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SUPPLEMENTARY TEXT 
 

Materials and Methods 
 
Sample Population and Crossing Strategy 

We sampled a single teosinte (Zea mays ssp. parviglumis) population from the 
Balsas region of Mexico as a proxy for the founding population that gave rise to the first 
domesticated maize 10,000 years ago. This teosinte population is chosen from 
individuals in the “Mound” population near Palmar Chico, Mexico (lat. 18.6403˚, long. -
100.3570˚, altitude 1008 m) that were previously sampled by van Heerwaarden et al. 
(2010). Initially, we grew 50 teosinte parent plants under short daylength (11 h of 
daylight) in our greenhouse. These 50 teosinte parents were each grown from a single 
seed collected from separate plants in Palmar Chico. Our initial strategy involved selfing 
and intermating these 50 parents to produce progeny with various allelic combinations 
from the different parents. Given the structure of teosinte flowers, controlled pollinations 
are difficult to make. Thus, we collected pollen from individual plants and applied it 
randomly to as many plants as we could, including itself. Parentage of the resulting 
progeny was determined with molecular markers (see below). Due to inadequate short-
day induction, 20 parents produced only pollen but not silks. To correct this deficit, we 
repeated the process with 20 additional parents, of which 18 are half-sibs to the original 
20 parent that produced only pollen. The flowering induction for the second set of 
parents was successful. Overall, we obtained self-fertilized (“selfed”) families for 49 out 
of 70 parents with family size ranging from 3 to 95 progeny. We also obtained 288 
outcross families out of 1415 possibilities with family size ranging from 1 to 75 progeny. 
Exact numbers of progeny in each teosinte family are summarized in SI Appendix, Table 
S10. 

Similarly, we also sampled a single population of the maize landrace Tuxpeño 
(Zea mays ssp. mays) from a site less than one km from the teosinte population 
(University of Guadalajara collection JSG-RMM-LCL-529, lat. 18.6483˚, long. -
100.3542˚, altitude 983 m) as a proxy for the first domesticated maize from the region 
where maize was domesticated. We grew 55 maize plants under short daylength (11 h 
of daylight) in a winter nursery. Unlike the teosinte crossing strategy, we divided the 55 
parents into 11 groups of five and applied bulked pollen samples from within each group 
to female flowers of the same five. This process provided us with a mix of selfed and 
outcross plants similar to that obtained for teosinte. For the selfed families, we obtained 
34 out of 55 possibilities with family size ranging from 1 to 125 progeny. For the outcross 
families, we obtained 55 out of 110 possibilities with family size ranging from 6 to 141 
progeny. Of the 55 plants, 40 contributed to at least one progeny as male or female 
parent. Exact numbers of progeny in each maize landrace family are summarized in SI 
Appendix, Table S11. 
 
Field Design 
 We conducted field evaluations for the teosinte progeny over two winter seasons 
(2013 and 2014) under short daylength in Homestead, FL (lat. 25.5044°, long. -80.5045˚, 
altitude 3 m, daylengths < 12 h for the entire growing season). Within each year, a 
randomized design was used, with individual plants as experimental units. We planted 
the seeds in a grid of 100 plants by 30 rows in the first season and 112 plants by 54 
rows in the second season. Each plant was separated by 30 cm within rows and 76 cm 
between rows. Using the same seed source as the experimental plants, we also planted 
the borders surrounding the experimental plants. The borders included a row before the 
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first experimental row, a row after the last experimental row, rows between experimental 
rows and irrigation alleys, five plants before the start of each experimental row and five 
plants after the end of each experimental row. Each plant was individually staked and 
tagged to keep track of the plant identity for tissue and phenotypic data collection. Due 
to the lower than expected germination rate of teosinte seeds, we did not obtain 
sufficient plants in the main experimental plots during the first season and so we 
sampled some of the border plants as well. 
 We also conducted field evaluation for the maize landrace progeny alongside 
with the teosinte field evaluation in a similar design. We planted the seeds in a grid of 
100 plants by 30 rows in both years with the same spacing as teosinte. The borders 
were also planted in similar fashion as teosinte. Unlike teosinte, we did not suffer from 
germination problems in the maize landrace and so we did not have to sample any of the 
border plants nor change the field layout in the second year. 
    
Tissue Collection, DNA Isolation and Genotyping 

Leaf tissue samples from the parents and progeny of teosinte and maize 
landrace were collected for DNA isolation using several different methods. For the 
teosinte parents, 100 – 350 mg leaf tissue samples were collected depending on the 
DNA isolation protocol used, which was either DNeasy® Plant Mini Kit (Qiagen Inc., 
Germantown, MD) or modified CTAB protocol (CIMMYT, 2005). Due to poor kit yield, 
DNAs were isolated and pooled from three to five leaf tissue samples for each of those 
affected parents. DNAs isolated from the modified CTAB protocol were sufficient so no 
pooling was required. For the maize landrace parents, 100 mg leaf tissue samples were 
collected and lyophilized prior to DNA isolation with the same kit but without pooling. For 
the progeny, small samples of leaf tissue (1 cm by 4 cm) were collected from each plant 
at approximately the 5-leaf stage. Roughly 1% of the progeny were randomly sampled 
twice as a control against tissue collection error. All of the tissue samples were 
lyophilized prior to DNA isolation using DNeasy® 96 Plant Kit (Qiagen Inc., 
Germantown, MD). All DNA samples from the parents and progeny were genotyped 
using Genotype-by-Sequencing (GBS) (Elshire et al. 2011). As per GBS protocol, all 
DNA samples were digested using ApeKI restriction enzyme and sequenced in 96-plex 
on Illumina HiSeq 2000, SE 1X100 bp (Illumina Inc., San Diego, CA). Following that, 
genotypes were called from GBS raw sequencing reads using the TASSEL5-GBS 
Production Pipeline based on 955,690 SNPs in the ZeaGBSv2.7 Production 
TagsOnPhysicalMap (TOPM) file (Glaubitz et al. 2014). The overall genotyping process 
from raw sequencing reads to final, clean and imputed GBS dataset is highlighted in a 
flowchart (SI Appendix, Fig. S4). 
 
Phenotyping 
 We collected phenotype data for numerous traits in both teosinte and maize 
landrace populations. The trait abbreviations can be found in Table 1 and the trait details 
are summarized in SI Appendix, Table S12. We scored a total of 32 traits in teosinte and 
43 traits in maize. Of these traits, 18 are shared by both teosinte and maize landrace 
and are the focus of our analyses (SI Appendix, Table S12). The remaining 14 traits for 
teosinte and 25 traits for maize landrace were not analyzed here since these traits were 
either invariable or not scored in one of the populations. In total, we collected phenotype 
data for 4,455 teosinte plants and 4398 maize landrace plants. Due to various reasons 
such as tractor damage to a plant or plant death, some of the plants do not have 
complete phenotype data.  
 Since it is impractical to obtain an accurate count of Total Ears per Plant (TEPP) 
for teosinte, we used a linear regression model to predict TEPP instead. TEPP itself is 
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not analyzed, but instead used for calculating TGPP and TGWP. We counted the actual 
TEPP for 200 plants over two years and regressed these actual counts on several other 
traits that we thought might be correlated to TEPP, including Plant Height (PLHT), Leaf 
Length (LFLN), Leaf Width (LFWD), Lateral Branch Node Number (LBNN), Lateral 
Branch Length (LBLN), Tiller Number (TILN), Culm Diameter (CULM), Branch Number 
(BRAN), Prolificacy (PROL), Days to Anthesis (DTA) and Days to Silk (DTS). From the 
initial model, we kept only traits that were significant (p < 0.01), resulting in the following 
prediction model that explained 67.8% of variance: 
 

𝑇𝐸𝑃𝑃 = −47.7 + 95.3 ∙ 𝑌𝑒𝑎𝑟 − 1.9 ∙ 𝐿𝐵𝐿𝑁 + 15.8 ∙ 𝑇𝐼𝐿𝑁 + 27.2 ∙ 𝐵𝑅𝐴𝑁 + 22.1 ∙ 𝑃𝑅𝑂𝐿 
 
 Shapes of teosinte fruitcases are highly variable and yet the variations are often 
too subtle to be scored objectively by humans. In order to capture shape variation, we 
used the software SmartGrain (Tanabata et al. 2012) to analyze scanned images of 
teosinte fruitcases. First, we scanned the same 50 fruitcases (a few plants had fewer 
than 50 fruitcases) that were previously weighed for Grain Weight (GW). All the scans 
were done at 600 dpi on a pink background and exported as “.jpeg” format using 
Silverfast v8.0.1 (LaserSoft Imaging Inc., Sarasota, FL) and Epson Perfection V800 
Photo Color Scanner (Epson America Inc., Long Beach, CA). The fruitcases were 
spread over a rectangular area of 215.9 mm by 94.2 mm to minimize contact among the 
fruitcases. We analyzed the scanned images using SmartGrain (Tanabata et al. 2012) 
where the scale was set to 0.0423 mm/pixel and individual fruitcases were identified 
based on color differences from the background. We also performed manual quality 
checks on each of the scanned images by excluding fruitcases that were in contact with 
one or more others and also fruitcases that did not lay flat. We scored a total of four 
traits using this method, including Fruitcase Length (FCLN), Fruitcase Width (equivalent 
to Ear Diameter, ED), Fruitcase Length-Width-Ratio (FCLW), and Fruitcase Triangularity 
(FCTR). Of these four traits, only ED is analyzed here. 
 
