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Supporting Information Text

Introduction. In this Supporting Information (SI Appendix), we present several derivations and calculations that we skipped in
the main text and some theoretical background regarding the quantities of interest. First, we derive our expression for the
stress tensor (main text Eq. 1) from the general nonlinear theory of morphoelasticity (1). Next, we show a linearization of the
growth dynamics in Eq. 3 leading to Eq. 4 in the main text. Then, we discuss our choice of time derivative and some subtleties
associated with material time derivatives of tensors. In the same section, we also discuss the equivalence of our model with
the fluidization picture proposed by Ranft et al. (2). After that, we show the full derivation of the spatial density-density
correlation function (Eq. 7) and derive an expression for the time-dependent density-density correlation function. We then
consider the effect of including gradients of the stress tensor in the growth dynamics and verify our claim in the main text that
this is not qualitatively different from the simple stress feedback we presented there. Next, we show the extension of our model
for isotropic growth to higher dimensions. Then we move on to anisotropic growth and provide a more detailed derivation of
the anisotropic growth dynamics and soft modes (Eqs. 14–16), which we will then use in our calculation of clone statistics. In
the final section of this SI Appendix, we return to the special case of no net growth, γ0 = 0, recovering several results from (2).

Throughout the SI Appendix, to avoid confusion, we refer to equations in the main text by their equation number, without
any prefix, while for equations in the SI Appendix we use ‘S’ followed by a number. Thus, for example, Equation 1 in the main
text will be referred to as Eq. 1, and Equation 1 in the SI Appendix will be called Eq. S1.

Derivation of Cauchy Stress from Nonlinear Morphoelasticity. In this section, we show how the expression for the Cauchy stress
tensor given in Eq. 1 of the main text (and valid in the limit of small deviations from uniform growth) can be obtained by
linearizing the general, nonlinear theory of morphoelasticity. We quote here without justification a number of well-established
results in morphoelasticity; for derivations and a more in-depth explanation, the interested reader is referred to (1). Following
the morphoelasticity literature, we call the fully nonlinear Cauchy stress tensor Tij , reserving σij for the linearized version used
in the main text.

The theory of morphoelasticity is an extension of finite strain theory, applied when deformations can no longer be considered
infinitesimal. Morphoelasticity deals with arbitrary deformations due to growth. The deformation gradient Fij = ∂ri/∂Rj is
defined which maps the Eulerian to Lagrangian coordinates. The underlying assumption of morphoelasticity (3) is that we can
decompose the deformation gradient into a growth part G followed by an elastic deformation denoted by A, F = AG. Then,
the Cauchy stress tensor is taken to be related in the usual manner to the elastic part of the deformation:

T = J−1A∂W
∂A = 2J−1A ∂W

∂ATAAT

where J = det(A) and W is the elastic energy density per unit volume of the so-called virtual configuration, which we can
imagine as the state of the material after growth but before any elastic deformations. For an isotropic, neo-Hookean material,

W = 1
2Aijkl εij εkl = 1

2(λ ε2ll + 2µ ε2ij),

where Aijkl = λδijδkl + µ(δikδjl + δilδjk) is the elasticity tensor for an isotropic body, ε = (ATA− 1)/2 is the morphoelastic
strain tensor, and summation over repeated indices is implied. It is helpful to express A in terms of F and G. Therefore we
define a new strain tensor

ε′ = GT ε G = (FTF−GTG)/2.

Then with the new elastic tensor A′ijkl = λ(GTG)−1
ij (GTG)−1

kl +µ
(
(GTG)−1

ik (GTG)−1
jl + (GTG)−1

il (GTG)−1
jk

)
, the energy density

W = A′ijkl ε′ij ε′kl/2.
Now we linearize for small G̃ij/Ḡ (and wij/Ḡ because deformations are of the same order as growth fluctuations) to get the

results in the limit we are interested in. First, we note that A = 1 +O(G̃/Ḡ) because uniform growth does not cause any
deformations. Then ε = O(G̃/Ḡ) and we can approximate

T ≈ 2 ∂W/∂(ATA) = ∂W/∂ε. [S1]

To linear order in wij/Ḡ and G̃ij/Ḡ, (FTF)ij = ∂ir . ∂jr ≈ Ḡ2δij + 2Ḡ wij and (GTG)ij ≈ Ḡ2δij + 2Ḡ G̃ij respectively.
Therefore, we can explicitly write out ε′ij :

ε′ij ≈ Ḡ2εij ≈ Ḡ(wij − G̃ij),

and so εij ≈ (wij − G̃ij)/Ḡ. This allows us to express W and thus T in terms of wij and G̃ij . The elastic energy density to
linear order in wij/Ḡ and G̃ij/Ḡ is

W ≈ 1
2Ḡ2

[
λ(wll − G̃ll)2 + 2µ(wij − G̃ij)2

]
.

Using Eq. S1, the linearized Cauchy stress tensor is

Tij ≈ σij = 1
Ḡ

[
λ(wll − G̃ll)δij + 2µ(wij − G̃ij)

]
, [S2]

which is Eq. 1 in the main text.
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As a side note, the target metric formalism, an equivalent framework to morphoelasticity, also leads to the same result
(4). In fact, the new strain tensor ε′ that we defined is the strain tensor used in that formalism. In target metric formalism,
a target metric ḡij is defined denoting the grown, stress free configuration, which often cannot be embedded in real space.
ḡij = (GTG)ij in morphoelasticity formalism. The metric defining the final configuration (denoted by gij) is indeed (FTF)ij ,
and the strain tensor is ε′ij = (gij − ḡij)/2. We found it easier to work with ε′ij than with εij because we had explicit expressions
for gij and ḡij to linear order.

Linearized Growth Dynamics. In this section, we show how to get to the linearized growth dynamics equation (Eq. 4 in the
main text) starting from the tensorial dynamics in Eq. 3.

Γ in Eq. 3 could be a 4th rank tensor in the most general case, but here we show that it simplifies to a 2nd rank tensor in
the limit of small fluctuations. In particular we write:

Γijkl = γ0δijδkl +Kijkl(σ) + ξijkl

where Kijkl(σ) is first order in the stress tensor and ξijkl is the noise. Then, knowing ∂tḠ = γ0Ḡ we find from ∂tG = ΓG

∂tG̃ij = γ0G̃ij +KijklGkl + ξijklGkl

or

∂t

[
G̃ij

Ḡ

]
= (Kijkl + ξijkl)

(
δkl + G̃kl

Ḡ

)
Since Kijkl is first order in the stress tensor and thus O(G̃ij/Ḡ), we can ignore KijklG̃kl/Ḡ. Thus, to lowest order in G̃kl/Ḡ,
the most general form of feedback allowed by symmetries of the system is Kijklδkl = Kijll ≈ c σll δij/2 + c(d) σ

(d)
ij , where σ(d)

ij

denotes the traceless part of the stress tensor and the superscript (d) stands for deviatoric. The noise term is evaluated in the
weak noise limit, meaning that we can write Gkl ≈ Ḡδkl and ξijklGkl/Ḡ ≈ ξijklδkl = ξij where ξij is now a 2nd rank tensorial
noise. Putting all of this together we arrive at the following growth equation, Eq. 4 in the main text:

∂t

[
G̃ij

Ḡ

]
= c σll

δij
2 + c(d)σ

(d)
ij + ξij . [S3]

On the Choice of Time Derivative and Connection to Ranft et al. (2). In this section and this section only, we redefine ∂t to
be the time derivative at fixed Eulerian, not Lagrangian, coordinates. Therefore, the time derivative at fixed Lagrangian
coordinates used in every other section becomes ∂t + v.∇r ≡ d/dt, where v is the velocity of dilation (i.e. flow velocity).

