $Tgif1^{+/+}$ and $Tgif1^{-/-}$ mice after treatment with PTH or Veh ($Tgif1^{+/+}+Veh: N = 8, Tgif1^{+/+}+PTH: N = 9, Tgif1^{-/-}+Veh: N = 8, Tgif1^{-/-}+PTH: N = 8$). For abbreviations see the legend to Fig. 1. *p<0.05, **p<0.01, ***p<0.001 vs. Veh of the same genotype. Error bars represent the s.e.m. Statistical analysis was performed using analysis of variance (ANOVA) followed by Newman-Keuls post-hoc test

Supplementary Fig. 5 TG-interacting factor 1 (Tgif1) interacts with the *Sost* promoter and dissociates upon parathyroid hormone (PTH) stimulation. **a** Schematic of the 8 kb region of the *Sost* promoter upstream of the open reading frame (ORF) with 11 putative Tgif (Tgif1 and Tgif2) binding sites (marked in blue). (**b**) Chromatin-Immunoprecipitation (ChIP) was used to determine the fold enrichment of Tgif1 at the indicated sites of the *Sost* promoter in Ocy454 cells upon stimulation with PTH or vehicle (Veh) (N = 3). ChIP using an antibody against immunoglobulin G (IgG) was used as negative control and ChIP of Tgif1 with the *Rar alpha* promoter served as positive control. *p<0.05, **p<0.01 vs. IgG; Veh, #p<0.05, ##p<0.05 vs. Tgif1; Veh. Error bars represent the s.e.m. Statistical analysis was performed using analysis of variance (ANOVA) followed by Newman-Keuls post-hoc test

Supplementary Fig. 6 Silencing of TG-interacting factor 1 (Tgif1). **a** Immunoblot of Tgif1 protein expression in UMR-106 cells 48 hours after transfection with scrambled (scr) control GapmeR or GapmeR targeting Tgif1 or **b** with scr siRNA or siRNA targeting Tgif1. Immunoblot for Actin was used as a loading control. Normalized fold expression and molecular weight in kilo Dalton (kDa) are indicated (representative images of 3 experiments)

			Male	
	Parameters	Tgif1 ^{+/+}	Tgif1 ^{+/-}	Tgif1- ^{/-}
	BV/TV (%)	8.666 ± 0.683 (n=9)	9.228 ± 0.780 (n=6)	7.527 ± 0.726 (n=7)
	Tb.Th (µm)	28.49 ± 2.63 (n=9)	32.36 ± 2.32 (n=6)	29.96 ± 1.02 (n=7)
	Tb.Sp (µm)	277.6 ± 45.2 (n=9)	328.2 ± 33.1 (n=6)	360.0 ± 49.1 (n=7)
	Tb.N (1/mm)	3.184 ± 0.461 (n=8)	2.892 ± 0.254 (n=6)	2.584 ± 0.238 (n=7)
	MS/BS (%)	16.62 ± 3.41 (n=9)	18.02 ± 2.54 (n=5)	9.659 ± 3.376 (n=7)
	MAR (µm/day)	1.693 ± 0.143 (n=9)	1.687 ± 0.186 (n=5)	0.957 ± 0.143** ^{##} (n=7)
tibia	BFR/BS (µm³/µm²/year)	105.4 ± 21.1 (n=9)	109.4 ± 14.9 (n=5)	34.66 ± 12.2* [#] (n=7)
mal	BFR/BV (%/year)	589.4 ± 123.5 (n=9)	588.5 ± 88.7 (n=5)	183.0 ± 60.6* (n=7)
Proxi	OV/BV (%)	1.972 ± 0.207 (n=10)	1.910 ± 0.244 (n=6)	0.984 ± 0.202** [#] (n=8)
ш.	OS/BS (%)	15.15 ± 0.80 (n=10)	12.34 ± 1.73 (n=6)	6.15 ± 0.74*** ^{###} (n=8)
	Ob.S/BS (%)	17.85 ± 0.85 (n=10)	13.94 ± 1.98 (n=6)	7.91 ± 1.36*** ^{##} (n=8)
	N.Ob/BS (1/mm)	10.67 ± 0.60 (n=10)	8.03 ± 1.12* (n=6)	4.71 ± 0.71*** [#] (n=8)
	ES/BS (%)	0.9010 ± 0.0896 (n=10)	0.6667 ± 0.0919 (n=6)	0.3525 ± 0.0.0568*** [#] (n=8)
	Oc.S/BS (%)	0.7910 ± 0.0690 (n=10)	0.5450 ± 0.0681* (n=6)	0.3188 ± 0.0396*** [#] (n=8)
	N.Oc/BS (1/mm)	0.3550 ± 0.0300 (n=10)	0.2567 ± 0.0232* (n=6)	0.1688 ± 0.0245*** (n=8)
_	BV/TV (%)	18.93 ± 0.90 (n=9)	18.68 ± 2.09 (n=7)	15.50 ± 0.81 (n=8)
ebra dy	Tb.Th (µm)	39.29 ± 0.90 (n=9)	38.60 ± 2.09 (n=7)	35.52 ± 1.10 (n=8)
/erte bo	Tb.Sp (µm)	169.1 ± 3.9 (n=9)	177.7 ± 18.4 (n=7)	195.9 ± 7.9 (n=8)
>	Tb.N (1/mm)	4.806 ± 0.070 (n=8)	4.757 ± 0.295 (n=11)	4.353 ± 0.140 (n=8)