Modelling Shading 
 A covariate for shading was modelled for each progeny (x) by considering the 
possible shading effects of neighboring plants that are 119cm or less away as described 
in SI Appendix, Fig. S6. We first calculated individual shading (si) from each neighboring 
plant using the following formula: 

𝑠𝑖 = 𝑃𝐿𝐻𝑇𝑖 +
1

2
∙ 𝑃𝐿𝐻𝑇𝑖 ∙ 𝑇𝐼𝐿𝑁𝑖 

where si is the shading contributed by a neighboring plant i, PLHTi is the plant height of a 
neighboring plant i, and TILNi is the tiller number of a neighboring plant i. For example, 
sL1 is the shading on plant x by neighboring plant L1 (SI Appendix, Fig. S6). Shading 
from border (non-experimental neighboring plants) was assumed to be the average 
shading of all progeny plants, 𝑠𝑖̅. Shading from an empty plot or irrigation alley is 0. 
Specifically only in the first year teosinte data, shading from border was assumed to be 
half of 𝑠𝑖̅ since the amount of border was sparser. Also, considering that neighboring 
plants that are farther away shade less than neighboring plants that are close by, we 
scaled si based on the distance of neighboring plant i from plant x. Summing all the 
scaled si values gave us the total shading (Sx) on plant x: 

𝑆𝑥 = ∑
𝑑𝑖

𝑑
𝑠𝑖

20

𝑖=1

 

where di is the shortest distance of neighboring plant i from plant x, and d is the shortest 
possible distance of the closest neighboring plant to plant x (30cm).  



 

 

5 
 

 
Parentage Inference 
 Using raw GBS data of the parents and progeny, we inferred parentage of each 
progeny for both teosinte and maize landrace. Parentage inference was done in two 
parts, first by estimating the realized additive genomic relationship matrix (VanRaden 
2008; Endelman and Jannink 2012) in TASSEL5 (Bradbury et al. 2007), followed by 
identifying the parents of each progeny using a custom R script. A progeny is considered 
a selfed of a parent if there is only one progeny-parent pair with the highest additive 
relationship value. A progeny is considered an outcross of two parents if there are two 
progeny-parent pairs with high and similar additive relationship values.    
 Once the parentage inference was complete, we compared the inferred 
parentage to the known maternal parentage of each progeny. Owing to our crossing 
strategy, we were able to trace each progeny to its maternal parent plant from which the 
seed was harvested. For the maize landrace, we also knew the five most likely paternal 
parents of each progeny based on our crossing design. Comparing the parentages from 
duplicate samples, we verified that there were no large-scale sample mix-ups. In a 
handful of cases where the inferred parentage did not meet the expected parentage, we 
investigated them on a step-by-step basis. First, we verified that the additive relationship 
values of the inferred progeny-parent pairs were reasonable and non-ambiguous. 
Second, we checked the planting and tissue collection notes for any known error. Third, 
we looked for adjacent seeds that would match up with the inferred parentage and 
suggest for seed or tissue mix-up. Once all the steps are taken, we corrected the 
progeny for which we could confidently identify the source of error. For progeny that we 
could not identify the source of error, we re-genotyped them using DNAs isolated from 
backup tissues and inferred the parentage again. If the re-genotyped progeny still had 
uncertain or unlikely parentage, then those progeny were removed from the dataset. If 
the re-genotyped progeny matched the expected parentage, then the GBS genotypes 
were corrected accordingly. 
 
Uplifting from AGPv2 to AGPv4 

The CrossMap (Zhao et al. 2013) software was used to convert the GBS SNP 
positions from maize B73 reference AGPv2 coordinates to AGPv4 coordinates. 
CrossMap requires an assembly chain file to do uplifting. However, at the time when this 
work was carried out, Ensembl Plants (http://plants.ensembl.org) only provided AGPv2-
>AGPv3 and AGPv3->AGPv4 chain files, and CrossMap’s VCF functionality was not 
compatible with the AGPv3->AGPv4 chain file. A three-step approach was used for 
uplifting. First, the GBS AGPv2 VCF file was converted into the bed file format; second, 
CrossMap was used to uplift variant positions and allele strands to AGPv3 then to 
AGPv4 in bed file formats; third, a custom made PERL script was used to create a new 
GBS AGPv4 file in VCF format by combining data from the AGPv2 VCF file and AGPv2-
to-v4 bed file. 
 
GBS Data Imputation 

We performed two rounds of imputation. Prior to the first imputation, we filtered 
the GBS data for teosinte and maize landrace separately. We removed the following: (1) 
sites with minor allele frequency (maf) below 0.001, (2) sites with missing rate above 
20%, (3) sites that were non-biallelic, and (4) sites with insertion-deletion (indel) 
polymorphism. After the first imputation, we also removed sites that were incorrectly 
mapped in AGPv4, and progeny that had more than 100 crossovers total. Incorrectly 
mapped sites were only identified on Chromosome 6 between 58,557,140 and 
61,656,987 bp and were discovered by a quality check (QC) described below. Similarly, 

http://plants.ensembl.org/
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progeny with more than 100 crossovers were identified by a QC as described below. Our 
GBS data workflow is summarized in SI Appendix, Fig. S4. 

When using GBS data for heterozygous individuals, imputing genotypes is an 
important but challenging first step due to the ambiguity of many of the genotypes. Any 
sequence-based variant calling method often provides low coverage genotype calls that 
are ambiguous because each sequence read only captures a single chromosome. For 
an individual, if a variant site is covered by only a single read, then it will not be known 
whether that individual is homozygous or heterozygous at that site. If a site is covered by 
two reads, both alleles will be observed only half the time. However, if parent phase is 
known, a hidden Markov model (HMM) can be used with GBS data to infer at almost 
every site in the genome which chromosomes a progeny has inherited from its parents. 
Based on that process, the correct genotype of the progeny can be inferred from the 
parent haplotypes. 

Here, we briefly describe a two-part approach in imputing the progeny genotypes 
from raw GBS data, with the details to follow in the remaining paragraphs of this section. 
In the first part, we used a heuristic method to phase the parents with at least 10 
progeny followed by a HMM to infer the parent states at all possible sites in the progeny. 
In the second part, we improved the parent phasing using the inferred parent states and 
re-imputed parent states in the progeny using the improved parent phasing. Since parent 
phasing is an important step in the imputation process, and yet no reliable method is 
available for our low coverage genotype calls, we created and applied two separate 
algorithms to phase the parents. One method used only selfed progeny and a second 
independent method used both selfed and outcross progeny. The results of the two 
methods were merged. For each individual in the population, the phased parent 
haplotypes were used with the Viterbi algorithm (Rabiner 1989) to determine the parent 
state at each site with sufficient data. Any unknown site flanked by two sites with the 
same parent state was assumed to have that state. At the end, the re-imputed parent 
states were used in conjunction with the phased parent haplotypes to impute the 
progeny genotypes.  

Parents with sufficient number of selfed progeny (here we used a minimum of 10) 
can be phased relatively easily and reliably. The phasing process began by selecting all 
the selfed progeny of a single parent with all of the monomorphic sites within that family 
ignored. Using only polymorphic sites, each chromosome was divided into 50-site 
windows. For the first window, pairwise distances were calculated between every pair of 
genotypes as the number of nucleotide differences. Genotypes were clustered using 
those differences. The two largest clusters were taken to be the parental haplotypes. 
Because many heterozygous loci were randomly called as one or the other of the alleles, 
almost every heterozygous individual had a distinct genotype and the heterozygotes did 
not cluster together. The process was repeated for the second and subsequent windows 
and haplotypes from the same chromosome identified by keeping track of which 
individuals carried which haplotypes. Some regions had only a single haplotype because 
of segregation distortion or because the parental chromosomes were identical-by-
descent (IBD). To handle these regions, the algorithm determined whether or not the 
window was IBD or whether it was likely that one haplotype had been eliminated through 
selection or sampling. All individuals in an IBD region are expected to form one large 
cluster. In a non-IBD region, about two thirds of the individuals are expected to be 
heterozygous and, as a result, not to cluster. As a result IBD could be distinguished from 
segregation distortion based on cluster size. In the case of IBD, the same haplotype was 
assigned to both parents. In the case of segregation distortion one parental haplotype 
was set to all missing values.  
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Additionally, we also separately phased each parent using both selfed and 
outcross progeny at sites with sufficiently high coverage (read depth > 6) to distinguish 
heterozygotes reliably. For most sites where there is sufficient depth for the parents and 
one progeny, the progeny can be phased, a process which provides one of the 
haplotypes from each of the parents. By clustering all of the haplotypes generated by all 
combinations with a single parent, the two chromosomes from that parent can be 
identified. This was repeated for windows of 40 polymorphic sites across a chromosome. 
Keeping track of which progeny contain each haplotype allows adjacent windows to be 
joined correctly. 

Subsequently, we combined the haplotypes from the two independent phasing 
methods. Sites covered by only one method were kept. Sites covered by both methods 
were kept only when they agreed. In almost all cases, the agreement between the two 
methods was excellent. In a few cases where there was substantial disagreement, the 
parent had a large region in which the two chromosomes in a pair were IBD. As a result 
the haplotypes bordering that region were in weak LD and the haplotypes from the 
selfed-only progeny had been interchanged in the middle of the chromosome. When the 
haplotypes from the selfed and outcross progeny were used to correct the order, the two 
methods were brought into agreement.  

