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I. NUMERICAL METHOD

In this section, we introduce the details of our numerical simulations of dynamical properties

using density-matrix renormalization group (DMRG) algorithm [1]. We also provide a benchmark

on the square lattice Heisenberg model using this dynamical DMRG algorithm. The analysis of

the finite-size effects is also included.

A. Density-matrix renormalization group algorithm

We perform the calculations based on high accuracy DMRG on cylindrical geometry with a

closed boundary in the y direction and an open boundary in the x direction. We denote Ly and

Lx as the numbers of unit cells in the y and x directions, respectively. The typical length of the

cylinder is Lx = 24 (we also tested the length up to Lx = 36 and confirmed the result does

not change). Most of the calculations are performed on Ly = 4 cylinders. We first perform the

finite DMRG procedure and obtain the ground state. After obtaining the ground state, we target

the dynamical properties (see below) by sweeping the middle Ly × Ly unit cells to avoid edge

excitations.

Here we would like to point out that, although the whole system on the cylinder does not host

2



translational symmetry along the x-direction, the ground state in the middle of a long cylinder ap-

proximatelly satisfies the translational symmetry (the emergent translational period is determined

by the nature of the ground state itself). Due to this reason, we can cut the middle Ly × Ly sys-

tem and glue it into a torus (with periodic boundary condition along both x- and y-directions), so

that the momentum quantum number can be well defined along both x- and y-directions (within

Ly × Ly unit cells in the middle of the cylinder). This process is used for spin structure factor and

spin excitation gap calculations in the DMRG community [2].

The conventional DMRG algorithm only targets the ground state |0⟩. To calculate the dynami-

cal spin structure factor, we apply the dynamical DMRG by targeting the following states together

with the ground state when sweeping:

|Sα(Q)⟩ = Ŝα(Q) |0⟩

|xα(ω + iη)⟩ = 1

ω+iη−(Ĥ−E0)
|Sα(Q)⟩

where |x(ω)⟩ is usually called a correction vector which can be calculated by the conjugate gradi-

ent method [3] or other algorithm [4]. With the help of the correction vector, the dynamical spin

structure factor can be calculated directly:

Sαβ(Q, ω) = − 1

π
Im⟨0|Ŝα(Q)

1

ω + iη − (Ĥ − E0)
Ŝβ(Q)|0⟩ = − 1

π
Im⟨Sα(Q)|xβ(ω+ iη)⟩ (1)

where η takes a small positive value as the smearing energy, Ĥ is the Hamiltonian and E0 is

the ground state energy. Taking these states (|0⟩,|Sα(Q)⟩ and |xα(ω + iη)⟩) as target states and

optimizing the DMRG basis, allow for a precise calculation of the structure factor for a given

frequency ω and a broadening factor η. In this work, all calculations are performed using η = 0.05

and η = 0.1 (in units of nearest-neighbor coupling J1). Since we have to target multi-states in the

DMRG process, the truncation error is basically larger than the ground state DMRG.

Here we also comment on the numerical scheme we used in this paper. In general, there are

two main algorithms to target dynamics based on the DMRG algorithm. One is to calculate the

dynamical spin structure factor in the frequency regime (as outlined above), the other one is to

first calculate the time-evolution of the physical quantities and then obtain the dynamical spin

structure factor by Fourier transformation. In general, the first method is more accurate in the low-

frequency regime, while the second method works better in the high-frequency regime (because

the accumulated errors grow as time steps increase in time-dependent DMRG). Based on this

reason, in the discussion of low-energy physics of the kagome Heisenberg model, we utilize the

first method (Ref. [3, 4]) in this paper.
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FIG. 1. The energy scan of the dynamical spin structural factor S(Q,ω) for the Heisenberg model on the

square lattice, for several typical momentum points in BZ. The calculations are performed on a Lx × Ly =

24× 8 cylinder by keeping M = 800 states.