Supplementary Table 1. Histomorphometric analysis of the proximal tibiae and vertebrae of $Tgif1^{+/+}$, $Tgif1^{+/-}$ and $Tgif1^{-/-}$ male mice

Histomorphometry of the proximal tibiae and the L4 vertebral bodies of 8-week old mice. Mean values \pm SEM. *p<0.05, **p<0.01,

***p<0.001 vs. $Tgif1^{*/*}$, "p<0.05, ""p<0.01, """p<0.001 vs. $Tgif1^{*/*}$.

			Female	
	Parameters	Tgif1 ^{+/+}	Tgif1 ^{+/-}	Tgif1- ^{/-}
	BV/TV (%)	5.321 ± 0.764 (n=7)	5.540 ± 0.546 (n=8)	5.224 ± 0.466 (n=7)
	Tb.Th (µm)	31.52 ± 2.20 (n=7)	27.57 ± 1.52 (n=8)	28.09 ± 2.68 (n=7)
	Tb.Sp (µm)	592.8 ± 63.1 (n=7)	495.5 ± 45.1 (n=8)	547.0 ± 82.9 (n=7)
	Tb.N (1/mm)	1.626 ± 0.170 (n=7)	1.993 ± 0.139 (n=8)	2.059 ± 0.408 (n=8)
	MS/BS (%)	23.16 ± 3.81 (n=7)	14.97 ± 0.88 (n=7)	15.31 ± 2.82 (n=7)
	MAR (µm/day)	1.942 ± 0.070 (n=7)	1.607 ± 0.120 (n=7)	1.019 ± 0.178*** [#] (n=7)
tibia	BFR/BS (µm³/µm²/year)	159.6 ± 23.4 (n=7)	87.78 ± 8.02* (n=7)	59.57 ± 12.85*** (n=7)
mal	BFR/BV (%/year)	837.1 ± 109.3 (n=7)	507.8 ± 52.6* (n=7)	340.7 ± 69.9** (n=7)
roxi	OV/BV (%)	3.169 ± 0.490 (n=7)	4.223 ± 0.797 (n=8)	1.887 ± 0.566 [#] (n=7)
Ľ.	OS/BS (%)	21.13 ± 1.37 (n=7)	20.90 ± 2.65 (n=8)	10.38 ± 2.21** ^{##} (n=7)
	Ob.S/BS (%)	23.16 ± 1.23 (n=7)	26.04 ± 2.18 (n=8)	10.85 ± 1.24*** ^{###} (n=7)
	N.Ob/BS (1/mm)	13.34 ± 0.80 (n=7)	15.80 ± 1.29* (n=8)	6.51 ± 1.48** ^{###} (n=7)
	ES/BS (%)	1.183 ± 0.117 (n=7)	0.9363 ± 0.139 (n=8)	0.4400 ± 0.0628*** [#] (n=7)
	Oc.S/BS (%)	1.104 ± 0.144 (n=7)	0.7688 ± 0.1139 (n=8)	0.3686 ± 0.0639*** (n=7)
	N.Oc/BS (1/mm)	0.5157 ± 0.0395 (n=7)	0.3563 ± 0.0479 (n=8)	0.2543 ± 0.0542** (n=7)
_	BV/TV (%)	14.37 ± 2.96 (n=3)	11.68 ± 1.15 (n=8)	11.42 ± 3.43 (n=4)
ebra dy	Tb.Th (µm)	38.39 ± 2.49 (n=3)	33.57 ± 1.65 (n=8)	34.89 ± 4.07 (n=4)
/ert(Tb.Sp (µm)	244.6 ± 41.5 (n=3)	264.5 ± 18.2 (n=8)	309.9 ± 49.6 (n=4)
	Tb.N (1/mm)	3.676 ± 0.522 (n=3)	3.425 ± 0.179 (n=8)	3.111 ± 0.528 (n=4)

Supplementary Table 2. Histomorphometric analysis of the proximal tibiae and vertebrae of $Tgif1^{+/+}$, $Tgif1^{+/-}$ and $Tgif1^{-/-}$ female mice

 $Histomorphometry \ of \ the \ proximal \ tibiae \ and \ the \ L4 \ vertebral \ bodies \ of \ 8-week \ old \ mice. \ Mean \ values \ \pm \ SEM. \ *p<0.05, \ **p<0.01,$