In specifying the dynamics of the tensor G in the main text, we suggested that it should have the form dG/dt = ΓG
(compare Eq. 3; here, as just explained, we have written the time derivative at fixed Lagrangian coordinates as d/dt). It has
been argued, however (e.g. ref. (2)), that a better choice would be DG/Dt = ΓG, where D/Dt is the convected corotational
time derivative defined, for any tensor Aij , as (DAij/Dt) = ∂tAij + vl∂rlAij + ωilAlj + ωjlAil, where vi is the velocity and
ωij = (∂rivj − ∂rjvi)/2 is the vorticity of the flow. This derivative differs from d/dt by the terms proportional to ωij . In the
most general case, the choice between these time derivatives is a subtle one, which potentially depends both on the biological
assumptions one wants to make and on technical questions like whether Gij is defined to include rigid rotations. (See, e.g.,
ref. (1) for more on the question of rigid rotations and the growth tensor.) To leading order in small deviations from uniform
growth (and thus in small displacements), however, it turns out we can sidestep this issue entirely: the two time derivatives
agree to this order, as we now demonstrate.

First, notice that any time derivative of G contains a derivative of Ḡ and a derivative of G̃. The former is the same for all of
the possible time derivatives, because Ḡ has no space dependence and the parts proportional to ωij must vanish because of its
antisymmetry. For the part proportional to G̃, to leading order we can drop any terms where G̃ is multiplied by something
small. Now the velocity field is vl = γ0rl +O(wl). Thus, noting that wl is first order small and that γ0rl is an irrotational flow,
we conclude that ωij is first order small and so can be dropped when it multiplies G̃. We are then left with the bare time
derivative and a convection term proportional to γ0 (i.e. ∂t + γ0rl∂rl), which are the same for the two proposed choices d/dt
and D/Dt.

Now, we show that, in the limit of small growth non-uniformities, our formalism is equivalent to that of Ranft et al., who
show fluidization of growing tissues. In particular, we derive Eqs. 12 and 13 in their paper. Working in Eulerian coordinates,
they show in Eq. 12 that in a growing tissue, the trace of the stress tensor follows

d
dtσll = 2χ[vll − κ(ρ)], [S4]

where d/dt = ∂t + v.∇r is the convected time derivative, χ = λ+ µ is the bulk modulus in two dimensions, κ the growth rate,
and vij is the rate of strain tensor, defined with respect to the Eulerian coordinates. This means that in contrast to our spatial
derivatives, theirs is taken with respect to ri. In Eq. 13 of their paper, they show that the traceless part of the stress tensor
relaxes, which they use to conclude that the tissue acts viscoelastic:(

1 + τa
D
Dt

)
σ

(d)
ij = 2τaµ v(d)

ij , [S5]
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where τa is the relaxation time.
First, we simplify their equation for the trace, Eq. S4, in the limit of small growth non-uniformities. They have shown in

their Eq. 11 that near the isotropic homeostatic state, the trace of stress relaxes in a similar fashion to the traceless part, with
relaxation time τ . Here, we show that we only really need mostly uniform growth with small deviations to see the relaxation.

Looking at Eq. S4, we can see that if ρ is uniform, σll = 0. We use this fact to expand both vll and κ for small non-uniformities
(i.e. ρ = ρ0 + δρ and δρ� ρ0) keeping in mind that at ρ = ρ0, vll = κ(ρ0) = κ̄. We write κ = κ̄+ δκ and vi = v̄i + δvi with
v̄i = γ0ri and κ̄ = 2γ0. From vi we find vij = γ0δij + δvij . We also write δκ in terms of δρ as δκ ≈ τ−1δρ/ρ0 just as Ranft et
al. did in the homeostatic case. We then use σll = −2χδρ/ρ0 from Eq. 6 in their paper to put all of this together and arrive
at the following equation that shows relaxation of the trace of stress for almost uniform growth in a similar manner to the
traceless part: (

1 + τ
d
dt

)
σll = 2τχδvll. [S6]

Now, we bring our attention to our formalism and show that we get the same relaxations as Eqs. S5 and S6. Firstly, we
ignore the noise in the growth dynamics and assume the density fluctuations are given as an initial condition. Starting from
Eq. S2 (Eq. 1 in the main text), we can take the time derivative to get:

d
dtσij =

[
λ

(
d
dt

[
wll

Ḡ

]
− d

dt

[
G̃ll

Ḡ

])
δij + 2µ

(
d
dt

[
wij

Ḡ

]
− d

dt

[
G̃ij

Ḡ

])]
.

(d/dt)[wij/Ḡ] in our framework is actually δvij . The factor of 1/Ḡ comes from the fact that δvij is defined in the Eulerian
coordinates and ∂ri ≈ ∂Ri/Ḡ. Replacing (d/dt)[G̃/Ḡ] with Eq. S3 and dropping the noise term, we get the following equations
for the trace and traceless parts of the stress tensor:(

1 + 1
2χc

d
dt

)
σll = 1

c
δvll(

1 + 1
2µ c(d)

d
dt

)
σ

(d)
ij = 1

c(d)
δv

(d)
ij

The first equation is the same as Eq. S6 if we define τ = 1/(2χc). Setting τa = 1/(2µc(d)), the second equation is also the same
as Eq. S5 if we replace D/Dt with d/dt (which we may do to leading order in growth non-uniformities, as explained at the
beginning of this section), and notice that v(d)

ij = δv
(d)
ij , easy to see from vij = γ0δij + δvij .

Isotropic Density-density Correlations. In the main text we claimed that the spatial density-density correlation shows a power
law behavior (Eq. 7) while the time correlations decay exponentially. Here, we show the full calculations and express the
correlation functions including the prefactors, which we omitted in the main text. We will only focus on the isotropic case as
the dynamics of density fluctuations is the same in isotropic and anisotropic growth, and effectively we just need to change
k → k + k(d) to go from isotropic to anisotropic, as can be seen by comparing Eqs. 6 and 14.

Starting from Eq. 6, we first do the calculations in fixed Lagrangian coordinates to bypass the complexities associated with
large convected terms due to the uniform tissue dilation. ξ is naturally defined in the Eulerian coordinates, but in the weak
noise limit, we can easily find the noise correlators in the Lagrangian coordinates. First, let us naïvely take the noise to be
delta correlated in both time and space, so that in Eulerian coordinates 〈ξ(r, t)ξ(r′, t′)〉 = Dδ(r− r′)δ(t− t′). In Lagrangian
coordinates, we approximate r ≈ ḠR and write 〈ξ(R, t)ξ(R′, t′)〉 = Dδ(R −R′)δ(t− t′)/Ḡ2, where D is the noise strength.
We now solve for δρ(R, t) from Eq. 6:

δρ(R, t) = ρ0
µ

λ+ 2µe
−kt
∫ t

0
ξ(R, t1)ekt1dt1.