B. Benchmark on the square lattice

In this section, as a benchmark of our DMRG method, we show the dynamical spin struc-

ture factor of the S = 1/2 antiferromagnetic Heisenberg model on the square lattice. For the J1

Heisenberg model on the square lattice, the ground state is a q = (π, π) Néel ordered state. Thus,

we expect to see a single-mode excitation dispersion related to magnon quasiparticles in the dy-

namical spin structure factor. Fig. 1 shows the energy-dependence of the dynamical spin structure

factor S(Q, ω) at several typical momenta. As we see, the dynamical spin structure factor at a

given momenta is dominated by an individual peak, which indicates a well-defined magnon quasi-

particle. We further extract the peak position at each momentum point and plot the single magnon

dispersion in Fig. 2, which is largely in agreement with spin wave theory (for q = (π, π) Néel

order, it is believed that spin wave theory can capture the main features of the dynamics except

at the Q = M point.). Interestingly, the S(Q = M,ω) shows an anomalous tail in the high en-

ergy regime, which could be attributed to the fact that magnon-magnon interactions are enhanced

near Q = M . In Fig. 2, we also compare our results with the large-scale Quantum Monte Carlo

(QMC) calculations (red dots) [5]. Around the magnetic vector X = (π, π), we got consistent

results with the QMC, despite we have fewer points due to the limited system size in DMRG. We

also notice a difference around Q = M = (π, 0). The main reason for this discrepancy is, our
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system size (L = 8) is much smaller than that of QMC calculation L = 48. Taken as a whole,

through this benchmark on the square lattice and extensive tests on one dimensional chains, we

conclude that the current scheme can obtain reliable dynamical properties efficiently. In the main

text, we will apply the above strategy to the antiferromagnetic Heisenberg model on the Kagome

lattice. (Please note that, for Heisenberg model on the square lattice with only nearest-neighbor

couplings, the solution of ground state and excited states are available by the QMC calculation.

For the Kagome lattice discussed in the main text, it is out of reach using the QMC because of the

geometric frustration.)
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FIG. 2. The peak position (blue dots) of the dynamical structure factors along a path of highly symmetric

points in the Brillouin zone. The size of each blue circle is proportional to the static spin structure factor by

summing up the dynamical spin structure factor over energy. The red dots are from quantum Monte Carlo

simulations [5]

C. Analysis of the finite-size effect

In this work, we utilize the DMRG algorithm to simulate the dynamical response. Although

we can easily go beyond the exact diagonalization limit, the DMRG calculation still suffers from

the finite-size effect, which will be discussed in detail here.

Since the cylindrical geometry is preferred in the DMRG algorithm, the available lattice system

sizes are limited by the width along the wrapped direction similar to the ground state DMRG

(saying, Ly, which accounts for the number of unit cells in the wrapped direction). On the Kagome
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lattice, the current computational ability is limited to accessing Ly up to 6, depending on the nature

of different phases. To be specific, the largest system size is Ly = 6 for the Néel q = (0, 0) order

and the chiral spin liquid. While for the quantum spin liquid (the KSL) the largest available system

is Ly = 4, because the highly frustrated nature in the Heisenberg model with only nearest neighbor

exchange couplings leads to the slow convergence in DMRG calculations.

We have extensively checked that, the main features of the dynamical spin structure factor

are robust for the Néel q = (0, 0) phase and the chiral spin liquid phase, by tuning the system

sizes Ly = 4, 5, 6. Thus, we have confidence that the nature of the dynamical responses of these

two phases shown in the main text are intrinsic properties of the corresponding two-dimensional

systems.

Nevertheless, for the quantum spin liquid phase (the KSL), we cannot fully rule out finite-size

effects based on a Ly = 4 system, since Ly = 4 is the only available system size. (We cannot

reach a converged ground state in dynamical DMRG algorithm for Ly = 5, 6 for the quantum

spin liquid phase due to the difficulty to converge in such a state). In the main text, we utilize

the twisted boundary condition to inspect the gapless nature on a given finite-size system. The

main physical reason is further clarified here. First, tuning the boundary condition is a general

method to detect the nature of the ground state on finite-size calculations. Since the available

discrete momentum vectors are limited due to the finite-size effect, tuning the twisted boundary

condition allows us to reach more momentum points in the Brilliuin zone. Second, for ground

states with intrinsic topological orders, it is expected that the ground state manifold is robust to the

twisted boundary condition, without energy level crossing. In contrast, energy level crossings may

occur by tuning the boundary conditions if the ground state is gapless. Here the picture is akin to