***p<0.001 vs. *Tgif1*^{+/+}, [#]p<0.05, ^{##}p<0.01, ^{###}p<0.001 vs. *Tgif1*^{+/-}.

		٨	/ale
	Parameters	Osx-Cre ^{Tg} ;Tgif1 ^{+/+}	Osx-Cre ^{Tg} ;Tgif1 ^{fl/fl}
	BV/TV (%)	9.178 ± 1.03 (n=7)	7.109 ± 0.63 (n=8)
	Tb.Th (µm)	33.31 ± 0.90 (n=7)	31.40 ± 1.03 (n=8)
	Tb.Sp (µm)	361.5 ± 54.0 (n=7)	438.7 ± 49.4 (n=8)
	Tb.N (1/mm)	2.770 ± 0.306 (n=7)	2.256 ± 0.181 (n=8)
	MS/BS (%)	22.51 ± 2.09 (n=7)	17.49 ± 2.23 (n=8)
	MAR (µm/day)	1.457 ± 0.113 (n=7)	1.059 ± 0.100* (n=8)
tibia	BFR/BS (µm ³ /µm ² /year)	120.9 ± 15.6 (n=7)	72.44 ± 14.6* (n=8)
mal	BFR/BV (%/year)	718.6 ± 79.6 (n=7)	467.4 ± 97.4 (n=8)
roxi	OV/BV (%)	1.892 ± 0.384 (n=6)	0.591 ± 0.010** (n=8)
ш	OS/BS (%)	14.52 ± 2.28 (n=6)	5.063 ± 0.713*** (n=8)
	Ob.S/BS (%)	16.62 ± 2.34 (n=6)	6.044 ± 0.768*** (n=8)
	N.Ob/BS (1/mm)	9.648 ± 1.407 (n=6)	3.484 ± 0.509*** (n=8)
	ES/BS (%)	1.149 ± 0.155 (n=6)	0.432 ± 0.083*** (n=8)
	Oc.S/BS (%)	0.9764 ± 0.0936 (n=6)	0.3671 ± 0.0780*** (n=8)
	N.Oc/BS (1/mm)	0.4335 ± 0.0472 (n=6)	0.1864 ± 0.0325*** (n=8)
_	BV/TV (%)	17.69 ± 1.23 (n=8)	16.30 ± 0.97 (n=8)
ebra dy	Tb.Th (µm)	36.00 ± 1.49 (n=8)	36.17 ± 1.04 (n=8)
Vert(bo	Tb.Sp (µm)	172.3 ± 11.8 (n=8)	189.1 ± 10.1 (n=8)
-	Tb.N (1/mm)	4.908 ± 0.277 (n=8)	4.493 ± 0.182 (n=11)

Supplementary Table 3. Histomorphometric analysis of the proximal tibiae and vertebrae of $Osc-Cre^{Tg}$; $Tgif1^{+/+}$ and $Osc-Cre^{Tg}$; $Tgif1^{fl/fl}$ male mice

Histomorphometry of the proximal tibiae and the L4 vertebral bodies of 8-week old mice. Mean values \pm SEM. *p<0.05, **p<0.01, ***p<0.001 vs. *Osx-Cre*^{Tg}; *Tgif1*^{+/+}.

		Male		
	Parameters	Dmp1-Cre⁻;Tgif1 ^{¶/¶}	Dmp1-Cre ^{Tg} ;Tgif1 ^{1/1}	
	BV/TV (%)	5.761 ± 0.825 (n=9)	6.176 ± 0.680 (n=8)	
	Tb.Th (µm)	25.60 ± 1.31 (n=9)	26.62 ± 2.02 (n=8)	
	Tb.Sp (µm)	503.2 ± 79.0 (n=9)	443.5 ± 64.6 (n=8)	
	Tb.N (1/mm)	2.283 ± 0.340 (n=9)	2.353 ± 0.245 (n=8)	
	MS/BS (%)	27.77 ± 0.87 (n=9)	20.71 ± 1.26*** (n=8)	
	MAR (µm/day)	1.924 ± 0.101 (n=9)	1.092 ± 0.037*** (n=8)	
tibia	BFR/BS (µm³/µm²/year)	194.8 ± 11,2 (n=9)	82.25 ± 5.02*** (n=8)	
mal	BFR/BV (%/year)	1123.0 ± 83.3 (n=9)	487.5 ± 35.2*** (n=8)	
roxi	OV/BV (%)	2.762 ± 0.205 (n=8)	0.870 ± 0.335*** (n=6)	
ш	OS/BS (%)	16.87 ± 1.34 (n=8)	6.474 ± 2.267** (n=6)	
	Ob.S/BS (%)	17.63 ± 1.26 (n=8)	7.769 ± 2.853** (n=6)	
	N.Ob/BS (1/mm)	11.55 ± 0.77 (n=8)	5.206 ± 1.780** (n=6)	
	ES/BS (%)	0.9783 ± 0.0674 (n=8)	0.4811 ± 0.0685*** (n=6)	
	Oc.S/BS (%)	0.8966 ± 0.0554 (n=8)	0.4913 ± 0.0852** (n=6)	
	N.Oc/BS (1/mm)	0.3684 ± 0.0264 (n=8)	0.2160 ± 0.0382** (n=6)	
_	BV/TV (%)	17.54 ± 1.12 (n=18)	18.13 ± 2.01 (n=9)	
ebra dy	Tb.Th (µm)	30.53 ± 1.52 (n=18)	28.56 ± 2.53 (n=9)	
/ert(bo	Tb.Sp (µm)	149.9 ± 8.7 (n=18)	189.1 ± 10.1 (n=9)	
>	Tb.N (1/mm)	5.728 ± 0.239 (n=18)	6.250 ± 0.361 (n=9)	