Here, the initial condition is omitted because it will not matter at long time, where we expect to reach a steady state. Then,
for the correlation function, we have:

1
ρ2

0
〈δρ(R, t)δρ(R′, t)〉 = e−2kt µ2

(λ+ 2µ)2

∫ t

0
dt1 dt2

〈
ξ(R, t1)ξ(R′, t2)

〉
ek(t1+t2)

= µ2

(λ+ 2µ)2 De
−2kt

∫ t

0
dt1δ(R −R′)e−2γ0t1e2kt1 [S7]

From now on use D′ = µ2D/(λ+ 2µ)2. Because we want to find the correlation at fixed Eulerian coordinates at time t, we can
write R = e−γ0tr:

1
ρ2

0
〈δρ(r, t)δρ(r′, t)〉 = D′

2(γ0 − k)
(
e2(γ0−k)t − 1

)
δ(r− r′).

The long time behavior of this expression is pathological: for k < γ0, the correlation function blows up as t→∞ while for
k > γ0 it tends to a delta function. The reason for this pathological behavior is that the dynamics actually never reaches steady
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state for fixed Eulerian coordinates due to the fact that early fluctuations that are delta correlated in space never have time to
reach any finite distance in Eulerian coordinates even if t→∞.

Therefore, we need to consider a small correlation length for the noise to regularize the growth as we did in the main text.

In Lagrangian coordinates, the noise correlator now becomes 〈ξ(R, t)ξ(R′, t′)〉 = De
− Ḡ(t)2(R−R′)2

a2 δ(t− t′)/πa2, where a is a
small length scale for correlations. Eq. S7 now yields

1
ρ2

0
〈δρ(R, t)δρ(R′, t)〉 = D′

πa2 e−2kt
∫ t

0
dt1e−

(R−R′)2

a2 e2γ0t1
e2kt1 ,

or in Eulerian coordinates

1
ρ2

0
〈δρ(r, t)δρ(r′, t)〉 = D′

πa2

∫ t

0
dt1e−

(r−r′)2

a2 e−2γ0(t−t1)
e−2k(t−t1).

With the change of variable u = e−2γ0(t−t1) and setting r′ = 0 without loss of generality, we can see that for t → ∞ (i.e.
in steady state), the integral simplifies to

∫ 1
0 duuk/γ0−1e−r

2u/a2
, which is in fact the integral representation of the lower

incomplete gamma function defined as γ(s, x) =
∫ x

0 us−1e−udu. The full expression for the density-density correlation function
is

1
ρ2

0
〈δρ(r, t)δρ(0, t)〉t→∞ = D′

(2γ0)πa2 γ
(
k/γ0, (r/a)2) ( r

a

)−2k
γ0 r�a−−−→ D′

(2γ0)πa2 Γ
(
k

γ0

) (
r

a

)−2k
γ0

, [S8]

where we have used the fact that for r � a, γ
(
k/γ0, (r/a)2) tends to Γ (k/γ0). Compare this to Eq. 7 in the main text.

We can also estimate the prefactor. Firstly, we expect the tissue to behave similarly under bulk and shear strains so that
µ2/(λ+ 2µ)2 is of order 1 and D′ ∼ D. For the purposes of a first estimate, we assume that cells divide independently according
to a Poisson process and that they instantaneously double their size upon division. Each division then contributes a fixed
area of order πa2/2 to the tissue. It is a standard result (e.g. (5)) that this discretized, Poissonian growth process can be
approximated by a Langevin equation with noise strength D = (2γ0)πa2/8. We emphasize that this is only a very rough
estimate for the prefactor because in reality, divisions are not perfectly random, and cells add mass throughout the cell cycle
rather than only at the moment of division. With this in mind, our estimate for the prefactor is

D′

(2γ0)πa2 Γ
(
k

γ0

)
∼ 1

8Γ (k/γ0) .

For k ∼ γ0, Γ (k/γ0) ∼ 1, while for k � γ0 or k � γ0, Γ (k/γ0)→∞. We note, however, that for the case of k � γ0 (strong
feedback), the expression of Eq. S8 as a whole tends to zero, which is expected from a strong feedback.

Finally, we consider density-density time correlations, i.e., correlation between a point initially at R and itself at a later
time τ . This means that in Eulerian coordinates, we are looking at two different points, i.e. (r, t) and (r′, t+ τ), such that
both points originate from (R, 0). We show that this correlator decays exponentially in time as expected from the negative
feedback. Taking t′ = t+ τ , we can see that

1
ρ2

0
〈δρ(R, t)δρ(R, t+ τ)〉 = D′

πa2 e−kτ
∫ t

0
dt1e2k(t1−t) = D′

(2k)πa2 e−kτ
(
1− e−2kt) .

Again, we are interested in long time behavior (t� k−1), which shows exponential decay, 〈δρ(R, t)δρ(R, t+ τ)〉 ∼ e−kτ ; using
the same estimate for D′ as in the previous paragraph, we find that the prefactor is roughly γ0/8k.

Laplacian Feedback. In the main text and above, we only considered mechanical feedbacks proportional to stress. However, in
principle, spatial derivatives of stress could also feed back on the growth. Continuing to work to linear order in the stress, the
lowest order term allowed by symmetry in a gradient expansion is the Laplacian of the stress. We show here that this term
has the effect of regularizing the model’s short distance behavior so that the correlation functions are well-behaved in the
limit that the noise is delta-function correlated in space. In particular, we explicitly calculate the density-density correlation
functions for isotropic growth and find that they exhibit the same power law behavior at large distances as we found in the
main text without the Laplacian feedback but with noise that is colored in space. Because cells most naturally measure local
stress differences in the current state of the tissue, not with respect to the initial state, the Laplacian should be taken with
respect to the Eulerian coordinates. Eq. 6 must then be modified to read

∂tδρ(R, t) = −k1δρ+ k2∇2
rδρ+ ρ0

µ

λ+ 2µξ(R, t), [S9]

where k2 is the strength of Laplacian feedback, and the noise is chosen to be delta correlated in time and space, i.e.
〈ξ(r, t)ξ(r′, t′)〉 = D δ(t− t′) δ(r− r′) or in Lagrangian coordinates 〈ξ(R, t)ξ(R′, t′)〉 = D δ(t− t′) δ(R −R′)/Ḡ2, as before.
Note that k2 > 0 otherwise the dynamics would not be stable. To leading order in δρ, we can approximate ∇2

rδρ ≈ ∇2
Rδρ/Ḡ

2

because δρ is of the same order as w/Ḡ.
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To solve Eq. S9 we go to Fourier space, using the convention

f(Q, t) =
∫

dR e−iQ.Rf(R, t) ,

and define a particular solution

δρ(p)(Q, t) = e−k1t e
k2Q2

2γ0Ḡ(t)2 e
− k2Q2

2γ0 .

Then, it is easy to see that the full solution of Eq. S9 in Fourier space is

δρ(Q, t) = ρ0
µ

λ+ 2µ δρ(p)(Q, t)
∫ t

0

ξ(Q, t1)
δρ(p)(Q, t1)

dt1

with 〈ξ(Q, t)ξ(Q′, t′)〉 = (2π)2D δ(t − t′) δ(Q + Q′)/Ḡ2. We can then find 〈δρ(Q, t)δρ(Q′, t)〉. We are interested to find
〈δρ(r, t)δρ(0, t)〉t→∞, but we need to be careful about when to take the limit t→∞. We proceed as follows: First, we take the
inverse Fourier transform to find 〈δρ(R, t)δρ(R′, t)〉, then make the change R = r/Ḡ(t) and R′ = r′/Ḡ(t) to arrive at

1
ρ2

0
〈δρ(r, t)δρ(r′, t)〉 = D′

(2π)2

∫ t

0

dt1
Ḡ(t1)2

e−2k1(t−t1)
∫

dQ e
iQ.(r−r′)
Ḡ(t) e

k2
γ0

(
1

Ḡ(t)2
− 1
Ḡ(t1)2

)
Q2

.