The Viterbi algorithm describes a type of HMM that identifies the most likely 
genotype given the marker data. The "true" genotype is considered to be unknown or 
hidden. In this application, the algorithm was used to infer the parental chromosomes 
inherited by a single progeny at each position with both progeny and parent data. The 
possible (hidden) parent states are maternal chromosome 1, paternal chromosome 1; 
maternal chromosome 1, paternal chromosome 2; maternal chromosome 2, paternal 
chromosome 1; and maternal chromosome 2, paternal chromosome 2. The Viterbi 
algorithm requires a transition matrix and an emission matrix. The transition matrix was 
calculated for each pair of sites based on the probability of a recombination between 
those two sites. The emission matrix was calculated assuming that homozygous loci 
would be genotyped correctly with an error rate of 0.002 and the heterozygous loci 
would be genotyped as homozygous at a rate that depended on read depth. For 
example, at read depth 1, the probability that a heterozygous locus A/B would be 
genotyped as homozygous AA is 0.5 and as homozygous BB is 0.5. At read depth 2, the 
probability that a heterozygous locus A/B would be genotyped as heterozygous is 0.5, as 
homozygous AA is 0.25, and as homozygous BB is 0.25.  

For a single progeny, once the parent states had been imputed at sites with both 
parent and progeny data, sites in the genome for which states had not been imputed and 
that were bordered by sites with the same state were assigned that state. In that way, 
parent states were assigned for all sites except those surrounding a recombination 
event. Once the states had been imputed, the progeny genotype was inferred by 
combining the phased haplotypes of the parents. As a result, the density of the imputed 
genotypes for a progeny depended on how many sites were phased in its parents. 

The imputation algorithm is implemented as part of the TASSEL (Bradbury et al. 
2007) code base as the ParentPhasingPlugin and the ImputeProgenyStatesPlugin. They 
can be run from the command line using the current version of TASSEL, which is 
available at http://www.maizegenetics.net/tassel. The source code is freely available at 
the TASSEL Wiki (https://bitbucket.org/tasseladmin/tassel-5-source/wiki/Home). 
 
Quality Check on Imputation 
 Upon completing the first imputation, we performed a quality check (QC) using 
several metrics on our GBS data to ensure high quality data for our subsequent 
analyses (SI Appendix, Fig. S4-5). We first checked for crossover density along every 
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chromosome, where we expected to see low crossover density near centromeres and 
high crossover density away from centromeres. We identified a region on Chromosome 
6: 58,557,140 - 61,656,987 bp with unusually high crossover density in both teosinte and 
maize landrace (SI Appendix, Fig. S5A). We removed SNPs in this region prior to the 
second imputation. We also looked at total crossover counts for each individual, where 
we identified six teosinte and 98 maize landrace individuals with 100 or more 
crossovers. These individuals were also removed prior to the second imputation. Since a 
small proportion of crossover errors are expected to have little impact on genome-wide 
association tests at individual markers, we used a liberal threshold for removing 
individuals with 100 or more crossovers, even though individuals with more than 40 
imputed crossovers are likely to be imputed incorrectly, as maize gametes typically carry 
20 or fewer recombinations (Anderson et al. 2004; Bauer et al. 2013; Sidhu et al. 2015). 
For a few self/outcross families, we plotted the minor allele frequencies (maf) along each 
chromosome (SI Appendix, Fig. S5C-E). Under Mendelian segregation, we expected to 
see maf of 0 and 0.5 in a selfed family, or 0, 0.25 and 0.5 in an outcross family. Regions 
showing deviations from those expected mafs would suggest either segregation 
distortion (SD) or identity-by-descent (IBD). While we identified regions with SD or IBD 
from the maf plots, none of these needed any correction. Lastly, we estimated the 
realized additive genomic relationship matrix from the imputed GBS data and plotted the 
matrix diagonals separately for self and outcross progeny (SI Appendix, Fig. S5F-G). 
The diagonals of the additive relationship matrix are estimates of 1 + f where f is the 
individual’s inbreeding coefficient (Endelman and Jannink, 2012). Assuming no history of 
selfing among the parents, we expected the diagonals for selfed progeny (f = 0.5) to be 
centered around 1.5 and outcross progeny (f = 0) to center around 1.0. Initially the 
diagonal estimates fit the 1.5 (self) and 1.0 (outcross) expectations imperfectly, so we 
applied a conservative but not overly stringent post-imputation filtering criteria by 
removing progeny with more than 70% missing data and sites with more than 10% 
missing data. After this filtering, the expectations of diagonal values neear1.5 and 1.0 
were met very well.  

We also applied the QC to the output from the second imputation to ensure a 
high quality imputation. The second imputation resulted in 4,669 progeny and 349,964 
sites for teosinte, and 4,792 progeny and 351,719 sites for maize landrace. After the 
second imputation, the previously identified erroneous spike in the crossover density plot 
was gone (SI Appendix, Fig. S5B). The individual crossover counts were satisfactory, 
where the crossover counts range from 10 to 95 (mean = 27.3 ± 8.8) for teosinte, 12 to 
105 (mean = 28.42 ± 0.10) for maize landrace. Even though one individual did not pass 
the 100 crossovers threshold in the second imputation, we left the individual in the 
dataset since incorrectly imputed crossovers are unlikely to impact our downstream 
analyses. Similar to the first QC, we did not identify any issue with the maf distribution 
along chromosomes. We also applied the same post-imputation filtering of removing 
progeny with more than 70% missing data and sites with more than 10% missing data. 
After this step, we filtered out any monomorphic sites, leaving 4,455 progeny and 34,899 
sites for teosinte, and 4,398 progeny and 40,255 sites for maize landrace. Lastly, we 
imputed most of the remaining missing data using LD-kNNi (Money et al. 2015) 
implemented in TASSEL5 (Bradbury et al. 2007) with default parameters. For teosinte, 
the final dataset for analysis had 0 to 2.38% missing data per site and 0 to 0.75% 
missing data per progeny. For maize landrace, these numbers are 0 to 3.62% missing 
data per site and 0 to 0.23% missing data per progeny. 
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Univariate Analysis 
Realized additive and dominance genomic relationship matrices were estimated 

from the final GBS datasets using the observed allele frequencies method of VanRaden 
(2008) and Endelman and Jannink (2012) implemented in TASSEL5 (Bradbury et al. 
2007). Realized dominance genomic relationship matrices were estimated using the 
method of Muñoz et al. (2014). The distribution of diagonal and off-diagonal elements 
from these matrices are shown in SI Appendix, Fig. S7. Reliable estimation of 
dominance variance components requires some close relatives with higher realized 
estimates of fraternity (off-diagonal elements of the dominance relationship matrix). 
Among all pairs of individuals in 0.8% (80,114 pairs) in the teosinte population and 1.6% 
(156,772 pairs) in the maize landrace population were full-sibs or S1 relatives from a 
common parent. These close relatives had realized dominance relationship coefficients 
centered around 0.5 (SI Appendix, Fig.S8), providing sufficient information for reliable 
estimation of dominance variance within each population. 

A common univariate linear mixed model was fitted for each trait using ASReml 
version 4 (Gilmour et al. 2015), which implements restricted maximum likelihood 
estimation of model parameters.  
 

𝑌𝑖𝑗 = 𝜇 + 𝐸𝑖 + (𝐹𝑖𝑗 − 𝐹..̅)𝛽𝐹 + (𝐹𝑖𝑗 − 𝐹𝑖.̅)𝛽𝐹𝑖 + 𝑥𝑆𝑖𝑗𝛽𝑆 + 𝑥𝐵𝑖𝑗𝐵(𝑌)𝑖 + 𝑥𝑅𝑖𝑗𝛽𝑅1𝑖 + 𝑥𝑅𝑖𝑗
2 𝛽𝑅2𝑖 +

𝑥𝑅𝑖𝑗
3 𝛽𝑅3𝑖 + 𝑥𝑅𝑖𝑗

4 𝛽𝑅4𝑖 + 𝑥𝐶𝑖𝑗𝛽𝐶1𝑖 + 𝑥𝐶𝑖𝑗
2 𝛽𝐶2𝑖 + 𝑥𝐶𝑖𝑗

3 𝛽𝐶3𝑖 + 𝑥𝑅𝑖𝑗
4 𝛽𝐶4𝑖 + 𝐴𝑖𝑗 + 𝐷𝑖𝑗 + 𝐺 × 𝐸𝑖𝑗 + 𝜀𝑖𝑗, 

 
Where: 

𝑌𝑖𝑗 is the observed phenotype on individual j in environment i. 