Supplementary Table 4. Histomorphometric analysis of the proximal tibiae and vertebrae of $Dmp1-Cre^{-}$; $Tgif1^{fl/fl}$ and $Dmp1-Cre^{Tg}$; $Tgif1^{fl/fl}$ male mice

Histomorphometry of the proximal tibiae and the L4 vertebral bodies of 8-week old mice. Mean values ± SEM. **p<0.001, ***p<0.001 vs. *Dmp1-Cre*;*Tgif1*^{fl/fl}.

		Male				
	Parameters	<i>Tgif1</i> ^{+/+} , vehicle	<i>Tgif1</i> ^{+/+} , Scl-Ab	<i>Tgif1^{-/-}</i> , vehicle	<i>Tgif1^{−/−}</i> , Scl-Ab	
	BV/TV (%)	7.726 ± 0.894 (n=11)	17.19 ± 1.35*** (n=9)	7.410 ± 0.678 (n=6)	15.95 ± 1.46*** (n=8)	
	Tb.Th (µm)	28.23 ± 1.98 (n=11)	51.29 ± 3.32*** (n=9)	28.02 ± 1.62 (n=6)	46.76 ± 1.50*** (n=8)	
	Tb.Sp (µm)	355.1 ± 21.3 (n=11)	258.0 ± 28.5 (n=9)	357.9 ± 21.7 (n=6)	270.2 ± 39.4 (n=8)	
	Tb.N (1/mm)	2.673 ± 0.126 (n=11)	3.411 ± 0.235 (n=9)	2.629 ± 0.140 (n=6)	3.436 ± 0.322 (n=8)	
	MS/BS (%)	27.49 ± 2.36 (n=12)	46.76 ± 2.80*** (n=9)	22.88 ± 3.52 (n=6)	50.87 ± 3.88*** (n=8)	
	MAR (µm/day)	1.697 ± 0.063 (n=12)	2.124 ± 0.128** (n=9)	0.9904 ± 0.0668 (n=6)	1.895 ± 0.115*** (n=8)	
I tibia	BFR/BS (µm³/µm²/year)	169.5 ± 14.4 (n=12)	356.4 ± 19.8*** (n=9)	83.83 ± 15.4 (n=6)	347.6 ± 27.3*** (n=8)	
xima	BFR/BV (%/year)	877.9 ± 92.8 (n=12)	1138 ± 70.5 (n=9)	443.5 ± 77.9 (n=6)	1123 ± 77.1*** (n=8)	
Pro	OV/BV (%)	1.546 ± 0.201 (n=8)	4.307 ± 0.500*** (n=8)	0.6648 ± 0.0931 (n=6)	2.685 ± 0.452*** (n=8)	
	OS/BS (%)	9.834 ± 1.002 (n=8)	30.77 ± 3.57*** (n=8)	5.134 ± 0.718 (n=6)	22.51 ± 1.81*** (n=8)	
	Ob.S/BS (%)	10.25 ± 1.06 (n=8)	31.29 ± 3.32*** (n=8)	5.599 ± 1.009 (n=6)	24.36 ± 1.73*** (n=8)	
	N.Ob/BS (1/mm)	5.904 ± 0.560 (n=8)	17.18 ± 1.67*** (n=8)	3.650 ± 0.720 (n=6)	13.00 ± 1.31*** (n=8)	
	ES/BS (%)	0.7151 ± 0.0708 (n=8)	0.7905 ± 0.0565 (n=8)	0.3818 ± 0.0364 (n=6)	0.4523 ± 0.0426 (n=8)	
	Oc.S/BS (%)	0.6741 ± 0.0733 (n=8)	0.7948 ± 0.0716 (n=8)	0.3203 ± 0.0300 (n=6)	0.4719 ± 0.0506 (n=8)	
	N.Oc/BS (1/mm)	0.2864 ± 0.0276 (n=8)	0.3190 ± 0.0321 (n=8)	0.1418 ± 0.0116 (n=6)	0.1890 ± 0.0216 (n=8)	

Supplementary Table 5. Histomorphometric analysis of the proximal tibiae of $Tgif1^{+/+}$ and $Tgif1^{-/-}$ male mice after ScI-Ab treatment

Histomorphometry of the proximal tibiae of 12-week old mice. Mean values ± SEM. **p<0.01, ***p<0.001 vs. vehicle control of the same genotype.