Here, it is easier to take the Q integral first. Also setting r′ = 0 we find

1
ρ2

0
〈δρ(r, t)δρ(0, t)〉 = D′ γ0

4πk2

∫ t

0
dt1 e−2k1(t−t1) e

− r2
4k2
γ0

(
Ḡ(t)2
Ḡ(t1)2

−1
)

Ḡ(t1)2
(

1
Ḡ(t1)2 −

1
Ḡ(t)2

) .
With the change of variable t2 = t− t1, we eliminate any explicit dependence on t in the integrand, allowing us to easily take
the limit t→∞ in the limits of integration. The resulting integral is

1
ρ2

0
〈δρ(r, t)δρ(0, t)〉t→∞ = D′ γ0

4πk2

∫ ∞
0

dt2 e−2k1t2 e2γ0t2

e2γ0t2 − 1 e
− r2

4k2
γ0 (e2γ0t2−1) .

With a final change of variable y = 1/(e2γ0t2 − 1), we arrive at

1
ρ2

0
〈δρ(r, t)δρ(0, t)〉t→∞ = D′

8πk2

∫ ∞
0

dy y
k1
γ0
−1(1 + y)−

k1
γ0 e

− γ0 r2
4k2

y
,

which is the integral representation of the so-called confluent hypergeometric function of the second kind defined as U(a, b, x) =
1/Γ(a)

∫∞
0 dy ya−1(1 + y)b−a−1 e−xy with the asymptotic behavior limx→∞ U(a, b, x) ∼ x−a[1 + O(1/x)] (6). Defining

a2 := 4k2/γ0, we get
1
ρ2

0
〈δρ(r, t)δρ(0, t)〉t→∞ = D′

(2γ0)πa2 Γ
(
k1

γ0

)
U

(
k1

γ0
, 1,
(
r

a

)2
)
. [S10]

For r � a, using the asymptotic form of U(a, b, x), we arrive at the same power law as in Eq. S8:

1
ρ2

0
〈δρ(r, t)δρ(0, t)〉t→∞

r�a
= D′

(2γ0)πa2 Γ
(
k1

γ0

) (
r

a

)−2k1
γ0

.

As we can see, in this case, the length scale a =
√

4k2/γ0 was determined by the Laplacian feedback strength instead of by
a correlation length for the noise. This length scale could span several cells depending on how strong the feedback is relative
to the average growth rate γ0. The power law then is regulated purely by k1/γ0 as before. In other words, the role of the
Laplacian feedback is to provide a length scale for the early fluctuations to be carried over the tissue as it dilates. We note that
the Laplacian feedback with delta correlated noise is only valid for separations greater than cell size: for large distances, we
can take the limit of cell size → 0 and use a delta correlated noise, with Laplacian feedback providing a correlation length√

4k2/γ0 for the dynamics; however, for distances close to a cell size, we cannot assume a delta correlated noise anymore and
need to have the colored noise as before to regularize the correlations. This is evident by noticing that U(a, b, x) blows up like
log 1/x as x→ 0 meaning that without a cut off density-density correlations diverge for r → 0 which is nonphysical.

Fig. S1 compares the density-density correlation function with Laplacian feedback and without (k2 = 0). As can be seen,
both follow a power law for large r/a, but the Laplacian feedback has a slower convergence to the power law. This plot assumes
that both cases have the same length scale a, while the source of this length scale is very different: for the Laplacian feedback,
it is given by the strength of the feedback, whereas for k2 = 0 it comes from having a colored noise in space.
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Generalization of Isotropic Growth to d dimensions. It is fairly straightforward to generalize the results for density-density
correlation to d dimensions. In this section, we will introduce quantities with subscript d (e.g. kd), which are the d dimensional
version of quantities that we have defined before; subscript d should not be confused with superscript (d) that stands for
deviatoric and is reserved for traceless tensors or scalars associated with such tensors (e.g. k(d)).

Here, we show that the power-law behavior derived in the main text (Eq. 7) and in the Laplacian Feedback section above
still hold in arbitrary d dimensions. Writing G̃ij = G̃ δij , we find from Eq. 2 that

wll = dλ+ 2µ
λ+ 2µ G̃.

Then from Eq. 5, we have

δρ = ρ0

(
2(d− 1)µ
λ+ 2µ

)
G̃

Ḡ
.

Eq. 4 in d dimensions looks like

∂t

[
G̃ij

Ḡ

]
= c σll

δij
d

+ c(d)σ
(d)
ij + ξij(R, t),

and so for isotropic growth in d dimensions we get

d ∂t

[
G̃

Ḡ

]
= c σll + ξ(R, t),

where ξ(R, t) = ξll(R, t). Therefore, the dynamics of δρ will be

∂tδρ = −kdδρ+ ρ0
2(d− 1)µ
d(λ+ 2µ)ξ(R, t), [S11]

where kd = 2(d−1)µ(dλ+2µ)c/(dλ+2dµ). For d = 2, we recover Eq. 6. To solve Eq. S11 and find the density-density correlator,
we first need to rewrite the noise correlator in d dimension (and remember that we are in the case of no Laplacian feedback and

so need to use a colored noise): 〈ξ(R, t)ξ(R′, t′)〉 = Dd e
− Ḡ(t)2(R−R′)2

a2 δ(t− t′)/(πa2)d/2. After some straightforward algebra
(see Isotropic Density-density Correlation section), we find:

1
ρ2

0
〈δρ(r, t)δρ(0, t)〉t→∞ = D′d

(2γ0)(πa2)d/2
γ
(
kd/γ0, (r/a)2) ( r

a

)−2kd
γ0 r�a−−−→ D′d

(2γ0)(πa2)d/2
Γ
(
kd
γ0

) (
r

a

)−2kd
γ0

, [S12]

with D′d = [2(d − 1)µ/(dλ + 2dµ)]2 Dd. Comparing this with Eq. S8, we see that the density-density correlator shows the
same power-law behavior in any dimensions with d-dependent exponent and prefactors. To estimate the prefactor in this
case, we follow the same argument presented in Isotropic Density-density Correlation section, namely, we estimate the noise
to be due to random Poisson divisions each contributing the same d dimensional volume ∆Vd to the tissue. In particular,
Dd = ∆Vd(dγ0)/d2. dγ0 comes from the fact that in a Poisson-like growth, noise is proportional square root of volumetric
growth rate, which is precisely dγ0. The factor of 1/d2 comes from change of variable from volumetric growth to density. ∆Vd
on the other hand is assumed to be the volume of a d dimensional sphere with radius a/

√
2, or Ωdad/(2d/2d) where Ωd is the

solid angle in d dimensions. Therefore, our estimate for Dd is Dd = γ0Ωd ad/(d2 2d/2).
Now, we show that the same power law of Eq. S12 is achieved with Laplacian feedback and delta correlated noise in d

dimensions. The differential equation for δρ is

∂tδρ = −kd,1δρ+ kd,2∇2
rδρ+ ρ0

2(d− 1)µ
d(λ+ 2µ)ξ(R, t), [S13]

and the noise correlator is 〈ξ(R, t)ξ(R′, t′)〉 = D δ(t− t′) δ(R −R′)/Ḡd. We follow the exact same steps we did in Laplacian
Feedback section to solve Eq. S13. The only difference is that the Q integrals are now d dimensional. After some algebra, we
get

