Supplemental Table 1. Animal and *ex vivo* human studies of cardiovascular and kidney diseases providing direct (hormone infusion, transgenic animal models) and indirect (RAAS suppression) evidence of the cardio- and nephrotoxicity of chronic and/or excess angiotensin II and aldosterone production. The studies are presented in chronological order.

(or Disease)	Renal Effects (Control or	Experiments	Outcomes	Key Points
Unilateral renal artery clipping Rats were fed a normal salt diet	Pre-treatment) Renovascular hypertension,	Captopril, hydrochlorothiazide, captopril and hydrochlorothiazide, hydralazine (vs. untreated control) Therapy started 6 weeks after renal artery	Captopril and captopril with hydrochlorothiazide lowered blood pressure consistently where rats appeared to develop a tolerance to hydralazine after about 4 weeks of therapy; Survival was best in the captopril and hydrochlorothiazide treated rats, yet captopril alone also prolonged survival and	Captopril (alone or in combination with hydrochlorothiazide) benefited survival in these rats; this was early evidence that RAAS suppression impacted survival.(1)
		clipping and was continued for 6 months	hydrochlorothiazide or hydralazine alone did not affect survival when compared to untreated rats	
Spontaneously hypertensive rats Rats were fed a normal salt diet	Systemic hypertension, left ventricular hypertrophy, heart failure	Captopril, guanethidine, or hydralazine (vs. control group) Captopril: 14 month old rats for 10 months; guanethidine or hydralazine: 12 month	Left ventricular hypertrophy could be reversed and left ventricular (LV) dysfunction (decreased cardiac output) was prevented by all 3 anti-hypertensive therapies	Barotrauma of systemic hypertension leads to left ventricular hypertrophy and LV dysfunction; normalization of blood pressure reduces LV mass and prevents deterioration of LV function (2-5)
Chronic myocardial infarction (coronary artery ligation) in rats	LV dilation and dysfunction	old rats for 6 months Captopril (vs. control group) Treatment duration 3 months	Captopril treatment attenuated LV dilation and dysfunction	This was early evidence that Ang II associated with pathologic remodeling after myocardial infarction (4)

hypertensive rats	ventricular hypertrophy,	isinopril (vs. control	lisinopril treatment lowered	hypertrophy secondary to systemic
	myocardial fibrosis,	group)	systemic blood pressure and	hypertension and benefit, derived
Rats were fed a normal	diastolic dysfunction		reversed left ventricular	from RAAS suppression is
salt diet		Treatment started at 14	hypertrophy, <i>both</i> dosages	independent from blood pressure
		and 26 weeks of age for	prevented myocardial fibrosis	control
		a duration of 12 weeks		(6,7)
infra-renal aortic	Renovascular hypertension,	Captopril (vs. control	Captopril treatment prevented	Implicates activation of RAAS in
banding with right	left ventricular	group)	development of systemic	the development of myocardial
renal artery banding	hypertrophy, and		hypertension, myocardial fibrosis,	fibrosis in renovascular
(IRB+RRAB) in rats	myocardial fibrosis,	Treatment duration 8	and increased LV stiffness	hypertension {(8-10)
	increased LV stiffness	weeks (started 2 days		
Rats were fed a normal		prior to banding)		
salt diet		1 0,		
Unilateral	Renovascular hypertension	None	ATII levels increased in the	Ang II and aldosterone are
nephrectomy (UN)	or LV pressure load (IRB);		IRB+RRAB group; aldosterone	associated with development of
with aldosterone	left ventricular hypertrophy		levels increased in IRB+RRAB	myocardial fibrosis (see Figure 3)
infusion and high	in all groups, myocardidal		and aldosterone infusion group	{Brilla:1992un, Brilla:1990jm}
sodium diet or IRB	fibrosis attended the left			
alone or IRB+RRAB	ventricular hypertrophy in			
in rats	the IRB+RRAB and			
	aldosterone infusion groups			
Ang II infusion to rats	Moderate Systemic	None	Renal changes included focal	Ang II-infused rats not only
	hypertension		tubulointerstitial injury, cast	develop chronic hypertension and
Rats were fed a normal		Infusion duration was 2	formation, interstitial monocyte	vascular remodeling, but also
salt diet		weeks	infiltration, and mild interstitial	glomerular and tubulointerstitial
			fibrosis. Changes to the	injury (11)
			glomerulus included a mild	An early study also showed that
			increase in glomerular cell	very short term (< 1 day), high
			proliferation and mesangial cell	dosages of Ang II infusion can
			proliferation. In both tissues there	cause hilar arterial necrosis,
			was a phenotypic modulation with	capillary aneurysms, and focal
			increased alpha-smooth muscle	glomerular necrosis
			actin expression.	{Byrom:1964kt}
IRB+RRAB with and	Renovascular hypertension,	Spironolactone (vs.	Spironolactone treatment led to	Further support for aldosterone's
without aldosterone	left ventricular	control group)	reduction (but not normalization)	key role in the development of
infusion or UN with	hypertrophy, myocardial		of blood pressure and did not	myocardial fibrosis