 
The following fixed effects are included in the model: 
𝐸𝑖 is the effect of environment (year) i, 

𝐹𝑖𝑗 is the marker-based inbreeding coefficient estimate for individual j in environment i, 

𝐹..̅ is the average inbreeding coefficient for all individuals across both years, 

𝐹𝑖.̅ is the mean inbreeding coefficient for all individuals in environment i, 
𝛽𝐹 is the average regression coefficient for phenotypes on the inbreeding coefficient (the 
estimate of inbreeding depression),  

𝛽𝐹𝑖 is the interaction effect of inbreeding depression effect with years. 
𝑥𝑆𝑖𝑗 is the deviation of the shading measurement on the ijth individual from the overall 

average shading measurement, 
𝛽𝑆 is the average shading effect, 

𝑥𝐵𝑖𝑗 is a dummy variable indicating if a plant is in an edge (border) row for teosinte plants 

or in a row adjacent to a tractor tire passing lane for maize landrace plants, 
𝐵(𝑌)𝑖 is the effect of border rows in the first year (since no plants were measured in 
border rows in the second year), 

𝑥𝑅𝑖𝑗
𝑝

 and 𝑥𝐶𝑖𝑗
𝑝

 are p = first to fourth order polynomials of the deviation in the row and 

column directions, respectively, of the ijth plant’s position from the center of the field in 
year i, 
𝛽𝑅𝑝𝑖 and 𝛽𝐶𝑝𝑖 are the regression coefficients associated with the pth polynomials for row 

and column trend effects within year i, respectively. 
 
The following random effects are included in the model: 

𝐴𝑖𝑗 is the polygenic additive effect of the ijth plant, with distribution 𝐴𝑖𝑗 ∼ 𝑀𝑉𝑁(0, 𝑨𝜎𝐴
2), 

where A is the realized additive genomic relationship matrix and 𝜎𝐴
2is the estimate of the 

additive genetic variance, 
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𝐷𝑖𝑗 is the polygenic dominance effect of the ijth plant, with distribution 𝐷𝑖𝑗 ∼

𝑀𝑉𝑁(0, 𝑫𝜎𝐷
2), where D is the realized dominance genomic relationship matrix and 𝜎𝐷

2 is 
the estimate of the dominance genetic variance, 
𝐺 × 𝐸𝑖𝑗 is the interaction of polygenic effect of the ijth plant with environment i, with 

distribution 𝐺 × 𝐸𝑖𝑗 ∼ 𝑀𝑉𝑁(0, (𝑨𝟏 ⊕ 𝑨𝟐)𝜎𝐴𝐸
2 ), where 𝑨𝒊 is the realized additive 

relationship matrix for individuals grown in year i and (𝑨𝟏 ⊕ 𝑨𝟐) is a block-diagonal 
structure that includes non-zero covariances for plants grown in the same year, but zero 
covariance for plants grown in different years. 
𝜀𝑖𝑗 is the residual effect associated with the ijth plant, with heterogeneous variances 

across years: 𝜀𝑖𝑗 ∼ 𝑁(0, 𝜎𝜀𝑖
2 ). 

 
Based on the model’s variance component estimates, we estimated the following: 

Narrow-sense heritability as ℎ2 =
𝜎̂𝐴

2

𝜎̂𝐴
2+𝜎̂𝐷

2 +𝜎̂𝐺×𝐸
2 +𝜎̂𝜀̅

2, where 𝜎̂𝜀̅
2 is the average error variance 

across years. 

Broad-sense heritability as 𝐻2 =
𝜎̂𝐴

2+𝜎̂𝐷
2

𝜎̂𝐴
2+𝜎̂𝐷

2 +𝜎̂𝐺×𝐸
2 +𝜎̂𝜀̅

2 

Proportion of phenotypic variance due to dominance variance as 
𝑉𝐷

𝑉𝑃
⁄ =

𝜎̂𝐷
2

𝜎̂𝐴
2+𝜎̂𝐷

2 +𝜎̂𝐺×𝐸
2 +𝜎̂𝜀̅

2 

Proportion of phenotypic variance due to genetic-by-environment variance as 
𝑉𝐺×𝐸

𝑉𝑃
⁄ =

𝜎̂𝐺×𝐸
2

𝜎̂𝐴
2+𝜎̂𝐷

2 +𝜎̂𝐺×𝐸
2 +𝜎̂𝜀̅

2 

 
 We inferred the evolutionary history for each individual trait by applying the 
univariate breeder’s equation (Lush 1937) on our univariate analysis results. The 
univariate breeder’s equation is given by the following (Equation 13.6b from Walsh and 
Lynch (2018)): 
 

𝑅 = ℎ2𝑖√𝑉𝑃 = 𝑖
𝑉𝐴

√𝑉𝑃

 

 

where 𝑅 is the response or the difference in population mean before (𝑧𝑛−1) and after (𝑧𝑛) 

selection, ℎ2 is the narrow sense heritability, 𝑖 is the selection intensity, 𝑉𝑃 is the 
phenotypic variance and 𝑉𝐴 is the additive genetic variance. We can generalize and re-
express the univariate breeder’s equation as: 
 

𝑧𝑛 − 𝑧𝑛−1 = 𝑖
𝑉𝐴,𝑛−1

√𝑉𝑃,𝑛−1

 

 

For N generations of selection with a constant 𝑖, we have the following equations: 
 

𝑧1 − 𝑧0 = 𝑖
𝑉𝐴,0

√𝑉𝑃,0

𝑧2 − 𝑧1 = 𝑖
𝑉𝐴,1

√𝑉𝑃,1

⋮

𝑧𝑁 − 𝑧𝑁−1 = 𝑖
𝑉𝐴,𝑁−1

√𝑉𝑃,𝑁−1
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Summing up all the equations leads to: 
 

𝑧𝑁 − 𝑧0 = 𝑖 (
𝑉𝐴,0

√𝑉𝑃,0

+
𝑉𝐴,1

√𝑉𝑃,1

+ ⋯ +
𝑉𝐴,𝑁−1

√𝑉𝑃,𝑁−1

) = 𝑖 ∑
𝑉𝐴,𝑛

√𝑉𝑃,𝑛

𝑁−1

𝑛=0

 

 
Or equivalently: 
 

𝑖 =
𝑧𝑁 − 𝑧0

∑
𝑉𝐴,𝑛

√𝑉𝑃,𝑛

𝑁−1
𝑛=0

 

 
 The phenotypic variance is often simplified as the sum of additive genetic and 
environmental variances as the other variances are assumed to be negligible. 
Furthermore, common literatures often assume that the environmental variance remains 
constant over multiple generations of selection and that the additive genetic variance 
always decreases under selection (Bulmer 1971; Verrier et al. 1990; Hospital and 
Chevalet 1993; Roff 1997). However, we found these assumptions to be unrealistic as 
our results clearly show that the environmental variances between teosinte and maize 
landrace are different and that the additive genetic variances do not necessarily 
decrease under selection (SI Appendix, Table S1-2). Environmental variance has been 
shown to increase with fixation of alleles that affect environmental sensitivity (Mackay 
and Lyman 2005). Such alleles may either be directly selected or indirectly selected via 
linkage disequilibrium during maize domestication. Additive genetic variance can 
increase with mutations and epistasis, especially in a population that has a long period 
of time to evolve. Thus, we opted against modeling the change in additive genetic 
variance using the methods described in the current literature. We instead modelled the 
change in genetic architecture of each quantitative trait due to selection as constant 
change in additive genetic and phenotypic variances per generation. Even though our 
models are likely naïve, our models are still probably closer to the reality than any model 
proposed in the current literature. 
 
For our model, we assumed that the change in variance is constant every generation, 
where: 
 

𝑉𝑛 = 𝑉𝑛−1 + ∆𝑉
𝑉𝑛 = 𝑉0 + 𝑛∆𝑉

 

 
For N generations, the change in variance can be estimated as following: 
 

∆𝑉 =
𝑉𝑁 − 𝑉0

𝑁
 

 
Using our teosinte population as the starting point (generation 0) and maize landrace 
population as the ending point (generation N), we can easily estimate 𝑉𝐴,𝑛 and 𝑉𝑃,𝑛 for 

any 𝑛 < 𝑁 generation and thus obtain the estimate of selection intensity (𝑖) as following: 
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𝑖 =
𝑧𝑁 − 𝑧0

∑
𝑉𝐴,0 + 𝑛∆𝑉𝐴

√𝑉𝑃,0 + 𝑛∆𝑉𝑃

𝑁−1
𝑛=0

 

 
Where: 
 
𝑁 is the number of generations of selection 

𝑧𝑁 is the trait outcross mean for maize landrace 
𝑧0 is the trait outcross mean for teosinte 

𝑉𝐴,0 is the additive genetic variance for teosinte 

𝑉𝑃,0 is the phenotypic variance for teosinte 

𝑉𝐴,𝑁 is the additive genetic variance for maize landrace 

𝑉𝑃,𝑁 is the phenotypic variance for maize landrace 

∆𝑉𝐴 can be estimated as ∆𝑉𝐴 = (𝑉𝐴,𝑁 − 𝑉𝐴,0) 𝑁⁄   

∆𝑉𝑃 can be estimated as ∆𝑉𝑃 = (𝑉𝑃,𝑁 − 𝑉𝑃,0) 𝑁⁄   

 
Multivariate Analysis 

Bivariate linear mixed model analyses were conducted using ASReml version 4 
(Gilmour et al. 2015) for each pair of traits to estimate additive genetic correlations. 
Because computational demand increased dramatically for bivariate analysis compared 
to univariate analysis, we used a reduced multivariate analog of the univariate analysis 
model: 
 

𝑌𝑖𝑗𝑘 = 𝜇𝑘 + 𝐸𝑖𝑘 + (𝐹𝑖𝑗 − 𝐹..̅)𝛽𝐹𝑘 + (𝐹𝑖𝑗 − 𝐹𝑖.̅)𝛽𝐹𝑖𝑘 + 𝑥𝑆𝑖𝑗𝛽𝑆𝑘 + 𝑥𝐵𝑖𝑗𝐵(𝑌)𝑖𝑘 + 𝑥𝑅𝑖𝑗𝛽𝑅1𝑖𝑘 +