1
ρ2

0
〈δρ(r, t)δρ(0, t)〉 = D′d π

(2π)d

(
γ0

kd,2

)d/2 ∫ t

0
dt1 e−2kd,1(t−t1) e

− r2
4kd,2
γ0

(
Ḡ(t)2
Ḡ(t1)2

−1
)

Ḡ(t1)d
(

1
Ḡ(t1)2 −

1
Ḡ(t)2

)d/2 .
Now we eliminate the explicit t dependence with the change of variable t2 = t− t1 allowing us to take t→∞, and do another
change of variable y = 1/(e2γ0t2 − 1) just like we did before to find

1
ρ2

0
〈δρ(r, t)δρ(0, t)〉t→∞ = D′d π

(2π)d(2γ0)

(
γ0

kd,2

)d/2 ∫ ∞
0

dy y
kd,1
γ0
−1(1 + y)

d
2−

kd,1
γ0
−1

e
− γ0 r2

4kd,2
y
.
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In terms of U(a, b, x), we have

1
ρ2

0
〈δρ(r, t)δρ(0, t)〉t→∞ = D′d

(2γ0)πd−1ad
Γ
(
kd,1
γ0

)
U

(
kd,1
γ0

,
d

2 ,
(
r

a

)2
)

r�a−−−→ D′d
(2γ0)πd−1ad

Γ
(
kd,1
γ0

) (
r

a

)−2kd,1
γ0

, [S14]

which shows the same power law as Eq. S10. Here a =
√

4kd,2/γ0. This concludes the extension of isotropic growth to d
dimensions.

Anisotropic Growth Equations. Going back to d = 2, here we discuss the decomposition we used for G̃ij in Fourier space (Eq.
10), and the derivation of the mode structure and growth equations when anisotropic growth is allowed (Eqs. 14–16).

We first find w in terms of G̃ij from Eq. 2 in Fourier space:

(λ+ 2µ)(Q.w)Q− µ(Q×Q×w) = −i[λ G̃ll Q + 2µ Q.G̃], [S15]

where [Q.G̃]i = QjG̃ij . To solve this equation, we proposed the following decomposition, Eq. 10:

G̃ij = G̃ll
δij
2 + (G̃‖δik − G̃⊥εik)

[
2QkQj
Q2 − δkj

]
.

Here, we have decomposed G̃ij into the trace and nematic components parallel and perpendicular to Q. G̃‖ and G̃⊥ are
Q-dependent, and the traceless symmetric tensor made with them as its basis is related to the traceless part of G̃ij by a
rotation in Q-space, i.e.[

G̃‖ G̃⊥

G̃⊥ −G̃‖

]
=
[

cosβ − sin β
sin β cosβ

][
1
2 (G̃11 − G̃22) G̃12

G̃12
1
2 (G̃22 − G̃11)

][
cosβ sin β
− sin β cosβ

]
, [S16]

where 2β = sin−1(−2Q1Q2/Q
2). This rotation takes any tensor decomposed in this specific way to a basis without explicit

Q-dependence, which will prove useful later on when deriving the growth dynamics.
The lefthand side of Eq. S15 is already decomposed into a longitudinal term (Q.w)Q and a transverse term Q×Q×w.

Therefore, with the aforementioned decomposition of G̃ij we can easily find w‖ and w⊥ in terms of the growth tensor as we
did in Eq. 11.

Next, we can find the stress tensor in terms of the 3 components of G̃ij and then write down the dynamics for these
components starting from Eq. 4. One can see easily that the strain tensor in terms of the growth factor is

wij = 1
λ+ 2µ

(
(λ+ µ)G̃ll + 2µ G̃‖

)
QiQj
Q2 − G̃⊥εik

[
2QkQj
Q2 − δkj

]
.

It’s immediately clear that the transverse part of wij is exactly the same as the transverse part of G̃ij , which means that the
stress tensor σij = [λ(wll − G̃ll)δij + 2µ(wij − G̃ij)]/Ḡ is not going to have a transverse component. After some algebra we get

σij = 2µ(λ+ µ)
(λ+ 2µ)Ḡ

(G̃ll − 2G̃‖)
[
QiQj
Q2 − δij

]
.

Noticing that

δρ = ρ0

Ḡ
(G̃ll − wll) = ρ0

µ

λ+ 2µ

(
G̃ll − 2G̃‖

Ḡ

)
,

we can now rewrite the stress tensor above in terms of δρ to arrive at the expression given in Eq. 12.
To solve the growth dynamics equation (Eq. 4), we first go to Fourier space and find ODEs for G̃ll, G̃‖ and G̃⊥. To do so, it

is convenient to rotate the tensors in Q-space with angle β to go to the basis where there is no explicit Q-dependence as we
showed above in Eq. S16. Note that the stress can be written as σij = σll δij/2 + (σ‖δik − σ⊥εik)(2QkQj/Q2 − δkj) where
σ‖ = µ(λ+ µ)(G̃ll − 2G̃‖)/[(λ+ 2µ)Ḡ] and σ⊥ = 0 as stress has no transverse component. Similarly, we write the noise in the
same basis as

ξij = ξll
δij
2 + (ξ‖δik − ξ⊥εik)

[
2QkQj
Q2 − δkj

]
. [S17]

To find the correlators of ξll, ξ‖ and ξ⊥, we first need to find the correlators in real space. Note that since Eq. 4 is a first
order perturbation about an isotropic growth, we require the noise to be rotationally invariant. Therefore, if we write the noise
in real space as

ξij = ξll
δij
2 + ξ1

[
1 0
0 −1

]
+ ξ2

[
0 1
1 0

]
,
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where ξll, ξ1 and ξ2 are independent random variables, then ξ1 and ξ2 need to have the same variance (which could in general
be different from the variance of ξll). In other words, we have the following correlators for the noise components:

〈ξll(r, t)ξnn(r′, t′)〉 = D1
e
− (r−r′)2

a2

πa2 δ(t− t′),

〈ξ1(r, t)ξ1(r′, t′)〉 = D2
e
− (r−r′)2

a2

πa2 δ(t− t′),

〈ξ2(r, t)ξ2(r′, t′)〉 = D2
e
− (r−r′)2

a2

πa2 δ(t− t′),

and all cross correlations are zero. Here, we assumed for simplicity that a is the same for ξ1,2 and ξll, but the correlation
lengths for these 3 components could be different in general.

In Q-space, the correlators will involve δ(Q + Q′), therefore different Q’s don’t mix. This along with rotational invariance
leads to statistical independence of ξll, ξ‖ and ξ⊥, and we get the following correlators:

〈ξll(Q, t)ξnn(Q′, t′)〉 = (2π)2 D1
e−( aQ

2Ḡ
)2

Ḡ2
δ(t− t′) δ(Q + Q′),

〈ξ‖(Q, t)ξ‖(Q′, t′)〉 = (2π)2 D2
e−( aQ

2Ḡ
)2

Ḡ2
δ(t− t′) δ(Q + Q′),

〈ξ⊥(Q, t)ξ⊥(Q′, t′)〉 = (2π)2 D2
e−( aQ

2Ḡ
)2

Ḡ2
δ(t− t′) δ(Q + Q′), [S18]

with all the cross correlators zero. Now that we have the noise correlators for ξ‖ and ξ⊥, we can apply the rotation in Eq. S16
to both sides of Eq. 4 and find:

∂t

( 1
Ḡ

)[ G̃ll
2 + G̃‖ G̃⊥

G̃⊥
G̃ll
2 − G̃‖

]
= − k

2Ḡ

[
G̃ll − 2G̃‖ 0

0 G̃ll − 2G̃‖

]
+ k(d)

2Ḡ

[
G̃ll − 2G̃‖ 0

0 −G̃ll + 2G̃‖

]
+
[
ξll
2 + ξ‖ ξ⊥
ξ⊥

ξll
2 − ξ‖

]
where k = 2µ(λ+ µ)c/(λ+ 2µ) and k(d) = 2µ(λ+ µ)c(d)/(λ+ 2µ). And, finally, by writing G̃ll − 2G̃‖ in terms of δρ, we arrive
at the differential equations describing the growth:

∂t δρ = −(k + k(d))δρ+ ρ0
µ

λ+ 2µ
(
ξll − 2ξ‖

)
,

∂t

[
G̃⊥

Ḡ

]
= ξ⊥,

∂t

[
G̃ll + 2 k

k(d) G̃‖

Ḡ

]
= ξll + 2 k

k(d) ξ‖.