high sodium diet or	fibrosis	Treatment duration 8	prevent left ventricular	{Brilla:1993iz}
aldosterone infusion in		weeks	hypertrophy; Spironolactone did	
rats			prevent the development of	
			myocardial fibrosis	
Essential hypertension	Prior to therapy – medial	Losartan or atenolol	Blood pressure normalized in both	Both medial hypertrophy and
in people – biopsies of	hypertrophy of arterioles	\pm hydrochlorothiazide,	treatment groups, yet only patients	vascular dysfunction were reversed
resistance arterioles	and impaired endothelium-	if needed	treated with losartan had	in the patients receiving losartan-
before and after	dependent relaxation		significant reduction in arteriolar	induced RAAS suppression, but
treatment		Treatment duration was	hypertrophy and normalization of	not those made normotensive
		1 year	endothelium dependent-relaxation	without RAAS suppression
				(atenolol) (12)
People with NYHA	Patients' forearm blood	Spironolactone or	Increased forearm blood flow in	This was interpreted as indirect
class II or III heart	flow tested after both	placebo with standard	response to acetylcholine and	evidence that spironolactone
failure – endothelial	acetylcholine, Ang I, or	diuretic therapy and	decreased vasoconstrictor response	inhibits further vascular
function assessed by	Ang II administration	ACEI	to AngI, but not AngII	conversion of AngI to AngII, even
bilateral forearm			administration in patients treated	in the presence of chronic ACE
venous occlusion and		Treatment duration was	with spironolactone	inhibition (13)
plethysmography		1 month		
Aldosterone infusion	Increased plasma	Endothelin A (ET _A)	All 3 treatments led to significant	Aldosterone and a high salt diet
and normal salt diet in	endothelin levels, medial	receptor antagonist,	blood pressure reduction;	leads to increased plasma
rats	hypertrophy and collagen	spironolactone, or	treatment with either the ET _A -	endothelin levels and increased
	deposition, and increased	hydralazine concurrent	receptor antagonist or	oxidative stress, mechanisms that
	oxidative stress within the	with infusion (vs.	spironolactone led to	likely underlie the pathologic
	vascular walls	control group)	normalization of hypertrophy and	remodeling (hypertrophy and
			decreased collagen deposition, all	fibrosis) in the vascular smooth
		Treatment duration was	treatments led to a reduction in	muscle (14) Another study in a
		6 weeks	markers of oxidative stress, though	similar model also showed that an
			this reduction was greatest in the	ET _A receptor antagonist, reduced
			ET _A -receptor antagonist and	blood pressure and prevented
			spironolactone groups	vascular remodeling.(15)
Ang II or aldosterone	Systemic hypertension,	Spironolactone or	Both treatments led to equivalent	MR activation mediates some of
infusion in rats	impaired endothelium-	hydralazine concurrent	reduction in blood pressure; only	the Ang II-induced vascular
	dependent relaxation (Ang	with infusion	spironolactone treatment	remodeling and dysfunction in
Rats were fed a normal	II group only), concentric		attenuated development of	Systemic hypertension, with
salt diet	arteriolar hypertrophy,	Treatment duration was	arteriolar hypertrophy and	oxidative stress being one likely