Thouless’s picture of localization: The energy spectral flow of insulators is robust against boundary

conditions, however, energy flow of a metallic phase is not. For a gapless phase, the change of

the energy spectrum by twisted boundary conditions inevitably leads to substantial difference in

the dynamical response functions. Based on these reasons, we inspect the dynamical response

for the quantum spin liquid phase by tuning different boundary conditions. This is a way out for

uncovering the intrinsic nature of the ground state using finite-size calculations, although it is not

conclusive.
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FIG. 3. DSSF for CSL phase (a-c) and KSL phase (d-f) for different boundary conditions (BCs): (a,d)

periodic BC in wrapped direction (b,e) periodic BC on wrapped direction and a pinning field on the open

direction, and (c,f) anti-periodic BC in the wrapped direction.

D. Tuning boundary conditions

We address the question of whether or not the ground state of the Kagome spin liquid is gapped,

which holds the clue to distinguish the different theoretical scenarios [6, 7], by inspecting the

response of the system under different boundary conditions. As a benchmark, we first test the

system in the gapped CSL phase. Since the CSL is equivalent to the ν = 1/2 bosonic Laughlin

state [8], the system has two-fold topological degenerate ground states. In the DMRG simulation,

the ground state in the spinon sector can be obtained by adiabatically changing the boundary

condition by a 2π phase. As shown in Fig. 3(a-b), the dynamic structure factor of the two ground

states are almost identical, which can be understood by the fact that local measurements are unable

to distinguish different topologically degenerate ground states.

Now we inspect the response of the Kagome spin liquid. Fig. 3(d) shows S(Q = M,ω),

by imposing periodic boundary condition on the wrapped direction. As a comparison, Fig. 3(e)

shows the case of additionally pinning a spinon at each open end of the cylinder. Although the

spin gap remains robust, the predominant spectral peak in the low-energy regime becomes broader.
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Moreover, by imposing an anti-periodic boundary condition in the wrapped direction, as shown

in Fig. 3(f), the excitation gap ∆s shrinks from ∆s ≈ 0.16 to a smaller value ≈ 0.075, signaling

that the spin excitation gap is sensitive to the boundary condition. Here, the dramatic change of

spectral lineshape and the shrinking of the spin gap in the DSSF, indicate that the ground state may

not have a robust spin gap. Of course, the finite size effect is generally important, which calls for

future work to perform a finite-size scaling analysis.

As we see here, for Kagome Heisenberg antiferromagnetic model with only nearest-neighbor

couplings (J2 = J3 = 0), a small spin gap holds even when we check the different boundary

conditions. This result is consistent with the existing literatures by calculating the spin excitation

gap directly [9, 10]. Moreover, we also study the Kagome Heisenberg antiferromagnetic model

by adding a DM interaction term (see main text and SI Appendix IV). In the presence of DM

interaction, we get the similar feature of the dynamic spin structure factor. That is, The dynamic

spectral changes by tuning boundary conditions, which is in striking contrast to the expectation of

gapped spin liquid (e.g. chiral spin liquid).

To sum up, although caution is needed when making a statement about the thermodynamic

limit, by tuning boundary conditions we find some evidences on the system sizes that we can

access, which supports the kagome spin liquid is not a gapped one.

II. STATIC SPIN STRUCTURE FACTOR

The static spin structure factor shown in the main text is calculated using the same setup for

calculation of dynamic spin structure factor. That is, we first perform the DMRG procedure and

obtain the ground state. After we obtain the ground state, we calculate static spin structure factor

using the correlation functions defined in the central Ly × Ly unit cells of the cylinder, based on

the definition of Eq. 2 (main text).