		Male				
	Parameters	Lrp5 ^{+/+} ;Tgif1 ^{+/+}	Lrp5 ^{+/G171V} ;Tgif1 ^{+/+}	Lrp5 ^{+/+} ;Tgif1 ^{-/-}	Lrp5 ^{+/G171V} ;Tgif1 ^{-/-}	
	BV/TV (%)	6.702 ± 0.867 (n=8)	16.40 ± 1.64*** (n=8)	6.195 ± 0.700 (n=8)	10.62 ± 1.13* (n=6)	
	Tb.Th (µm)	29.97 ± 2.32 (n=8)	53.69 ± 3.54*** (n=8)	29.20 ± 1.66 (n=8)	40.30 ± 2.92** (n=6)	
	Tb.Sp (µm)	408.5 ± 29.8 (n=8)	283.0 ± 20.4* (n=8)	469.8 ± 42.8 (n=8)	350.3 ± 27.7 (n=6)	
	Tb.N (1/mm)	2.358 ± 0.147 (n=8)	3.038 ± 0.170* (n=8)	2.098 ± 0.165 (n=8)	2.622 ± 0.182 (n=6)	
	MS/BS (%)	33.62 ± 1.62 (n=8)	44.63 ± 2.83** (n=8)	23.46 ± 1.83 (n=8)	39.74 ± 1.10*** (n=6)	
	MAR (µm/day)	1.818 ± 0.149 (n=8)	2.639 ± 0.197** (n=8)	1.462 ± 0.149 (n=8)	2.512 ± 0.138*** (n=6)	
al tibia	BFR/BS (µm³/µm²/year)	227.8 ± 29.2 (n=8)	441.2 ± 61.0** (n=8)	129.8 ± 23.4 (n=8)	365.1 ± 25.3** (n=6)	
xima	BFR/BV (%/year)	1126 ± 104 (n=8)	1347 ± 140 (n=8)	776.6 ± 122.7 (n=8)	1709 ± 172*** (n=6)	
Pro	OV/BV (%)	2.278 ± 0.408 (n=8)	3.252 ± 0.405 (n=8)	1.109 ± 0.257 (n=8)	3.514 ± 0.422** (n=6)	
	OS/BS (%)	13.55 ± 1.71 (n=8)	25.40 ± 2.04*** (n=8)	7.116 ± 1.175 (n=8)	21.43 ± 1.21*** (n=6)	
	Ob.S/BS (%)	14.33 ± 1.71 (n=8)	25.99 ± 2.26*** (n=8)	8.672 ± 1.545 (n=8)	22.19 ± 1.28*** (n=6)	
	N.Ob/BS (1/mm)	9.010 ± 0.950 (n=8)	16.14 ± 1.52*** (n=8)	5.512 ± 0.978 (n=8)	13.01 ± 0.92*** (n=6)	
	ES/BS (%)	1.029 ± 0.071 (n=8)	1.153 ± 0.120 (n=8)	0.4937 ± 0.0703 (n=8)	0.6011 ± 0.0876 (n=6)	
	Oc.S/BS (%)	0.9342 ± 0.0492 (n=8)	1.079 ± 0.108 (n=8)	0.4385 ± 0.0614 (n=8)	0.5242 ± 0.0862 (n=6)	
	N.Oc/BS (1/mm)	0.3740 ± 0.0210 (n=8)	0.3933 ± 0.0506 (n=8)	0.2007 ± 0.0237 (n=8)	0.2125 ± 0.0363 (n=6)	

Supplementary Table 6. Histomorphometric analysis of the proximal tibiae of $Tgif1^{+/+}$ and $Tgif1^{-/-}$ male mice with $Lrp5^{+/G171V}$ high bone mass mutation

Histomorphometry of the proximal tibiae of 8-week old mice. Mean values ± SEM. *p<0.05, **p<0.01, ***p<0.001 vs. group with the same Tgif1 genotype.