The bottom two equations describe soft modes with diffusive dynamics. We define the amplitudes of the transverse soft mode
ZT = G̃⊥/Ḡ and the longitudinal soft mode ZL = [G̃ll + (2k/k(d))G̃‖]/Ḡ. The interpretation of these modes is given in the
main text. Finally, in terms of these three amplitudes, G̃ij is given by

G̃ij = Ḡ

[
k(d)

k + k(d)

(
ZL + k(λ+ 2µ)

k(d)µρ0
δρ

)
δij
2 + k(d)

2(k + k(d))

(
ZL −

λ+ 2µ
µρ0

δρ

)(
2QiQj
Q2 − δij

)
− ZT εik

(
2QkQj
Q2 − δkj

)]
.

Clone Statistics. In this section, we derive the results for clone size and shape statistics given, for the general case of anisotropic
growth, in the main text Eqs. 18 and 19. First, starting from Eq. 8 of the main text, we derive the variance of the clone size
(Eq. 18) and show that this variance scales with clone size when there are growth anisotropies but not in the isotropic limit.
Next, we follow the same steps for clone shape starting from Eq. 9 to derive the scaling relation in Eq. 19. Finally, we discuss
the correlation, or lack thereof, between the areas of two adjacent clones in our model.

Clone Size. To simplify Eq. 8, note that ∇.w = wll. In the previous section, we found wll in Q-space to be

wll = 1
λ+ 2µ

(
(λ+ µ)G̃ll + 2µ G̃‖

)
.

We rewrite this expression in terms of δρ and ZL

wll = Ḡ

[
α1
δρ

ρ0
+ α2ZL

]
,
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where α1 = [(λ+µ)k−µk(d)]/[µ(k+ k(d))] and α2 = k(d)/(k+ k(d)). As we can see, this quantity has no explicit Q dependence,
so we can formally take the inverse Fourier transform of the scalars wll, δρ, and ZL. Although it is not easy to interpret ZL in
real space, it is nevertheless useful for us to work in real space. By expressing wll in terms of δρ and ZL, now in real space, we
can write Var(A) in Eq. 8 as:

Var(A) = Ḡ4
∫
R,R′≤Rc

[
α2

1
ρ2

0

〈
δρ(R, t)δρ(R′, t)

〉
+ 2α1α2

ρ0

〈
δρ(R, t)ZL(R′, t)

〉
+ α2

2
〈
ZL(R, t)ZL(R′, t)

〉]
dR dR′.

Note that the cross correlation term is not zero because the noises of δρ and ZL are correlated (see Eqs. 14 and 16). However,
as we will shortly see, the long time behavior of the integral is dominated by the ZL autocorrelation term and the other two
terms are negligible in comparison. Let us look at the three correlators one by one. For 〈δρ(R, t)δρ(R′, t)〉 we have

1
ρ2

0

〈
δρ(R, t)δρ(R′, t)

〉
= e−2(k+k(d))t µ2

(λ+ 2µ)2

∫ t

0
dt1 dt2 e(k+k(d))(t1+t2) [〈ξll(R, t1)ξll(R′, t1)〉+ 4〈ξ‖(R, t1)ξ‖(R′, t1)〉

]
= e−2(k+k(d))t µ2

(λ+ 2µ)2
D1 + 4D2

πa2

∫ t

0
e
− (R−R′)2Ḡ(t1)

a2 e2(k+k(d))t1dt1.

Notice that here we are working in fixed Lagrangian coordinates because we are only interested in points within a circular
clone of Lagrangian radius Rc independent of time. This is in contrast to our calculation of 〈δρ(r, t)δρ(r′, t)〉 that needed to be
carried out in Eulerian coordinates. One benefit of working in Lagrangian coordinates is that we can take the noise to be delta
correlated in r (i.e. work in the a→ 0 limit) without introducing any pathological behavior. This simplifies the calculations, so
we will take noise to be white in time and space similar to our calculation for Laplacian feedback, i.e.

〈ξll(R, t)ξnn(R′, t′)〉 = D1

Ḡ2
δ(t− t′) δ(R −R′),

〈ξ‖(R, t)ξ‖(R′, t′)〉 = D2

Ḡ2
δ(t− t′) δ(R −R′),

〈ξ⊥(R, t)ξ⊥(R′, t′)〉 = D2

Ḡ2
δ(t− t′) δ(R −R′). [S19]

With this, we have

1
ρ2

0

〈
δρ(R, t)δρ(R′, t)

〉
= µ2

(λ+ 2µ)2
D1 + 4D2

2(k + k(d) − γ0)

(
e−2γ0t − e−2(k+k(d))t

)
δ(R −R′).

Similarly, for 〈δρ(R, t)ZL(R′, t)〉 we get

1
ρ0

〈
δρ(R, t)ZL(R′, t)

〉
= µ

λ+ 2µ
D1 − 4(k/k(d))D2

k + k(d) − 2γ0

(
e−2γ0t − e−(k+k(d))t

)
δ(R −R′).

Finally for 〈ZL(R, t)ZL(R′, t)〉 we find〈
ZL(R, t)ZL(R′, t)

〉
= D1 + 4(k/k(d))2D2

2γ0

(
1− e−2γ0t

)
δ(R −R′).

Before we go any further, we note that 〈ZL(R, t)ZL(R′, t)〉 does not grow linearly with time as one would naïvely expect given
the apparently diffusive dynamics of ZL. The reason is that, as Eq. S19 makes clear, the amplitude of the noise decays with
time like 1/Ḡ2. This behavior, in turn, arises from the fact that the noise is defined to have constant strength in Eulerian
coordinates. But a region of fixed size in Lagrangian coordinates will grow larger and larger in Eulerian coordinates as time
progresses, leading overall variation in that region to go down. The growth hence puts a limit on how large the soft mode
variances can get, and at long times, 〈ZL(R, t)ZL(R′, t)〉 approaches a constant. (There is in fact one further subtlety here:
The noise correlators of the form 〈ξ(R, t)ξ(R′, t′)〉 have an explicit prefactor of 1/Ḡ2 only when we take the limit a→ 0 and
convert Gaussian correlation functions in space into delta functions. In fact, for finite a, the mean-squared mode displacement
at a single point R,

〈
ZL(R, t)2〉, does grow linearly in time. The integral of 〈ZL(R, t)ZL(R′, t)〉 over any fixed region in

R, however, still approaches a constant, just as in the limit a→ 0, because the range of spatial correlations in R decreases
exponentially in time. Similarly, the noise correlations in Q space, Eq. S18, always have an explicit prefactor of 1/Ḡ2, even for
finite a, so that the mean-squared value of of ZL(Q, t) remains bounded for all time.)