Since the static and dynamic structure factors are calculated in the same condition, we can

directly compare the static structure factor obtained from two different methods: 1) We calcu-

late static spin structure factor using the static correlation function S(Q) = ⟨S(−Q) · S(Q)⟩ =

1
N

∑
i,j e

iQ·(ri−rj)⟨Si · Sj⟩; 2) We obtain the static spin structure factor through dynamical spin

structure factor by summing over the frequency: S(Q) =
∫∞
0

dωS(Q, ω). As shown in Fig. 4,

we present the static spin structure factor obtained by these two methods. Here we use q = (0, 0)

phase as an example. We see that the results obtained using different methods are consistent with
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FIG. 4. Comparison of static spin structure factor from two different methods: (A) the results obtained by

correlation functions and (B) the results by summing the dynamic structure factor over frequency (S(Q) =∫∞
0 dωS(Q, ω)). Here we use q = (0, 0) phase as an example. The calculation is performed on Ly = 4

cylinder.

each other, e.g. peak structure around Q = M . It is observed a small anisotropy in figure B, which

is due to correlation function is not exactly the same along x and y direction on the cylinder ge-

ometry. Moreover, this comparison serves as additional tests of the method for obtaining dynamic

spin structure factor.

III. TRANSITION FROM CHIRAL SPIN LIQUID PHASE TO NÉEL q = (0, 0) PHASE

In this section, we discuss the phase transition from the chiral spin liquid phase to the magnetic

Néel q = (0, 0) phase. This phase transition is interesting due to the following reasons. First, it is

intriguing to understand the low-energy peak structure in the dynamical spin structure factor at the

Q = M point. Second, it is an exotic example of a continuous phase transition between a gapped

topologically ordered state and a topologically trivial state.

According to the global phase diagram in the main text (Fig. 1(A)), for finite J2 > 0.15

different phases may appear depending on J3. Tuning J3 will drive a phase transition from the

chiral spin liquid phase to the magnetic q = (0, 0) phase. It has been found that, the chiral spin

liquid undergoes a continuous phase transition to a Néel q = (0, 0) phase [11], as evidenced by the

fact that all local order parameters change smoothly across the phase transition point. However,

the reason for this continuous phase transition is less understood, because the transition between

a gapped topologically ordered phase and a topologically trivial phase is often thought to be first-
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order.

We show the evolution of dynamical spin structure factor for various J3, by setting J2 = 0.2J1.

We focus on momentum wave vector Q = M in this section. As shown in Fig. 3 (main text),

the evolution of dynamical spin structure factor at momentum Q = M for various J3 shows some

key features: By approaching the transition point, in the chiral spin liquid phase (J3 > 0.15J1),

the lowest energy peak at the Q = M point moves towards the low-frequency regime, and the

peak intensity gradually increases. Based on the above observations, a natural interpretation of the

peak structure in the chiral spin liquid phase is a two-spinon resonance state. The reason is that

low-energy excitations in the Néel phase should be the magnon quasiparticle, which can be viewed

as a bound state of two spinons. Taking into account that the elementary excitation in the chiral

spin liquid phase is a deconfined spinon [12], we can take the peak in the chiral spin liquid as a

two-spinon resonance state, while the peak in Néel phase is a two-spinon bound state (equivalent

to a magnon state). A two-spinon resonance state naturally depends on the interaction coupling

J3. By approaching the critical point, the two-spinon resonance moves towards zero frequency.

At the critical point, the two-spinon resonance state becomes a two-spinon bound state (equivalent

to a magnon). The further condensation of pairs of spinons should lead to the formation of Néel

magnetic order. In other words, this picture leads to two important physical insights: First, the

peak of the dynamical spin structure factor at momentum Q = M in the chiral spin liquid can

be interpreted as a two-spinon resonance state. Second, the transition from chiral spin liquid to

a Neel phase can be understood as the formation of a condensate of two-spinon bound states

or magnons. It therefore provides a microscopic understanding of continuous phase transition

between the chiral spin liquid and the Neel phase.