			Male				
	Parameters	Lrp5 ^{+/+} ;Tgif1 ^{+/+}	Lrp5 ^{+/A214V} ;Tgif1 ^{+/+}	Lrp5 ^{+/+} ;Tgif1 ^{-/-}	Lrp5 ^{+/A214V} ;Tgif1 ^{-/-}		
	BV/TV (%)	28.32 ± 6.28 (n=8)	54.13 ± 2.89** (n=9)	23.81 ± 6.05 (n=7)	43.74 ± 3.07** (n=7)		
nur	Tb.Th (µm)	52.00 ± 7.11 (n=8)	92.71 ± 6.94*** (n=9)	49.76 ± 9.07 (n=7)	74.84 ± 5.78 (n=7)		
II fer	Tb.Sp (µm)	179.6 ± 42.4 (n=8)	77.34 ± 4.06 (n=9)	208.5 ± 53.5 (n=7)	95.94 ± 5.15 (n=7)		
lista	Tb.N (1/mm)	4.931 ± 0.581 (n=8)	5.244 ± 0.605 (n=9)	4.446 ± 0.533 (n=7)	5.862 ± 0.083 (n=7)		
	SMI	1.150 ± 0.658 (n=8)	-1.950 ± 0.620** (n=9)	1.573 ± 0.633 (n=7)	-0.263 ± 0.439 (n=7)		
	Ct.Th (µm)	188.1 ± 6.4 (n=8)	242.2 ± 4.0*** (n=9)	179.0 ± 11.0 (n=7)	231.4 ± 12.6*** (n=7)		
Midshaft femur	Ct.Dens (mg HA/cm ³)	915.4 ± 62.3 (n=8)	1071 ± 12 (n=9)	927.1 ± 62.4 (n=7)	975.7 ± 19.4 (n=7)		
	Ps.Dm (mm)	1.858 ± 0.025 (n=8)	1.943 ± 0.029 (n=9)	1.798 ± 0.038 (n=7)	1.906 ± 0.054 (n=7)		
	Ps.Pm (mm)	5.835 ± 0.079 (n=8)	6.101 ± 0.091 (n=9)	5.645 ± 0.120 (n=7)	5.986 ± 0.170 (n=7)		
	Ec.Dm (mm)	1.565 ± 0.024 (n=8)	1.568 ± 0.024 (n=9)	1.526 ± 0.027 (n=7)	1.551 ± 0.040 (n=7)		
	Ec.Pm (mm)	4.913 ± 0.076 (n=8)	4.923 ± 0.074 (n=9)	4.792 ± 0.085 (n=7)	4.872 ± 0.126 (n=7)		

Supplementary Table 7. μ CT analysis of the distal and midshaft femura of *Tgif1*^{+/+} and *Tgif1*^{-/-} male mice with *Lrp5*^{+/A214V} high bone mass mutation

μCT analysis of the distal femura of 8-week old mice. BV/TV, bone volume/total volume; Tb.Th, trabecular thickness; Tb.Sp, trabecular separation; Tb.N, trabecular number; SMI, structure model index; Ct.Th, cortical thickness; Ct.Dens, cortical density; Ps.Dm, periosteal diameter; Ps.Pm, periosteal perimeter; Ec.Dm, endocortical diameter; Ec.Pm, endocortical perimeter. Mean values ± SEM. **p<0.01, ***p<0.001 vs. group with the same Tgif1 genotype.

Supplementary Table 8. Histomorphometric analysis of the proximal tibiae of <i>Tgif1</i> ^{+/+} and <i>Tgif1</i> ^{-/-}	
male mice after anabolic PTH treatment	

			М	ale	
	Parameters	<i>Tgif1</i> ^{+/+} , vehicle	<i>Tgif1</i> ^{+/+} , PTH	<i>Tgif1^{-/−}</i> , vehicle	<i>Tgif1^{-/-}</i> , PTH
	BV/TV (%)	9.649 ± 0.718 (n=8)	15.14 ± 1.13*** (n=9)	8.589 ± 0.632 (n=8)	7.632 ± 0.476 (n=8)
	Tb.Th (µm)	38.69 ± 2.28 (n=8)	53.13 ± 2.85*** (n=9)	35.67 ± 1.72 (n=8)	38.33 ± 1.45 (n=8)
	Tb.Sp (µm)	371.4 ± 25.6 (n=8)	307.0 ± 20.8* (n=9)	388.8 ± 22.4 (n=8)	456.6 ± 16.3* (n=8)
	Tb.N (1/mm)	2.507 ± 0.159 (n=8)	2.843 ± 0.149 (n=9)	2.399 ± 0.120 (n=8)	2.036 ± 0.071 (n=8)
	MS/BS (%)	28.35 ± 1.87 (n=8)	43.08 ± 1.19*** (n=9)	22.36 ± 1.63 (n=8)	24.16 ± 0.62 (n=8)
	MAR (µm/day)	1.606 ± 0.086 (n=8)	2.794 ± 0.123*** (n=9)	1.048 ± 0.037 (n=8)	1.699 ± 0.069*** (n=8)
l tibia	BFR/BS (μm³/μm²/year)	166.4 ± 14.9 (n=8)	440.8 ± 26.0*** (n=9)	86.12 ± 8.02 (n=8)	149.3 ± 5.8* (n=8)
xima	BFR/BV (%/year)	860.3 ± 59.4 (n=8)	1664 ± 60.1*** (n=9)	502.6 ± 68.4 (n=8)	782.5 ± 29.5** (n=8)
Pro	OV/BV (%)	3.285 ± 0.558 (n=8)	6.998 ± 0.397*** (n=9)	0.8817 ± 0.0815 (n=8)	1.983 ± 0.374 (n=8)
	OS/BS (%)	18.53 ± 2.09 (n=8)	47.30 ± 1.90*** (n=9)	6.286 ± 0.515 (n=8)	15.36 ± 2.48** (n=8)
	Ob.S/BS (%)	19.29 ± 1.90 (n=8)	48.92 ± 2.27*** (n=9)	8.008 ± 0.935 (n=8)	17.70 ± 2.89** (n=8)
	N.Ob/BS (1/mm)	11.38 ± 0.99 (n=8)	30.29 ± 1.35*** (n=9)	4.592 ± 0.648 (n=8)	11.03 ± 1.82** (n=8)
	ES/BS (%)	0.7615 ± 0.0744 (n=8)	1.379 ± 0.103*** (n=9)	0.3329 ± 0.0210 (n=8)	0.5862 ± 0.0511* (n=8)
	Oc.S/BS (%)	0.6730 ± 0.0497 (n=8)	1.375 ± 0.122*** (n=9)	0.3130 ± 0.0239 (n=8)	0.5312 ± 0.0526 (n=8)
	N.Oc/BS (1/mm)	0.2768 ± 0.0189 (n=8)	0.5396 ± 0.0375*** (n=9)	0.1446 ± 0.0103 (n=8)	0.2439 ± 0.0226* (n=8)