	increased markers of	2 weeks	impaired endothelium-dependent	mechanism (16)
	oxidative stress		relaxation, and reduced markers of	
			oxidative stress	
Deoxycorticosterone	Myocardial fibrosis, and	Eplerenone concurrent	Eplerenone treatment led to	Aldosterone and a high salt diet
acetate and high	increased markers of	with	resolution of myocardial fibrosis,	leads to myocardial fibrosis and
sodium diet in rats	coronary vascular	deoxycorticosterone	and led to a reduction in markers	coronary artery inflammation and
	inflammation and oxidative	acetate /diet (vs. control	of coronary vascular inflammation	oxidative stress; the MRA,
	stress	group)	and oxidative stress	eplerenone, reversed established
				myocardial fibrosis, and reduced
		Treatment duration last		coronary arterial markers of
		4 weeks of 8 week		inflammation and oxidative stress
		study		{Young:2004ho}
Spontaneously	Systemic hypertension,	Spironolactone (vs.	Blood pressure did not vary	MRA led to a reduction in
hypertensive – stroke	proteinuria, and death due	untreated control)	between control and treated rats;	proteinuria and cerebrovascular
prone rats (SHR-SP)	to stroke; cerebrovascular		spironolactone led to a significant	and renal tubular and glomerular
	lesions include edema,	Treatment was started	reduction in cerebrovascular and	lesions independently of blood
Rats were fed a high	spongiosis, liquifactive	at 7.5 weeks of age and	renal histologic lesions; urine	pressure lowering; aldosterone and
salt diet	necrosis, and hemorrhage;	continued for 3-4	protein excretion was significantly	a high salt diet plays an important
	tubular and glomerular	weeks in phase I of the	lower in the spironolactone group;	role in the development of vascular
	lesions also noted	study and was	the spironolactone-treated rats	injury in this model.(17)
		continued until natural	lived significantly longer than	A similar study also showed that
		death in phase II	controls	the MRA eplerenone attenuated
				the pathologic remodeling that
				developed during aldosterone
				excess and a high salt load in
				SHR-SP rats.(18)
Transgenic rat model	Blood pressure remained	None	Rats developed severe proteinuria	Increased AT ₁ R signaling in the
overexpressing human	normal, rates developed	The rats were studied	and pseudocyst formation on	podocyte damages the podocytes,
AI_1R on podocytes	severe proteinuria starting	throughout their natural	podocytes, then foot process	leads to proteinuria and causes
Data mana f. 1	at 8 to 15 weeks of age	me span	detachment at a young age;	10cal segmental glomeruloscierosis
kats were ied a normal			utilitately nephron loss developed,	(19)
sait diet			nethway typical of focal compared	
			alomorulosolorosis	
5/6 Nonbrootomy in	Systemia hypertension	Spiropolastopa alora	Spironologiono thorony along did	MP blockede slows the
roto	protoinurio	and anironal actors with	sphonolactone therapy alone did	development of
Tais	protemuna,	and spironolacione with	not significantly reduce blood	development of

Rats were fed a normal salt diet	glomerulosclerosis, tubular atrophy, dilation, and interstitial fibrosis	antihypertensive therapy (reserpine, hydralazine, hydrochlorothiazide) (vs. untreated control) Treated started 8 weeks after 5/6 nephrectomy and continued for 4 weeks	pressure; spironolactone treatment did lead to a reduction in glomerular injury, a benefit that was amplified by concurrent control of systemic blood pressure via triple therapy Neither spironolactone alone, nor the combination of spironolactone and anti-hypertensive therapy, led to significant improvement in the severity of proteinuria	glomerulosclerosis, and also may reduce existing glomerulosclerosis, a benefit which is amplified by concurrent blood pressure control. The failure to significantly affect the degree of proteinuria was postulated to be due to irreversible podocyte damage and/or unique pathophysiology of this rat model. (20)
Unilateral nephrectomy, aldosterone infusion, and high salt diet in rats	Progressive proteinuria, increased markers oxidative stress, and damage to glomerular podocytes	Eplerenone, tempol (an antioxidant), or hydralazine (vs. untreated control) Therapy started 5 days prior to infusion start, the continued for 2 weeks concurrently with infusion/diet	Eplerenone treatment lowered but did not normalize blood pressure, attenuated markers of oxidative stress in podocytes and prevented the development of proteinuria and podocyte damage; tempol also led to a reduction in proteinuria and podocyte damage and attenuated markers of oxidative stress; hydralazine nearly normalized blood pressure, yet did not reduce proteinuria, podocyte damage, or makers of oxidative stress	Aldosterone excess and high salt diet leads to glomerular injury and proteinuria, which appears to be mediated in part by the formation of reactive oxygen species; this damage occurs/persists even when blood pressure is normalized(21) Additional studies have also demonstrated that podocyte injury underlies the pathogenesis of proteinuria in aldosterone-infused rats.(19,22)
Adriamycin induced nephrosis in rats	Mild Systemic hypertension, proteinuria, markers of tubular injury increase; glomerular and interstitial lesions include influx of interstitial macrophages, increased alpha smooth muscle actin, and collagen IV deposition at tubular basement membranes, focal	Lisinopril, spironolactone, or lisinopril and spironolactone (vs. untreated control) Treated was initiated 6 weeks after adriamycin administration and continued for 12 weeks	Lisinopril alone and in combination with spironolactone led to a significant reduction in blood pressure, proteinuria, and prevented the increase in alpha smooth muscle actin, and collagen IV deposition at tubular basement membranes; all therapies reduced the number of interstitial macrophages	ACEI and MRA reduce proteinuria, and tubular and interstitial injury to a greater extent than ACEI alone in this model (23)