𝑥𝑅𝑖𝑗
2 𝛽𝑅2𝑖𝑘 + 𝑥𝑅𝑖𝑗

3 𝛽𝑅3𝑖𝑘 + 𝑥𝑅𝑖𝑗
4 𝛽𝑅4𝑖𝑘 + 𝑥𝐶𝑖𝑗𝑘𝛽𝐶1𝑖𝑘 + 𝑥𝐶𝑖𝑗𝑘

2 𝛽𝐶2𝑖𝑘 + 𝑥𝐶𝑖𝑗𝑘
3 𝛽𝐶3𝑖𝑘 + 𝑥𝑅𝑖𝑗

4 𝛽𝐶4𝑖𝑘 + 𝐴𝑖𝑗𝑘 +

𝜀𝑖𝑗𝑘, 

 
Where 𝑌𝑖𝑗𝑘 is the measurement of trait k on individual j in environment i, and the fixed 

model terms are the same as in the univariate model, but they are nested within trait. 
The random terms in this model include the additive polygenic effect, 𝐴𝑖𝑗𝑘, which has 

distribution 𝐴𝑖𝑗𝑘 ∼ 𝑀𝑉𝑁(0, 𝑨 ⊗ 𝑻), where T is a 2⨯2 additive genetic variance-

covariance matrix for traits 1 and 2:  
 

𝑻 = [
𝑉𝐴,1 𝐶𝑜𝑣𝐴,1,2

𝐶𝑜𝑣𝐴,1,2 𝑉𝐴,2
]. 

 

The random residual terms in this model are correlated across traits within a plant: 𝜀𝑖𝑗𝑘 ∼

𝑀𝑉𝑁(0, 𝑰 ⊗ 𝑬), where I is an identify matrix with dimension equal to the total number of 

plants measured and E is a 2⨯2 residual variance-covariance matrix:  
 

𝑬 = [
𝑉𝐸𝑟𝑟,1 𝐶𝑜𝑣𝐸𝑟𝑟,1,2

𝐶𝑜𝑣𝐸𝑟𝑟,1,2 𝑉𝐸𝑟𝑟,2
]. 

 
Restricted maximum likelihood estimates of the variance and covariance 

components were used to estimate the additive genetic correlation between traits k and 
k’:  

𝑟𝐴𝑘𝑘′ =
𝜎̂𝐴𝑘𝑘′

√𝜎̂𝐴𝑘
2 𝜎̂𝐴𝑘′

2
. 
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Significance of the genetic correlations can be determined by first applying 

Fisher’s Z-transformation to the correlations and their standard errors, and then 
compared to the standard normal distribution for the corresponding two-tailed P-values 

of 2 ∙ 𝑃 (|
tanh−1(𝑟𝐺)

tanh−1(𝑆𝐸𝑟𝐺
)
| > 1.96) < 0.05. The genetic correlations and their standard errors 

can be found in SI Appendix, Table S4 and S5. 
 
 Using teosinte and maize landrace distance matrices, we confirmed the genetic 
relationship among the 18 traits. Elements of the distance matrix are calculated from the 

elements of the genetic correlation matrix as 1 − |𝑟𝑔| where 𝑟𝑔 is the genetic correlation 

between any two traits. To visualize the distance matrices, we used Principal Coordinate 
Analysis (PCoA) and Neighbor-Joining (NJ) tree. PCoA is performed using cmdscale 
function in R (R Core Team 2018) while NJ-tree is calculated using nj function 
implemented in the “ape” package (Paradis et al. 2004) in R (R Core Team 2018).  
Based on the results shown in Fig. 4 and SI Appendix, Fig. S1, we saw a good 
agreement between the PCoA and NJ plots and our pre-defined trait groups of 
Vegetative/Flowering Time, Environmental Response and Reproductive. 
  

A clear result of the genetic correlation estimates is that GE and CUPR are 
identical in teosinte, whereas GE and TGPP are nearly identical in maize. Further 
analysis of the genetic correlation matrices and genetic covariance matrices (𝑮-matrices) 
is hindered by the singularity (or near-singularity) in the matrices caused by these 
identical or nearly identical traits. Therefore, for subsequent tests on the eigenstructure 

of genetic correlation matrices and 𝑮-matrices, we dropped CUPR and TGPP from the 
matrices and analyzed the resulting sub-matrices of 16 traits. 

We tested for conservation in genetic correlations by comparing teosinte and 
maize landrace genetic correlation matrices using Mantel test (Mantel, 1967). The 
Mantel test calculates correlation between the elements of two matrices and tests if the 
correlation is significantly different from zero. Therefore, significant Mantel test would 
suggest that two matrices are correlated and in our case, genetic correlations are 
preserved during domestication. Aside from testing the overall conservation in genetic 
correlations, we also applied Mantel test on genetic correlations within each trait group. 
These additional tests allow us to compare whether the overall genetic correlations or 
within trait group genetic correlations are better conserved. All Mantel tests are 
performed using mantel.test function with 10,000 permutations implemented in the 
package “ape” (Paradis et al. 2004) in R (R Core Team 2018).  
 Additionally, we also calculated the angle between the first two leading 
eigenvectors of the teosinte and maize landrace genetic correlation matrices as a 
supporting evidence for Mantel tests. The eigenvectors are identified using eigen 
function in R. The angle between eigenvectors measures the deviation between teosinte 
and maize landrace genetic correlations, i.e. the larger the angle, the less similar the 
genetic correlations are. Similar analysis was also repeated on the three submatrices 
based on trait groups.  

We compared the structure of 𝑮-matrices for teosinte and maize landrace using 
Mantel test (Mantel 1967), Flury hierarchy (Flury 1988), Random Skewers (Cheverud 

and Marroig 2007), Bayesian estimation (Ovaskainen et al. 2008), and multivariate 𝑄𝑆𝑇 −
𝐹𝑆𝑇 tests (Martin et al. 2008). For the first four tests, we used 𝑮-matrices from teosinte 

(𝑮𝑻) and maize landrace (𝑮𝑴) that were previously calculated from our multivariate 
analysis. For the multivariate 𝑄𝑆𝑇 − 𝐹𝑆𝑇 test, we used 𝑮-matrices from between-
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population (𝑮𝑩) and within-population (𝑮𝑾). Formally, 𝑮𝑩 and 𝑮𝑾 ought to be calculated 
by combining the teosinte and maize landrace raw datasets and running the multivariate 
analysis again. We opted for a more time-efficient method by estimating the elements of 

𝑮𝑩 as 𝐺𝐵,𝑖𝑗 = 1

2
(𝑇̅𝑖−𝑀̅𝑖)(𝑇̅𝑗−𝑀̅𝑗) where 𝑇̅𝑖/𝑗 and 𝑀̅𝑖/𝑗 are teosinte and maize landrace 

outcross means for ith/jth trait estimated from the univariate analysis. We also estimated 
the elements of 𝑮𝑾 as 𝐺𝑊,𝑖𝑗 = 1

2
(𝐺𝑇,𝑖𝑗+𝐺𝑀,𝑖𝑗). Both 𝑮𝑩 and 𝑮𝑾 were bent to be positive 

definite (PD) using nearPD function implemented in the “Matrix” package (Bates and 
Maechler 2017) in R (R Core Team 2018). In addition, we also estimated the 𝐹𝑆𝑇 for 
teosinte and maize landrace using varcomp.glob function implemented in the “hierfstat” 
package (Goudet 2004) in R (R Core Team 2018). A total of 21,157 imputed GBS SNPs 
that are presumably neutral and shared between teosinte and maize landrace were used 
in estimating neutral 𝐹𝑆𝑇. 

Mantel test for the two 𝑮-matrices was performed similarly to the previous Mantel 
test for genetic correlation matrices, with the exception that we did not perform Mantel 
test for each trait group within the 𝑮-matrices. 

Flury hierarchy tests for similarity between two matrices by comparing their 
eigenvectors and eigenvalues in a hierarchical way (Flury, 1988). The test is provided in 
the Common Principal Component (CPC) software (Phillips and Arnold, 1999). The CPC 
software allows us to test multiple hypotheses between different models like unrelated 
structure, partial common principal components, common principal components, matrix 
proportionality and matrix equality (Phillips and Arnold, 1999). Using the CPC software, 
we tested the 𝑮-matrices from teosinte and maize landrace using jump-up approach. 
This approach tests between the model of unrelated structure and other higher models 
in the hierarchy. The null hypothesis can be rejected based on the first significant test (P 
< 0.05) starting from the bottom of the hierarchy and any subsequent significant test is 
ignored. Since the CPC software uses maximum likelihood method for matrix 
comparison, both teosinte and maize landrace 𝑮-matrices are required to be strictly PD. 

To achieve that, we bent our 𝑮-matrices to be PD using nearPD function implemented in 
the “Matrix” package (Bates and Maechler 2017) in R (R Core Team 2018). 