Histomorphometry of the proximal tibiae of 12-week old mice. Mean values \pm SEM. *p<0.05, **p<0.01, ***p<0.001 vs. vehicle control of the same genotype.

		Male				
	Paramotors	Dmp1-Cre ⁻ ;Tgif1 ^{fl/fl} ,	Dmp1-Cre ⁻ ;Tgif1 ^{fl/fl} ,	Dmp1-Cre ^{Tg} ;Tgif1 ^{fl/fl} ,	Dmp1-Cre ^{Tg} ;Tgif1 ^{fl/fl} ,	
	Falameters	vehicle	PTH	vehicle	PTH	
	BV/TV (%)	10.78 ± 0.94 (n=8)	18.69 ± 2.28** (n=8)	10.30 ± 1.10 (n=8)	11.68 ± 0.73 (n=8)	
	Tb.Th (µm)	39.37 ± 2.68 (n=8)	48.49 ± 4.38 (n=8)	37.88 ± 2.51 (n=8)	44.37 ± 2.75 (n=8)	
	Tb.Sp (µm)	331.5 ± 15.3 (n=8)	222.1 ± 20.2** (n=8)	350.1 ± 31.4 (n=8)	340.4 ± 20.81 (n=8)	
	Tb.N (1/mm)	2.726 ± 0.109 (n=8)	3.820 ± 0.257*** (n=8)	2.674 ± 0.185 (n=8)	2.658 ± 0.150 (n=8)	
	MS/BS (%)	29.26 ± 2.41 (n=8)	38.86 ± 2.51** (n=8)	20.09 ± 1.45 (n=8)	24.39 ± 2.39 (n=8)	
	MAR (µm/day)	1.512 ± 0.106 (n=8)	2.598 ± 0.130*** (n=8)	1.348 ± 0.071 (n=8)	1.511 ± 0.162 (n=8)	
al tibia	BFR/BS (µm³/µm²/year)	166.1 ± 23.7 (n=8)	366.6 ± 25.4*** (n=8)	97.92 ± 7.55 (n=8)	140.6 ± 28.4 (n=8)	
xima	BFR/BV (%/year)	829.5 ± 63.2 (n=8)	1603 ± 37.9*** (n=8)	538.2 ± 52.2 (n=8)	737.7 ± 103.0* (n=8)	
Pro	OV/BV (%)	2.485 ± 0.226 (n=8)	7.972 ± 1.043*** (n=8)	0.6901 ± 0.0897 (n=8)	2.300 ± 0.449* (n=8)	
	OS/BS (%)	15.83 ± 1.20 (n=8)	44.41 ± 4.64*** (n=8)	5.728 ± 0.766 (n=8)	15.54 ± 2.20* (n=8)	
	Ob.S/BS (%)	16.56 ± 1.07 (n=8)	45.61 ± 4.80*** (n=8)	6.770 ± 0.843 (n=8)	17.77 ± 2.53* (n=8)	
	N.Ob/BS (1/mm)	10.49 ± 0.62 (n=8)	30.65 ± 3.45*** (n=8)	4.505 ± 0.583 (n=8)	10.49 ± 1.43 (n=8)	
	ES/BS (%)	0.7816 ± 0.0959 (n=8)	1.477 ± 0.166*** (n=8)	0.3506 ± 0.0342 (n=8)	0.7795 ± 0.0643** (n=8)	
	Oc.S/BS (%)	0.7378 ± 0.0800 (n=8)	1.396 ± 0.179*** (n=8)	0.3563 ± 0.0393 (n=8)	0.7402 ± 0.0678* (n=8)	
	N.Oc/BS (1/mm)	0.3045 ± 0.0322 (n=8)	0.5532 ± 0.0901** (n=8)	0.1651 ± 0.0128 (n=8)	0.3371 ± 0.0302 (n=8)	

Supplementary Table 9. Histomorphometric analysis of the proximal tibiae of *Dmp1-Cre*⁻;*Tgif1*^{fl/fl} and *Dmp1-Cre*^{Tg};*Tgif1*^{fl/fl} male mice after anabolic PTH treatment

Histomorphometry of the proximal tibiae of 12-week old mice. Mean values \pm SEM. *p<0.05, **p<0.01, ***p<0.001 vs. vehicle control of the same genotype.