Now, if we compare the three correlators at long times, we see that 〈ZL(R, t)ZL(R′, t)〉 dominates the growth as the other
two correlators decay exponentially and so can be ignored in the long time limit. In particular, with 〈A〉 = Ḡ2πR2

c , as t→∞
we can see that the ratio Var(A)/〈A〉2 is a constant:

Var(A)
〈A〉2

∣∣∣∣
t→∞

= α2
2
D1 + 4(k/k(d))2D2

(2γ0)πR2
c

∼ 1
R2
c
,

agreeing with Eq. 18. Estimating Rc to be of order of a cell radius, the ratio will be of order 1 with the same assumptions on
noise strengths as above in the Isotropic Density-density Correlations section. As a final note, this scaling of variance with
clone size is the direct result of having the soft mode ZL and would not occur in isotropic growth. In that case, the only term
we have is 〈δρ(R, t)δρ(R′, t)〉, which does not scale with size, and the ratio will decay to zero at long times.
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Clone Shape. Now we move on to the expression for the amplitudes Bn of the modes specifying clone shape, which involves a
few subtleties. For one, notice that the integral involves correlators of wk, which was found in Q space and has explicit Q
dependence. Therefore, we first need to find the correlator 〈wkw′j〉 in Fourier space, then take the inverse transform and finally
take the Θ integrals.

We first write out the components of w (Eq. 11) in terms of the modes as we did with wll for clone size:

wk(Q, t) = − i Ḡ
Q2

[
(α1

δρ

ρ0
+ α2ZL)Qk − 2ZT εklQl

]
.

The correlator will look like

〈wk(Q, t)wj(Q′, t)〉 = − Ḡ2

Q2 Q′2

[(
α2

1
ρ2

0

〈
δρ(Q, t)δρ(Q′, t)

〉
+ 2α1α2

ρ0

〈
δρ(Q, t)ZL(Q′, t)

〉
+ α2

2
〈
ZL(Q, t)ZL(Q′, t)

〉)
QkQ

′
j

+4
〈
ZT (Q, t)ZT (Q′, t)

〉
εkl εjsQlQ

′
s

]
.

Note that δρ and ZL do not mix with ZT because their respective noises are statistically independent. We use the correlators
in Eq. S19 for noise terms, of which we then take the Fourier transform to go to Q-space. The only dominant terms in
〈wk(Q, t)wj(Q′, t)〉 are the soft mode autocorrelations, with the other two terms involving δρ showing the same exponential
decay in time as in the clone size calculation above. Therefore we only focus on the two soft mode autocorrelators:〈

ZL(Q, t)ZL(Q′, t)
〉

= (2π)2D1 + 4(k/k(d))2D2

2γ0

(
1− e−2γ0t

)
δ(Q + Q′),〈

ZT (Q, t)ZT (Q′, t)
〉

= (2π)2 D2

2γ0

(
1− e−2γ0t

)
δ(Q + Q′),

and

〈wk(Q, t)wj(Q′, t)〉t→∞ ≈ −(2π)2 Ḡ
2

Q4

[
α2

2
D1 + 4(k/k(d))2D2

2γ0
QkQ

′
j + 2D2

γ0
εkl εjsQlQ

′
s

] (
1− e−2γ0t

)
δ(Q + Q′).

Now we need to take the inverse Fourier transform before evaluating the integral in Eq. 9. We are basically taking the
inverse transform of something like QkQj/Q4:

1
(2π)4

∫
dQ dQ′

QkQ
′
j

Q4 ei(Q.R+Q′.R′)δ(Q + Q′) = − 1
(2π)4

∫
dQ QkQj

Q4 eiQ.(R−R′)

=
∂Rk∂Rj
(2π)4

∫
dQ eiQ.(R−R′)

Q4 .

The inverse transform of 1/Q4 is known from the theory of generalized functions (7) to be∫
dQ eiQ.(R−R′)

Q4 = −π2
{

(1− γ + log 2)(R −R′)2 − (R −R′)2 log |R −R′|
}
,

where γ is the Euler’s constant and not to be confused with the growth rate γ0. The logR term is allowed by dimensional
analysis and turns out to be part of the solution. There is an ambiguity in the scale l in log(R/l) but it will not affect the final
result.

Taking the double derivative of the integral, we get

Ikj = ∂Rk∂Rj

∫
dQ eiQ.(R−R′)

Q4 = π
{

(γ − 1
2 − log 2)δkj +

(Rj −R′j)(Rk −R′k)
(R −R′)2 + log |R −R′|δkj

}
.

Now, we just need to put these pieces together to find

〈wk(R, t)wj(R′, t)〉t→∞ ≈ −
Ḡ2

4πγ0

[
α2

2
D1 + 4(k/k(d))2D2

2 Ikj + 2D2 εkl εjs Ils

] (
1− e−2γ0t

)
,

which we then plug into 〈
|Bn|2

〉
= 1

(2π)2

2π∫
0

dΘdΘ′R̂k(Θ)R̂j(Θ′)〈wkw′j〉e−in(Θ−Θ′).

The only nonzero term in this integral is given by the log |R −R′| term in Ikj and Ils. The integral becomes

〈
|Bn|2

〉
t→∞

≈ − Ḡ2

(4π)2γ0

[
α2

2
D1 + 4(k/k(d))2D2

2 +2D2

] (
1− e−2γ0t

) 2π∫
0

dΘ dΘ′(cos Θ cos Θ′+sin Θ sin Θ′) log |R −R′|e−in(Θ−Θ′).
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The final integral was evaluated to be −2nπ2/(n2 − 1) (for n > 1). With B0 = ḠRc, we can see that in the limit of t→∞ we
get 〈

|Bn|2
〉

B2
0

∣∣∣∣
t→∞

=
[
α2

2
D1 + 4(k/k(d))2D2

4γ0 R2
c

+ D2

γ0 R2
c

]
n

4(n2 − 1) ∼
1
R2
c

n

n2 − 1 ,

In agreement with Eq. 19. Again, assuming Rc is approximately of order of a cell size, the quantity in square brackets will be
of order 1. Similar to the clone size, this scaling relation is purely a result of the soft modes. Here, in contrast to the clone size
variance, the transverse soft mode is also involved. This is because wk , which was the important variable here, depends on
both soft modes whereas in the case of clone size the important variable is wll which depends on only the longitudinal soft
mode.

Independence of Adjacent Clone Areas. In this subsection, we discuss the correlation between adjacent clones. We claimed in the
main text at the end of the Isotropic Growth section that the areas of adjacent clones are uncorrelated in our model. This may
sound counterintuitive, especially knowing that due to soft modes, boundaries of clones are soft, which could lead us to expect
that one clone can grow at the expense of an adjacent clone. We show here that this in fact is not the case.

To understand the statistical independence of clone areas, it is useful first to consider the simpler situation where we have
only a delta-like instantaneous growth at the origin with strength ν, i.e. Gij(R, 0) = (1 + ν δ(R))δij . (Here, Ḡ = 1.) From Eq.
2 in the main text, we can find

w(R, 0) = 2ν(λ+ µ)
λ+ 2µ

R
R2 ,

which implies a purely deviatoric strain field except at the origin (8) and thus a localized change in density

δρ(R, 0) = ρ0[G̃ll(R, 0)− wll(R, 0)] = 2µρ0

λ+ 2µνδ(R).