 Random Skewers tests for similarity between two matrices (𝑮) by comparing the 
predicted evolutionary responses (𝑹) calculated using the multivariate breeder’s 

equation of 𝑹 = 𝑮𝜷 (Cheverud and Marroig 2007). Under the null hypothesis, correlation 
between teosinte and maize landrace 𝑹 is no different from the correlation between 𝑹 

calculated from two random 𝑮-matrices. As for the alternative hypothesis, correlation 
between teosinte and maize landrace 𝑹 is higher than the null correlation. The 𝑹 for 

teosinte, maize landrace and null distribution are generated by multiplying each 𝑮 to n-
randomly simulated β. The two random 𝑮-matrices for the null distribution are made to 

have the same size as teosinte and maize landrace 𝑮-matrices and the diagonal 
(variance) components are bound by the smallest and largest diagonal (variance) 
components of teosinte and maize landrace 𝑮-matrices. Random Skewers is performed 
using skewers function implemented in the phytools package (Revell 2012) in R (R Core 
Team 2018). We applied 1000 simulations and obtained the correlation of those 

resulting 𝑹, where the test significance (P < 0.05) suggests that the 𝑹 under comparison 
are more correlated than 𝑹 generated by random chance and thus the two 𝑮-matrices 

are similar. In addition, we also sub-divided the 𝑮-matrices into trait groups and tested 
each group with Random Skewers to identify group-specific difference in 𝑹. 

We also implemented a Bayesian method to compare the teosinte and maize 
genetic covariance matrices developed by Ovaskainen et al. (2008). This method takes 
random samples of vectors from a multivariate normal distribution described by the 

teosinte 𝑮-matrix and computes the probability of the vector arising from the teosinte 𝑮-
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matrix (pTT) and the probability of the vector arising from the maize 𝑮-matrix (pTM). The 

ratio 𝑞 =  
𝑝𝑇𝑀

𝑝𝑇𝑀+ 𝑝𝑇𝑇
 is a measure of the differentiation of the two matrices, ranging from 0 

for completely distinct matrices to 0.5 for identical matrices. A posterior mean value of q 
was estimated by sampling 1000 random vectors from the teosinte 𝑮-matrix and 
averaging over the resulting 1000 individual estimates of q. We used the formula for 
estimating q from Walsh and Lynch (2018), Appendix 3, with the following correction: 

 

𝑞̂(𝑓, 𝑔) =
1

𝑛

̂
∑

|𝑮2|−
1
2exp (−𝑥𝑖

𝑇𝑮2
−1 𝑥𝑖 2⁄ )

|𝑮2|−
1
2 exp(−𝑥𝑖

𝑇𝑮2
−1 𝑥𝑖 2⁄ ) + |𝑮1|−

1
2exp (−𝑥𝑖

𝑇𝑮1
−1 𝑥𝑖 2⁄ )

𝑛

𝑖=1

 

 
The converse probabilities were also tested (probability of a vector sampled from 

the maize G matrix arising from either the maize or teosinte 𝑮-matrix), with nearly 
identical results. The tests were also performed for sub-matrices of traits within each of 
the three trait groups. 

 Multivariate 𝑄𝑆𝑇 − 𝐹𝑆𝑇 test, similar to its original univariate counterpart (Spitze, 
1993), assesses for neutral evolution by comparing genetic differentiation of two or more 
populations at multiple-trait level (𝑄𝑆𝑇) to genetic differentiation at neutral loci (𝐹𝑆𝑇). 

Under the null hypothesis, any difference in the 𝑮-matrices from different populations is 
solely attributable to neutral drift and thus 𝑄𝑆𝑇 = 𝐹𝑆𝑇 (Martin et al. 2008; Leinonen et al. 
2013). Using a dual test developed by Martin et al. (2008), we can perform multivariate 
𝑄𝑆𝑇 − 𝐹𝑆𝑇 test on our teosinte and maize landrace populations. The dual test is provided 
as R scripts in Martin et al. (2008) and the scripts were designed to use raw dataset from 
a breeding design as the input. Since we already had the necessary components 
calculated from our multivariate analyses, we instead modified the scripts to 
accommodate our dataset. For the first part of the test, the original null hypothesis of the 
𝑄𝑆𝑇 − 𝐹𝑆𝑇 test can be re-expressed as 𝑮𝑩 = 2𝐹𝑆𝑇 (1 − 𝐹𝑆𝑇)𝑮𝑾⁄ = 𝜌𝑆𝑇𝑮𝑾 (Martin et al. 

2008). Neutrality is rejected if the observed coefficient 𝜌𝑆𝑇,𝐺 is significantly greater than 

the expected neutral coefficient 𝜌𝑆𝑇,𝑁, in which the significance is determined by non-

overlapping 95% confidence intervals (CIs) for 𝜌𝑆𝑇,𝐺 and 𝜌𝑆𝑇,𝑁. CI for 𝜌𝑆𝑇,𝐺 is calculated 

using the R scripts (Martin et al. 2008) through maximum likelihood method. CI for 𝜌𝑆𝑇,𝑁 

is calculated by bootstrapping the neutral 𝐹𝑆𝑇 values for 10,000 times and deriving the 
lower and upper bound of the interval from 𝐹𝑆𝑇 CI using 𝜌𝑆𝑇,𝑁 = 2𝐹𝑆𝑇 (1 − 𝐹𝑆𝑇)⁄  (Whitlock 

and Guillaume 2009). For the second part of the test, the estimates of mean square 

matrices between (𝑴𝑺𝑩) and among (𝑴𝑺𝑾) populations are compared using likelihood 
ratio test and expected to be proportional under the null hypothesis (Martin et al. 2008). 
To test for this, we again modified the R scripts to back-calculate the mean squares 
using 𝑴𝑺𝑩 = 𝑛𝑓𝑮𝑩 + 𝑮𝑾 and 𝑴𝑺𝑾 = 𝑮𝑾, where 𝑛𝑓 is the adjusted sample size to 

account for unbalanced sample sizes between populations, as provided in equation (9) 
in Martin et al. (2008). 

 Univariate 𝑄𝑆𝑇 − 𝐹𝑆𝑇 test assesses for neutral evolution of individual traits by 
comparing genetic differentiation of two or more populations at single-trait level (𝑄𝑆𝑇) to 
genetic differentiation at neutral loci (𝐹𝑆𝑇). Under the null hypothesis, any difference in 
the trait additive genetic variance from different populations is solely attributable to 
neutral drift and thus 𝑄𝑆𝑇 = 𝐹𝑆𝑇 or 𝑄𝑆𝑇 − 𝐹𝑆𝑇 = 0 (Leinonen et al. 2013). Using an 
improved parametric bootstrapping approach developed by Whitlock and Guillaume 
(2009), we can perform univariate 𝑄𝑆𝑇 − 𝐹𝑆𝑇 test on our teosinte and maize landrace 
populations. We modified the R scripts for the test from Whitlock and Guillaume (2009) 
to fit our test inputs as we already had the necessary components calculated from our 
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univariate analyses. We calculated the 𝑄𝑆𝑇 for each trait as 𝑄̂𝑆𝑇 = 𝑉𝐵(𝑉𝐵 + 2𝑉𝑊) where 
𝑉𝐵 is the between-population additive genetic variance while 𝑉𝑊 is the within-population 

additive genetic variance. For every ith trait, we calculated 𝑉𝐵 as 𝑉𝐵,𝑖 = 1

2
(𝑇̅𝑖−𝑀̅𝑖)2 where 𝑇̅𝑖 

and 𝑀̅𝑖 are teosinte and maize landrace outcross means respectively. We also 
calculated 𝑉𝑊 as 𝑉𝑊,𝑖 = 1

2
(𝑉𝑇,𝑖+𝑉𝑀,𝑖) where 𝑉𝑇,𝑖 and 𝑉𝑀,𝑖 are teosinte and maize landrace 

additive genetic variances respectively. 𝐹̅𝑆𝑇 is derived by averaging previously calculated 
𝐹𝑆𝑇 across all GBS loci. The null distribution of 𝑄𝑆𝑇 − 𝐹𝑆𝑇 is constructed by simulating 
each component in 𝑉𝐵0 (𝑉𝐵0 + 2𝑉𝑊)⁄ − 𝐹𝑆𝑇 10,000 times (Whitlock and Guillaume 2009). 
For each trait null distribution, 𝑉𝑊 is taken as is, while 𝑉𝐵0 is estimated from 𝑉𝑊 and 𝐹𝑆𝑇 

by assuming neutrality. Under neutrality, 𝑄𝑆𝑇 = 𝐹𝑆𝑇 and thus 𝑉𝐵0 (𝑉𝐵0 + 2𝑉𝑊)⁄ = 𝐹𝑆𝑇. By 

rearranging the equation, we get 𝑉𝐵0 ≅
2𝐹̅𝑆𝑇𝑉𝑊

1−𝐹̅𝑆𝑇
. Within each simulation, 𝑉𝐵0 and 𝑉𝑊 can 

be sampled from 𝑉𝐵0
𝜒2(𝑑𝑓𝐵)

𝑑𝑓𝐵
 and 𝑉𝑊

𝜒2(𝑑𝑓𝑊)

𝑑𝑓𝑊
 respectively by assuming Lewontin-Krakauer 

distribution for 𝑉𝐵0 and 𝑉𝑊 (Whitlock 2008). 𝐹𝑆𝑇, on the other hand, can be obtained by 

sampling with replacement from the previously calculated 𝐹𝑆𝑇 at multiple GBS loci. 