	glomerulosclerosis and			
Eccontial hypothesian	Interstitial fibrosis	Enlaranona or stanolal	Plood prossure normalized in both	MP activation mediates the
in people biopsies of	hypertrophy of arterioles	+ hydrochlorothiazide	treatment groups, yet only patients	wascular remodeling and stiffening
resistance arterioles	increased vascular collagen	if needed	treated with enlerenone had a	associated with essential
before and after	content increased arteriolar	II needed	reduction in arterial stiffness a	hypertension: increased
treatment	stiffness increased	Treatment duration was	reduction in the media collagen to	inflammation likely plays a role in
treatment	inflammatory mediators	1 year	elastin ratio and a decrease in	the development of this
	and impaired endothelium-	i your	circulating inflammatory	remodeling and dysfunction (24)
	dependent relaxation		mediators: Neither endothelial	Termodeling and ayoranetion (21)
			function nor arteriolar hypertrophy	
			changed either group	
Aldosterone infusion	Right ventricular and LV	Spironolactone	Spironolactone prevented	Aldosterone and a high salt diet
and high sodium diet,	myocardial fibrosis,	concurrent with	development of myocardial	leads to myocardial fibrosis,
electrical stimulation	increased susceptibility to	infusion/diet (vs.	fibrosis and led to a reduction in	spironolactone's anti-fibrotic
of the right ventricle	induction of ventricular	control group)	susceptibility to ventricular	effects reduced susceptibility to
	arrhythmia		arrhythmia	arrhythmia in this model
		Treatment duration was		{Deshmukh:2011ga}
		4-6 weeks		
Rat model for type-2	Glomerulosclerosis and	Lisinopril, eplerenone,	The combination of lisinopril and	ACEI and MRA alone, or in
diabetes mellitus and	proteinuria, increased renal	lisinopril and	eplerenone led to a reduction in	combination, reduce the
nephropathy	deposition of type I and IV	eplerenone (vs.	proteinuria, glomerulosclerosis,	expression in pro-fibrotic and –
	collagen, and increased	untreated control)	and renal desposition of type I and	inflammatory mediators; ACEI
Rats were fed a normal	expression of pro-fibrotic	m	IV collagen greater than that seen	monotherapy reduces proteinuria,
salt diet	and pro-inflammatory	Treatment was started	with ACEI monotherapy; Mono-	yet efficacy was improved when
	cytokines, including	at 14 weeks of age and	and dual-therapy with epleronone	an MRA was added; MRA therapy
	plasminogen activator	continued for 26 weeks	and lisinopril also led to a	alone did not have a significant
	inhibitor-1, transforming		significant reduction in renal	effect on proteinuria in this model
	growth factor-beta,		expression of pro-fibrotic and pro-	(25)
	connective tissue growth		inflammatory cytokines; Dual	
	factor, and fibronectin		therapy was associated with a	
			compared to monotherapy	
Dart I.	Dart I: muggardial fibrasia	Dart I: high	Port I: Eingronong at the highest	The payt generation non store del
Fall I. Deoxycorticostorono	and vasculonathy	rait I. Iligii,	dosage tested and both dosages of	MPA finerenone conferred better
acetate unilatoral	proteinuria	dosages of finaranona	aplerenone, reduced blood	and organ protection in both
acciaic, unnateral	proteniuna,	uosages of fillerenoile	epierenone, reduced blood	end organ protection in bour