This bump in the density induces mechanical feedback, leading to density relaxation. More precisely, the dynamics given by
Eqs. 14–16 in the main text but without noise (ξij = 0), together with Eq. 13 and the initial conditions G̃ll(R, 0) = 2νδ(R),
G̃‖(R, 0) = G̃⊥(R, 0) = 0 allow us to find the growth tensor and the density at time t (note that because there is no explicit Q
dependence in Eqs. 14–16, we can formally take the inverse Fourier transform and work in real space):

G̃ll(R, t) = k(d)

k + k(d) 2ν
(

1 + k

k(d) e
−(k+k(d))t

)
δ(R)

G̃‖(R, t) = k(d)

k + k(d) ν
(

1− e−(k+k(d))t
)
δ(R)

G̃⊥(R, t) = 0

δρ(R, t) = 2µρ0

λ+ 2µνe
−(k+k(d))t δ(R).

Now, from Eq. 11, we can easily see that w(R, t) ∼ R/R2 stays divergence free (∇.w ∼ δ(R)). Therefore, since
∆A =

∫
∇.w dR, any region of the tissue that does not contain the origin will not see any increase in area. In other words, if

we have two adjacent clones and introduce a small amount of incremental growth at the origin, only the area of the clone
containing the origin will increase; the size of the other will be unchanged, though its shape will be distorted (see Fig. 2A in the
main text). This implies that the areas of any two clones are uncorrelated. There is an additional subtlety worth mentioning:
While G̃ll(R, t) and G̃‖(R, t) remain local, G̃ij(R, t) in general is not localized to the origin. This is due to the fact that G̃‖
lives in Fourier space and does not have a well-defined physical meaning in real space. To see the non-locality of G̃ij(R, t), we
start from Eq. 10, noticing that G̃‖ is flat in Fourier space and thus, G̃ij(Q, t) is Q-dependent and not local in real space. For
instance, G̃12(Q, t) ∝ Q1Q2/Q

2 which yields G̃12(R, t) ∝ R1R2/R
4. Nonetheless, since ∇.w is localized to the origin (at least

in the absence of effects from boundary conditions that we neglect throughout this paper), clone areas remain uncorrelated.
Returning to our full calculation with arbitrary growth tensor G, we can explicitly see this decoupling if we take two adjacent

clones of sizes A1 and A2 and look at 〈∆A1∆A2〉. We define ∆Ak = Ḡ
∫

Rk∈clone k∇k.wk dRk with k = 1, 2, wk = w(Rk) and
∇k = ∇Rk . Then, the correlation of clone 1 and 2 will be

〈∆A1∆A2〉 = Ḡ2
∫
〈∇1.w1 ∇2.w2〉 dR1dR2

This quantity involves noise correlators 〈ξll(R1, t)ξll(R2, t)〉 and 〈ξ‖(R1, t)ξ‖(R2, t)〉 that give δ(R1 −R2), and because we
are integrating over two separate regions, the integral is zero as claimed in the main text. We note that if instead of delta
correlated noise, we consider colored noise with a small width a, within our continuum model clones that actually share a
boundary must show small but nonzero area correlation because the correlations in the noise stretch across the boundary:
〈∆A1∆A2〉 ∼ O(L2a2) where L is the length of the shared boundary. However, in reality, the interface is where the cells of
clone 1 meet the cells of clone 2, and assuming independent divisions of discrete cells, there is no correlation between noise in
clone 1 and 2 and 〈∆A1∆A2〉 will again be zero.
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The Limit of No Net Growth. Here, we derive expressions for fluctuations in density and velocity in the limit of no net growth
(γ0 = 0 or Ḡ = 1) and show that in this limit, our model is equivalent to the fluctuating homeostatic tissue described in
Ranft et al. (2). In particular, we will derive expressions of the same form as Eqs. 21 and 22 in (2), which related the Fourier
transformed (in space and time) density and velocity fluctuations δρ(q, ω) and v(q, ω) to appropriate noise terms.

Since we are interested in fluctuations about the steady state of no growth, the distinction between Lagrangian and Eulerian
coordinates vanishes to linear order in small quantities, so we will use lower-case q to denote the wavevector for consistency
with (2).

Starting from Eq. 14 of the main text and Fourier transforming in time, we get(
−iω + 2µ(λ+ µ)

λ+ 2µ (c+ c(d))
)
δρ = ρ0

µ

λ+ 2µ (ξll − 2ξ‖).

Now, writing λ + µ = χ, 1/c = 2χτ and 1/c(d) = 2µτa, and also noting that the traceless part of the noise tensor
ξ

(d)
ij = ξij − ξllδij/2 is related to ξ‖ via ξ‖ = qiξ

(d)
ij qj/q

2 (Eq. S17), we arrive at an expression of the same form as Eq. 21 in (2):

δρ = τ ρ0(τaµ)
(1− iωτa)τχ+ (1− iωτ)τaµ

[
ξll − 2

qiξ
(d)
ij qj

q2

]
. [S20]

We note that the extra factors of 4/3 in (2) appear because their calculation was carried out in 3d. The prefactor to ξ(d)
ij is

also different here from (2) because we have defined the noise to be acting on the growth tensor (see Eq. S3), whereas Ranft et
al. have the traceless noise act directly on the traceless stress tensor.

We now find the velocity fluctuations. We have

vk(q, t) = ∂twk(q, t) = − i

q2

[
(α1 ∂t

δρ

ρ0
+ α2 ∂tZL)qk − 2 ∂tZT εkl ql

]
.

Denoting the component of velocity parallel to q as v‖ = vlql/q, we find

iq v‖ = α1

[
− 2µχ
χ+ µ

(
1

2τχ + 1
2τaµ

)
δρ

ρ0
+ µ

χ+ µ

(
ξll − 2

qiξ
(d)
ij qj

q2

)]
+ α2

(
ξll + 2τaµ

τχ

qiξ
(d)
ij qj

q2

)
,

where, in terms of τ and τa, α1 = (τa − τ)χ/(τχ+ τaµ) and α2 = τχ/(τχ+ τaµ). Using the expression for δρ in Eq. S20 and
after some manipulation, we arrive at the following (compare with v‖ in Eq. 22 of (2))

iq v‖ = 1
(1− iωτa)τχ+ (1− iωτ)τaµ

[
τχ(1− iωτa)ξll + τaµ(1− iωτ)2

qiξ
(d)
ij qj

q2

]
. [S21]

Finally, we have, for the component of velocity perpendicular to q

v⊥k = ∂tw
⊥
k = 2iεkl

ql
q2 ξ⊥.

It is easy to see that ξ⊥ is related to ξ(d)
ij by εklqlξ⊥ = qkqmξ

(d)
mjqj/q

2 − ξ(d)
kj qj . Plugging this in, we obtain

v⊥k = 2i
q2 (qkqmξ(d)

mjqj/q
2 − ξ(d)

kj qj). [S22]

Comparing S22 to Eq. 22 in (2), we see that they again only differ by prefactors that can be absorbed in the noise strength by
redefinition of ξ⊥.
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k2≠ 0, white noise in space

k2= 0, colored noise in space

(r/a)-2 k1γ0
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∞
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Fig. S1. Plot of density-density correlation function for Laplacian feedback (k2 6= 0) and the simple stress feedback (k2 = 0) discussed in the main text. In the case of

k2 6= 0, the approach to the power law is slower. The plot is for k1 = γ0/2. For k2 = 0, a is the width of the colored noise, whereas for k2 6= 0, a =
√

4k2/γ0.
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