Finally, we computed the two-tailed P-value for each 𝑄̂𝑆𝑇 − 𝐹̅𝑆𝑇 from the null distribution. 
For the analyses in the following section, we relied heavily on matrix algebra and 

hence, some useful terminologies are provided here:  
 
Given two vectors of the same size, 𝒂 and 𝒃, 

1. 𝒂̂ is the unit vector of 𝒂 as given by 𝒂̂ =
𝒂

|𝒂|
 

2. 𝒂 ∙ 𝒃 is the dot product of 𝒂 and 𝒃, which is the sum of product of the pairwise 

elements 

3. |𝒂| is the length of 𝒂, which is the square root of the sum of squares of the elements 

 
 We compared the genetic lines of least resistance, 𝒈𝒎𝒂𝒙 (Schluter 1996), to the 
actual domestication trajectory 𝒁. 𝒈𝒎𝒂𝒙 is the eigenvector of 𝑮 that accounts for the most 

variation in 𝑮 while 𝒁 is a vector of difference in trait means between teosinte and maize 
landrace. Since the eigenvectors sensitive to the magnitude of each trait, we opted to 

standardized the 𝑮-matrix and 𝒁 such that each trait has a genetic standard deviation or 
variance of 1. We first calculated 𝒈𝒎𝒂𝒙,𝑻 from the teosinte 𝑮-matrix and compared the 

angle between 𝒁 and 𝒈𝒎𝒂𝒙,𝑻 using the following formula: 

  

𝜽 = 𝐜𝐨𝐬−𝟏 𝒁̂ ∙ 𝒈̂𝒎𝒂𝒙 
 

The angle 𝜽 ranges from 0˚ to 90˚ where larger angle means larger deviation in the 
direction between 𝒁 and 𝒈𝒎𝒂𝒙, or equivalently, stronger evolutionary constraint. 

Additionally, we also repeated the same process using the 𝒈𝒎𝒂𝒙,𝑴 computed from the 

maize landrace 𝑮-matrix. The angle 𝜽 obtained from teosinte and maize landrace were 
compared.  

We inferred the co-evolutionary history of multiple traits by using the multivariate 

version of the breeder’s equation, as given by 𝑹 = 𝑮𝜷. For 𝑛 traits, 𝑹 is a vector of 
responses (𝑅1, 𝑅2, … , 𝑅𝑛), 𝑮 is an 𝑛 × 𝑛 additive genetic variance-covariance matrix, and 
𝜷 is a vector of selection gradients (𝛽1, 𝛽2, … , 𝛽𝑛). 𝛽𝑖 elements are the partial linear 

regression coefficients of relative fitness on individual trait, where 𝛽𝑖 = 0 represents no 
fitness advantage for any given trait value, 𝛽𝑖 < 0 represents stronger fitness advantage 

for lower trait value and 𝛽𝑖 > 0 represents stronger fitness advantage for higher trait 
value. Unlike its univariate counterpart, the change in 𝑮 in every generation is likely 
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complicated and cannot be easily modelled. Instead, we applied a “what-if” approach on 
the multivariate breeder’s equation. 

 We first simulated 18 unique 𝜷 where each 𝜷𝒊 had only a single element with a 
value of one and the remaining elements with a value of zero. We then multiplied 𝑮 by 

each 𝜷𝒊 to obtain 𝑹𝒊, which is the hypothetical overall response given selection on a 
single trait 𝑖. Under the assumption that maize domestication is largely driven by 

selection on a single trait, we compared each 𝑹𝒊 to the actual domestication trajectory 𝒁. 
Again, the 𝑮-matrix and 𝒁 are standardized such that each trait has a genetic standard 

deviation or variance of 1. The comparison between 𝑹𝒊 and 𝒁 is measured by the angle 

between the two vectors (𝜽𝒁) and also the scalar projection of 𝑹𝒊 on 𝒁 (|𝒑𝒓𝒐𝒋𝒁𝑹𝒊|). 𝜽𝒁 

measures the deviation in the direction between 𝑹𝒊 and 𝒁 and it ranges from 0˚ to 180˚ 

where larger angle means larger deviation. |𝒑𝒓𝒐𝒋𝒁𝑹𝒊| measures the amount of 

evolutionary gain contributed by 𝑹𝒊 towards 𝒁 and so larger value means larger 
evolutionary gain. 
 
The angles 𝜽𝒁 are calculated as following: 
 

𝜽𝒁 = 𝐜𝐨𝐬−𝟏 𝑹̂𝒊 ∙ 𝒁̂ 
 

The scalar projection |𝒑𝒓𝒐𝒋𝒁𝑹𝒊| is calculated as following: 

 

|𝒑𝒓𝒐𝒋𝒁𝑹𝒊| = 𝑹𝒊 ∙ 𝒁̂ 
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R Scripts 
#########################################################################################

######## 

## R scripts used in this manuscript (roughly in the same order as presented in the 

Results). ## 

#########################################################################################

######## 

library(Matrix) 

library(reshape2) 

library(ggplot2) 

library(ggrepel) 

library(ape) 

library(phytools) 

library(hierfstat) 

library(mvtnorm) 

library(gridExtra) 

setwd("./") 

 

### Read in genetic correlation (lower left triangle is teosinte; upper right triangle is 

maize landrace) 

corG <- read.delim("corG.txt", header=T, as.is=T) 

corG <- corG[,-1] 

rownames(corG) <- colnames(corG) 

corG <- as.matrix(corG) 

 

### Read in the standard errors for genetic correlation (lower left triangle is teosinte; 

upper right triangle is maize landrace) 

corG.se <- read.delim("corG_se.txt", header=T, as.is=T) 

corG.se <- corG.se[,-1] 

rownames(corG.se) <- colnames(corG.se) 

corG.se <- as.matrix(corG.se) 

 

### Isolate teosinte genetic correlations, mirror over to the lower/upper triangle and 

fills in diagonals with 1. 

rT <- corG 

rT[upper.tri(rT)] <- NA 

rT.temp <- rT 

rT <- t(rT.temp) 

rT[lower.tri(rT)] <- rT.temp[lower.tri(rT.temp)] 

diag(rT) <- 1 

 

### Isolate maize landrace genetic correlations, mirror over to the lower/upper triangle 

and fills in diagonals with 1. 

rM <- corG 

rM[lower.tri(rM)] <- NA 

rM.temp <- t(rM) 

rM[lower.tri(rM)] <- rM.temp[lower.tri(rM.temp)] 

diag(rM) <- 1 

 

### Read in the variance components 

varcomp <- read.delim("varcomp.txt", header=T, as.is=T) 

 

### Construct the genetic variance-covariance (G) matrix for teosinte and maize landrace 

stdT <- sqrt(varcomp[1:18,4]) 

stdM <- sqrt(varcomp[19:36,4]) 

 

GT <- rT 

GM <- rM 

 

for(i in 1:length(stdT)){ 

GT[i,] <- GT[i,]*stdT[i] 

GT[,i] <- GT[,i]*stdT[i] 

GM[i,] <- GM[i,]*stdM[i] 

GM[,i] <- GM[,i]*stdM[i] 

} 

 

### Calculate the difference in trait means between teosinte and maize landrace 

Z <- varcomp[19:36,9] - varcomp[1:18,9] 

names(Z) <- rownames(GT) 

Z.stdT <- Z/stdT 
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Z.stdM <- Z/stdM 

 

### Subset the teosinte genetic correlations matrix into vegetative (veg), environmental 

response (enr) and reproductive (rep).  

vegT <- rT[1:5,1:5] 

enrT <- rT[6:10,6:10] 

repT <- rT[11:18,11:18] 

 

### Subset the maize landrace genetic correlations matrix into vegetative (veg), 

environmental response (enr) and reproductive (rep). 

vegM <- rM[1:5,1:5] 

enrM <- rM[6:10,6:10] 

repM <- rM[11:18,11:18] 

 

### Subset the teosinte genetic covariances matrix into vegetative (veg), environmental 

response (enr) and reproductive (rep).  

vegGT <- GT[1:5,1:5] 

enrGT <- GT[6:10,6:10] 

repGT <- GT[11:18,11:18] 

 

### Subset the maize landrace genetic covariances matrix into vegetative (veg), 

environmental response (enr) and reproductive (rep). 

vegGM <- GM[1:5,1:5] 

enrGM <- GM[6:10,6:10] 

repGM <- GM[11:18,11:18] 

 

### Create new datasets to exclude CUPR and TGPP for some of the multivariate analyses. 

temp.re <- c("CUPR","TGPP") 

varcomp.re <- varcomp[!(varcomp[,1]%in%temp.re),]; rownames(varcomp.re) <- NULL 

 

### Genetic correlation matrices for 16 traits (CUPR and TGPP excluded). 

rT.re <- rT[!(rownames(rT)%in%temp.re), !(colnames(rT)%in%temp.re)] 

rM.re <- rM[!(rownames(rM)%in%temp.re), !(colnames(rM)%in%temp.re)] 

 

### Genetic covariance matrices for 16 traits (CUPR and TGPP excluded). 

GT.re <- GT[!(rownames(GT)%in%temp.re), !(colnames(GT)%in%temp.re)] 

GM.re <- GM[!(rownames(GM)%in%temp.re), !(colnames(GM)%in%temp.re)] 

 

### Difference in trait means between teosinte and maize landrace for 16 traits (CUPR and 

TGPP excluded). 