Primer name	Forward primer	Reverse primer	
Alp	CCTCAAAGGCTTCTTCTTGCTG	GGGGTGTATCCACCGAATGTG	
Ocn	CACTCTGCTGACCCTGGCTGC	CAGGGTTAAGCTCACACTGCTCC	
Sema3E	GGGGCAGATGTCCTTTTGA	AGTCCAGCAAACAGCTCATTC	
BAT-GAL	TTGAAAATGGTCTGCTGCTG	TATTGGCTTCATCCACCACA	
CyclinD1	CGTGGCCTCTAAGATGAAGGA	TTG TTC TCA TCC GCC TCT GG	
Axin2	GCAGCAGATCCGGGAGGATGAA	GATTGACAGCCGGGGGTCTTGA	
Tgif1	GCAGACACACCTGTCCACACTA	GGAATGAAATGGGCTCTCTTCT	
Tgif2	CAGACCAACCTCTCGGTGCTG	GCACACAGACAAGGCGAGCATG	
Dkk1	CGAACAAGTACCGACTCT	GTCAGAGGGCATGCATACC	
Sost	GAGAACAACCAGACCATGAAC	GCT CGC GGC AGC TGT ACT	
Rankl	AACTGCAACACATTGTGGGC	TTATGGGAACCCGATGGGATGC	
Opg	AAGAGCAAACCTTCCAGCTGC	CACGCTGCTTTCACAGAGGTC	
Eph2B	CAGACCAGCATCAAGGAAAAG	ATGTGTCCGCTGGTGTAGTG	
Eph4B	CACCCAGCAGCTTGATCCTG	ACCAGGACCACACCCACAAC	
Ephrin2B	GTGCCAGACAAGAGCCATGAA	GGTGCTAGAACCTGGATTTGG	
IL-1	GACCTTCCAGGATGAGGACA	AGGCCACAGGTATTTTGTCG	
IL-6	GAGCCCACCAAGAACGATAG	GGTTGTCACCAGCATCAGTC	
IL-11	CGGCAACTAGCTGCACAGATG	CTCCAGAGTCTTTAGGGAAGG	
IL-18	CCAGCATCAGGACAAAGAAA	TACAGTGAAGTCGGCCAAAG	
IGF-1	ACAGGCTATGGCTCCAGCAT	GCTCCGGAAGCAACACTCAT	
IGF-2	CACGCTTCACTTTGTCTGTTCGG	CAGCACTCTTCCACGATGCCAC	
lgfbp-2	CCAAGAAGCTGCGACCAC	GGGATGTGCAGGGAGTAGAG	
lgfbp-3	GAGTGTGGAAAGCCAGGTTGTC	GGCATGGAGTGGATGGAACT	
lgfbp-5	TCTAGCCATCCACACTGCTG	AAGAAAGCAAAGCGTTGGAA	
Gapdh	TGCACCACCAACTGCTTAG	GGATGCAGGGATGATTGGC	
Tbp	GCTCTGGAATTGTACCGCAGC	CTCTTGGCTCCTGTGCACAC	
Binding site 1	AGAGCAGCTGCATTGATGTG	CGCTGTGGTATGCTAACTGG	
Binding site 2	TAGATCACCCCCAACAATGG	CACCCACACATCAATGCAG	
Binding site 3	CTGTGAAAAGGCAGGGCTAC	ATCAAGCGAGCAGAGAGTGG	
Binding site 4	GGTGGTGTGCACCTATAGCC	CGAGGCCGCTCACTATAAAC	
Binding site 5	CTGAGAGCTGGGGTGAGTG	TGAAACAGGGTCTCATGCAC	
Binding site 6	TTTTTCCTCTGCCAGCGTTAG	AGAGGCTAAACTTTCCTTTTCCTC	
Binding site 7	AAATTGTGGCTCCCCAGT	TGTCCTGTGGCTGTCCTATG	
Binding site 8	TTAGTTTCCAAGCGGCTCTC	GCCCAGATGTTTTTGGTTTG	
Binding site 9	AGAGGCAGGAGAAGCAGACC	AGGATGACCAGCCCTATGTG	
Binding site 10	CTGTTCCTGGTCCTCACAGC	TCTGGGAAAAATGGATTTGC	
Binding site 11	TGGACGTCAAGTCTGCTCTG	CTCTGCAAAAGAGGCTGTGG	
Rar alpha	GGGAGTTTTTAAGCGCTGTGAG	GGAGCAGCTCACTTCCTACC	
Negative control	GAAATTCTGTGTTGGCCGCA	TCAGCACCTACAATTCTGACCA	