In the above analysis, the peak structure in the dynamic spin structure factor of the Neel phase

and the chiral spin liquid occur at the same momentum point (Q = M ), which makes the mech-

anism of spinon pair condensation possible. If the magnetic wave vector of the underlying long-

range magnetic order is different from that of two-spinon resonance state in the spin liquid, the

phase transition from chiral spin liquid to magnetically ordered phase should be first order. For

example, the transition from chiral spin liquid to cuboc1 phase in the global phase diagram is

first-order [11]. To sum up, the evolution of the dynamical spin structure factor across the critical

point, is intuitive to understand the nature of the ground state properties, and provides invaluable

insights on the nature of related phase transitions.
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FIG. 5. (a) Spin excitation gap as a function of J2 by setting Dz = 0.03 and (b) spin excitation gap as a

function of Dz by setting J2 = 0. The spin excitation gap is defined by the energy difference between the

lowest state in Stot
z = 1 and Stot

z = 0: ∆s = E0(S
tot
z = 1) − E0(S

tot
z = 0), where the lowest energy

state of Stot
z = 1 is computed by targeting Stot

z = 1 in the center of the cylinder based on the ground state

in Stot
z = 0 [2, 9]. (c) spin correlations ⟨S+

i S
−
i+d⟩ for various Dz , by setting J2 = 0.0. These results are

obtained on a Ly = 4 cylinder.

IV. SPIN CORRELATIONS AND SPIN GAP IN THE PRESENCE OF DM INTERACTION

In the main text, we show a phase diagram of Kagome antiferromagnetic Heisenberg model as

a function of out-of-plane DM interaction Dz and next-nearest-neighbor coupling J2. (We only

consider out-of-plane DM interaction because it is around one order of magnitude larger than

the in-plane component according to experimental estimates.) The phase boundary between spin

liquid phase and magnetic q = (0, 0) phase is determined by the spin excitation gap and spin

correlations. In Fig. 5(a-b), we show the spin excitation gap ( defined by ∆s = E0(S
tot
z = 1) −

E0(S
tot
z = 0)) dependence on parameter J2 and Dz, respectively. It is found that the spin excitation

gap decreases monotonically approaching the phase boundary. In particular, in the spin liquid

phase, the spin excitation gap strongly depends on the twisted boundary condition, indicating the

finite spin excitation gap may be due to finite-size effects. In contrast, in the magnetically ordered

phase, the spin excitation gap has little dependence on the twisted boundary condition. As shown

in Fig. 5(c), the spin correlation ⟨S+
i S

−
i+d⟩ provides another evidence for the phase boundary.

The spin correlation exponentially decays with the distance, for Dz < 0.08 and J2 = 0.0. For

Dz ≥ 0.08, the long-ranged order emerges as the spin correlation tends to saturate to a finite

value at large distance. Based on these facts, we determine Dz ≈ 0.08 as the phase boundary at

J2 = 0.0, which is largely consistent with the previous estimation from an ED calculation [13].

11



Using the similar method, we determine the phase boundary for the non-zero J2 case, and map out

the full phase diagram as shown in the main text.

At last, we show the dynamic spin structure factor in kagome spin liquid phase with and without

DM interactions. In the kagome spin liquid phase, the dynamic spin structure factor stays similar

to the one without the DM interactions (when we apply the periodic boundary condition along

y-direction). As shown in Fig. 6, we compare the S(Q, ω) at Dz = 0 and Dz = 0.06. The

two results are qualitatively similar, with a spectral intensity predominantly in the low frequency

region, and a broad spectral distribution in the high frequency region.

0.0 0.2 0.4 0.6 0.8
0

1

2

3

4B

 

 

S
(Q

=M
,

)

 S+-(Q, )
 Szz(Q, )
 Stot(Q, )

Dz=0.06

0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

 

 

S
(Q

=M
,

)

Dz=0A

FIG. 6. Dynamic spin structure factor of the Kagome spin liquid phase without DM interaction (A)

Dz = 0.0 and (B) with DM interaction Dz = 0.06. When we consider a non-zero DM interaction (B), the

spin rotation symmetry is broken thus we include transverse mode S+− (blue solid) and longitudinal mode

Szz (purple dashed). The black solid line is the total spin structure factor.
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