nephrectomy and high	glomerulosclerosis,	or eplerenone (vs.	pressure; finerenone led to dose-	models when compared to the
sodium diet in rats	tubulointerstitial injury, and	untreated control)	dependent protection from	steroidal MRA, eplerenone.(26)
	vascular damage	Treatment was initiated	structural heart injury whereas	
Part II: chronic	C	at 9 weeks of age, one	eplerenone had weaker protective	
myocardial infarction	Part II: LV systolic	week after	effects at both dosages studied;	
(coronary artery	dysfunction, increased LV	nephrectomy and	Finerenone, at the intermediate and	
ligation) in rats	diastolic pressure, diastolic	continued for 10 weeks	high dosages resulted in a	
	dysfunction, increased		significant reduction in renal	
	plasma pro-BNP levels	Part II: Finerenone or	structural changes when compared	
		eplerenone (vs.	to eplerenone; both finerenone and	
	Plasma aldosterone was	untreated control)	eplerenone led to a reduction in	
	significantly increased by	Treatment was initiated	proteinuria, yet the reduction was	
	both finerenone and	1 week post-myocardial	significantly greater in the high	
	eplerenone, which supports	infarction and	dose finerenone group when	
	in vivo MR blocking	continued for 8 weeks	compared to the high dose	
	activities of these MRAs		eplerenone group	
			Part II: Finerenone led to	
			improvement in LV systolic and	
			diastolic dysfunction and a	
			reduction in plasma pro-BNP	
			levels whereas eplerenone did not	
Chronic myocardial	Decreased LV compliance	Rats with deletion,	Both the MR-deletion and	MR blockade mitigated the LV
infarction (coronary	and elastance and increased	preventing expression	finerenone-treated rats had less	dysfunction and remodeling post-
artery ligation) in rats	interstitial fibrosis;	of the MR in vascular	reduction in LV compliance,	myocardial infarction (27)
	reduction in coronary	smooth muscle cells or	elastance, and fibrosis; and	
	reserve (assessed by	finerenone (vs. control	coronary artery reserve was	
	magnetic resonance	group)	preserved	
	imaging)			
		Finerenone started 1		
		day post-infarct and		
		continued for 2 months		

ACEI, angiotensin converting enzyme inhibitor; Ang I, angiotensin I; Ang II, angiotensin II; AT₁R angiotensin II type-1 receptor; BNP, Btype natriuretic peptide; IRB infra-renal aortic band; LV, left ventricular; MR, mineralocorticoid receptor; MRA, mineralocorticoid receptor antagonist; RAAS, renin angiotensin aldosterone system; RRAB, right renal artery banding; SHR-SP, spontaneously hypertensive rat-stroke prone; UN, unilateral nephrectomy

References

- 1. Horovitz ZP, Antonaccio MJ, Rubin B, Panasevich RE. Influence of various antihypertensive agents on lifespan of renal hypertensive rats. *Br J Clin Pharmacol*. 1979;7 Suppl 2:243S–248S.
- 2. Pfeffer JM, Pfeffer MA, Fletcher P, Fishbein MC, Braunwald E. Favorable effects of therapy on cardiac performance in spontaneously hypertensive rats. *Am J Physiol.* 1982 May;242(5):H776–84.
- 3. Pfeffer JM, Pfeffer MA, Mirsky I, Braunwald E. Prevention of the development of heart failure and the regression of cardiac hypertrophy by captopril in the spontaneously hypertensive rat. *Eur Heart J*. 1983 Jan;4 Suppl A:143–8.
- 4. Pfeffer JM, Pfeffer MA, Braunwald E. Influence of Chronic Captopril Therapy. *Circ Res.* 1985 Jul 1;57(1):84–95.
- 5. Pfeffer MA, Pfeffer JM, Frohlich ED. pumping ability of the hypertrophying left ventricle. *Circ Res.* 1976 May;38(5):423–9.
- 6. Brilla CG, Janicki JS, Weber KT. Cardioreparative effects of lisinopril in rats with genetic hypertension and left ventricular hypertrophy. *Circ.* 1991 May;83(5):1771–9.
- 7. Brilla CG, Janicki JS, Weber KT. Impaired diastolic function and coronary reserve in genetic hypertension. Role of interstitial fibrosis and medial thickening of intramyocardial coronary arteries. *Circ Res.* 1991 Jul;69(1):107–15.
- 8. Brilla CG, Pick R, Tan LB, Janicki JS, Weber KT. Remodeling of the rat right and left ventricles in experimental hypertension. *Circ Res.* 1990 Dec 1;67(6):1355–64.
- 9. Brilla CG, Matsubara LS, Weber KT. Antifibrotic effects of spironolactone in preventing myocardial fibrosis in systemic arterial hypertension. *Am J Cardiol*. 1993 Jan;71(3):A12–6.
- 10. Jalil JE, Janicki JS, Pick R, Weber KT. Coronary vascular remodeling and myocardial fibrosis in the rat with renovascular hypertension. Response to captopril. *Am J Hypertens*. 1991 Jan;4(1 Pt 1):51–5.
- 11. Johnson RJ, Alpers CE, Yoshimura A, Lombardi D, Pritzl P, Floege J, et al. Renal injury from angiotensin II-mediated hypertension.

Hypertens. 1992 May;19(5):464-74.

- 12. Schiffrin EL, Park JB, Intengan HD, Touyz RM. Correction of arterial structure and endothelial dysfunction in human essential hypertension by the angiotensin receptor antagonist losartan. *Circ*. 2000 Apr 11;101(14):1653–9.
- 13. Farquharson CAJ, Struthers AD. Spironolactone Increases Nitric Oxide Bioactivity, Improves Endothelial Vasodilator Dysfunction, and Suppresses Vascular Angiotensin I/Angiotensin II Conversion in Patients With Chronic Heart Failure. *Circ.* 2000 Feb 15;101(6):594–7.
- 14. Pu Q, Neves MF, Virdis A, Touyz RM, Schiffrin EL. Endothelin Antagonism on Aldosterone-Induced Oxidative Stress and Vascular Remodeling. *Hypertens*. 2003 Jul 1;42(1):49–55.
- 15. Park JB, Schiffrin EL. ETA Receptor Antagonist Prevents Blood Pressure Elevation and Vascular Remodeling in Aldosterone-Infused Rats. *Hypertens*. 2001 Jun 1;37(6):1444–9.
- 16. Virdis A, Neves MF, Amiri F, VIEL E, Touyz RM, Schiffrin EL. Spironolactone Improves Angiotensin-Induced Vascular Changes and Oxidative Stress. *Hypertens*. 2002 Oct 1;40(4):504–10.
- 17. Rocha R, Chander PN, Khanna K, Zuckerman A, Stier CT. Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. *Hypertens*. 1998 Jan;31(1 Pt 2):451–8.
- 18. Endemann DH, Touyz RM, Iglarz M, Savoia C, Schiffrin EL. Eplerenone Prevents Salt-Induced Vascular Remodeling and Cardiac Fibrosis in Stroke-Prone Spontaneously Hypertensive Rats. *Hypertens*. 2004 May 27;43(6):1252–7.
- 19. Hoffmann S. Angiotensin II Type 1 Receptor Overexpression in Podocytes Induces Glomerulosclerosis in Transgenic Rats. J Am Soc *Nephrol.* 2004 Jun 1;15(6):1475–87.
- 20. Aldigier JC. Regression of Existing Glomerulosclerosis by Inhibition of Aldosterone. J Am Soc Nephrol. 2005 Nov 1;16(11):3306–14.
- 21. Shibata S, Nagase M, Yoshida S, Kawachi H, Fujita T. Podocyte as the Target for Aldosterone: Roles of Oxidative Stress and Sgk1. *Hypertens*. 2007 Jan 18;49(2):355–64.
- 22. Nagase M, Shibata S, Yoshida S, Nagase T, Gotoda T, Fujita T. Podocyte injury underlies the glomerulopathy of Dahl salthypertensive rats and is reversed by aldosterone blocker. *Hypertens*. 2006 Jun;47(6):1084–93.

- 23. Kramer AB, van der Meulen EF, Hamming I, van Goor H, Navis G. Effect of combining ACE inhibition with aldosterone blockade on proteinuria and renal damage in experimental nephrosis. *Kidney Int.* 2007 Mar;71(5):417–24.
- 24. Savoia C, Touyz RM, Amiri F, Schiffrin EL. Selective Mineralocorticoid Receptor Blocker Eplerenone Reduces Resistance Artery Stiffness in Hypertensive Patients. *Hypertens*. 2008 Jan 23;51(2):432–9.
- 25. Ahn JH, Hong HC, Cho MJ, Kim YJ, Choi HY, Eun CR, et al. Effect of Eplerenone, a Selective Aldosterone Blocker, on the Development of Diabetic Nephropathy in Type 2 Diabetic Rats. *Diabetes Metab J*. 2012;36(2):128–8.
- 26. Kolkhof P, Delbeck M, Kretschmer A, Steinke W, Hartmann E, Bärfacker L, et al. Finerenone, a novel selective nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. *J Cardiovasc Pharmacol.* 2014 Jul;64(1):69–78.
- 27. Gueret A, Harouki N, Favre J, Galmiche G, Nicol L, Henry J-P, et al. Vascular Smooth Muscle Mineralocorticoid Receptor Contributes to Coronary and Left Ventricular Dysfunction After Myocardial Infarction. *Hypertens*. American Heart Association, Inc; 2016 Apr;67(4):717–23.