Z.re <- Z[!(names(Z)%in%temp.re)] 

Z.stdT.re <- Z.stdT[!(names(Z.stdT)%in%temp.re)] 

Z.stdM.re <- Z.stdM[!(names(Z.stdM)%in%temp.re)] 

 

### Genetic correlation sub-matrices for 6 Reproductive traits (CUPR and TGPP excluded). 

repT.re <- repT[!(rownames(repT)%in%temp.re), !(colnames(repT)%in%temp.re)] 

repM.re <- repM[!(rownames(repM)%in%temp.re), !(colnames(repM)%in%temp.re)] 

 

### Genetic covariance sub-matrices for 6 Reproductive traits (CUPR and TGPP excluded). 

repGT.re <- repGT[!(rownames(repGT)%in%temp.re), !(colnames(repGT)%in%temp.re)] 

repGM.re <- repGM[!(rownames(repGM)%in%temp.re), !(colnames(repGM)%in%temp.re)] 

 

### Bent the genetic covariance matrices for 16 traits (CUPR and TGPP excluded) to be 

Positive Definite. 

GT.re.PD <- as.matrix(nearPD(GT.re, corr=F)[[1]]) 

GM.re.PD <- as.matrix(nearPD(GM.re, corr=F)[[1]]) 

 

### Bent the genetic covariance sub-matrices for 5 Vegetative traits to be Positive 

Definite. 

vegGT.PD <- as.matrix(nearPD(vegGT, corr=F)[[1]]) 

vegGM.PD <- as.matrix(nearPD(vegGM, corr=F)[[1]]) 

 

### Bent the genetic covariance sub-matrices for 5 Environmental Response traits to be 

Positive Definite. 

enrGT.PD <- as.matrix(nearPD(enrGT, corr=F)[[1]]) 

enrGM.PD <- as.matrix(nearPD(enrGM, corr=F)[[1]]) 

 

### Bent the genetic covariance sub-matrices for 6 Reproductive traits (CUPR and TGPP 

excluded) to be Positive Definite. 

repGT.PD <- as.matrix(nearPD(repGT.re, corr=F)[[1]]) 

repGM.PD <- as.matrix(nearPD(repGM.re, corr=F)[[1]]) 
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############################################### 

### Custom functions used in this R script. ### 

############################################### 

 

### The following function is used in PART 5. 

### Function to compare the first two leading eigenvectors of two matrices by measuring 

the angles between them. 

### Also outputs the percent variance explained by the two leading eigenvectors for each 

matrix. 

theta.cal <- function(mat1, mat2){ 

mat1vec1 <- eigen(mat1)[[2]][,1] 

mat1vec2 <- eigen(mat1)[[2]][,2] 

mat2vec1 <- eigen(mat2)[[2]][,1] 

mat2vec2 <- eigen(mat2)[[2]][,2] 

out.theta.pve <- data.frame(label=c("theta","pve.mat1","pve.mat2"), eigenvector1=NA, 

eigenvector2=NA) 

out.theta.pve[1,2] <- if (acos(mat1vec1%*%mat2vec1)*180/pi < 90) 

{acos(mat1vec1%*%mat2vec1)*180/pi} else {180 - acos(mat1vec1%*%mat2vec1)*180/pi} 

out.theta.pve[1,3] <- if (acos(mat1vec2%*%mat2vec2)*180/pi < 90) 

{acos(mat1vec2%*%mat2vec2)*180/pi} else {180 - acos(mat1vec2%*%mat2vec2)*180/pi} 

out.theta.pve[2,2] <- 100*eigen(mat1)[[1]][1]/sum(eigen(mat1)[[1]][eigen(mat1)[[1]]>0]) 

out.theta.pve[2,3] <- 100*eigen(mat1)[[1]][2]/sum(eigen(mat1)[[1]][eigen(mat1)[[1]]>0]) 

out.theta.pve[3,2] <- 100*eigen(mat2)[[1]][1]/sum(eigen(mat2)[[1]][eigen(mat2)[[1]]>0]) 

out.theta.pve[3,3] <- 100*eigen(mat2)[[1]][2]/sum(eigen(mat2)[[1]][eigen(mat2)[[1]]>0]) 

return(print(out.theta.pve, row.names=F)) 

} 

 

### The following function is used in PART 6. 

### Function to compute 'q' from Ovaskainen's test for comparing two G-matrices. 

### Originated from Ovaskainen et al. (2008) 

### Modified by Walsh & Lynch (2018) Appendix 3, Example A3.1. 

### Corrected by Jim Holland. 

### 'q' is the probability that a vector of values sampled from one MVN distribution 

could be closer to another MVN distribution. 

### If two G matrices are identical, then q = 0.5. 

### If two G matrices are completely unrelated, then q = 0. 

### Nsamp refers to the number of samples drawn from a MVN distribution that is based on 

G1. 

q.Ova <- function(G1, G2, Nsamp){ 

X1 <- rmvnorm(n=Nsamp, sigma=G1, method="chol") 

p1 <- apply(X1, MARGIN=1, FUN=dmvnorm, sigma=G1) 

p2 <- apply(X1, MARGIN=1, FUN=dmvnorm, sigma=G2) 

q.out <- p2/(p1 + p2) 

q.summary <- c(mean(q.out), sd(q.out)/sqrt(Nsamp)) 

names(q.summary) <- c("q.mean", "q.se") 

return(q.summary) 

} 

 

### The following function is used in PART 7. 

### Function to compare the Blows' subspace of each teosinte and maize landrace 

standardized G-matrices to the response Z. 

blows.cal2 <- function(mat1, mat2, z1, z2, k, n){ 

  mat1val <- eigen(mat1)[[1]] 

  mat2val <- eigen(mat2)[[1]] 

  pve1 <- sum(mat1val[1:k])/sum(mat1val[mat1val>0])*100 

  pve2 <- sum(mat2val[1:k])/sum(mat2val[mat2val>0])*100 

  A1 <- eigen(mat1)[[2]][,1:k] 

  A2 <- eigen(mat2)[[2]][,1:k] 

  beta1 <- c(solve(mat1)%*%(z1/n)) 

  beta2 <- c(solve(mat2)%*%(z2/n)) 

  p1 <- c(A1%*%solve(t(A1)%*%A1)%*%t(A1)%*%beta1) 

  p2 <- c(A2%*%solve(t(A2)%*%A2)%*%t(A2)%*%beta2) 

  theta.beta1 <- acos(p1%*%beta1/(sqrt(sum(p1^2))*sqrt(sum(beta1^2))))*180/pi 

  theta.beta2 <- acos(p2%*%beta2/(sqrt(sum(p2^2))*sqrt(sum(beta2^2))))*180/pi 

  #project RESPONSE into the subspace 

  p1.r <- c(A1%*%solve(t(A1)%*%A1)%*%t(A1)%*%z1) 

  p2.r <- c(A2%*%solve(t(A2)%*%A2)%*%t(A2)%*%z2) 

  #compute angle between response and its projection into G subspace 

  theta.r1 <- acos(p1.r%*%z1/(sqrt(sum(p1.r^2))*sqrt(sum(z1^2))))*180/pi 
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  theta.r2 <- acos(p2.r%*%z1/(sqrt(sum(p2.r^2))*sqrt(sum(z2^2))))*180/pi 

  #compute the angle between response vector and each eigenvector of G 

  theta.r1.eig = acos(abs(t(z1)%*%A1/sqrt(sum(z1^2))))*180/pi 

  theta.r2.eig = acos(abs(t(z2)%*%A2/sqrt(sum(z2^2))))*180/pi  #compute the angle between 

beta and each eigenvector of G 

  theta.b1.eig = acos(abs(t(beta1)%*%A1/sqrt(sum(beta1^2))))*180/pi 

  theta.b2.eig = acos(abs(t(beta2)%*%A2/sqrt(sum(beta2^2))))*180/pi 

   

  return(list(pve.mat1=pve1, pve.mat2=pve2, theta.beta1=c(theta.beta1), 

theta.beta2=c(theta.beta2), theta.r1 = c(theta.r1), 

              theta.r2 = c(theta.r2), theta.r1.eig = theta.r1.eig, theta.r2.eig = 

theta.r2.eig, theta.b1.eig = theta.b1.eig, theta.b2.eig = theta.b2.eig) ) 

} 

 

#################################################################################### 

### PART 1. Plot the proportions of phenotypic variance: additive/dominance/gxe. ### 

### PART 2. Plot the proportions of genetic variance: additive/dominance.        ### 

#################################################################################### 

 

### Prepare the data for plotting the proportions of phenotypic variances due to 

additive/dominance/genetic-by-environment. 

pheno.var <- varcomp[,c(1,2,3,10,11,12)] 

names(pheno.var)[4:6] <- c("Va","Vd","Vge") 

pheno.var <- melt(pheno.var, id.vars=c("Trait","Pop","Group")) 

 

pheno.var$Trait <- as.factor(pheno.var$Trait) 

pheno.var$Trait <- 

factor(pheno.var$Trait,c("DTA","DTS","PLHT","LFLN","LFWD","TILN","PROL","LBNN","LBLN","LB

IL","EL","CUPR","ED","GE","EILN","TGPP","TGWP","GW")) 

 

pheno.var$Pop <- as.factor(pheno.var$Pop) 

pheno.var$Pop <- factor(pheno.var$Pop, c("Teosinte", "Maize Landrace")) 

 

pheno.var$Group <- as.factor(pheno.var$Group) 

pheno.var$Group <- factor(pheno.var$Group, c("Vegetative/Flowering Time","Environmental 

Response","Reproductive")) 

 

colnames(pheno.var)[4] <- "Variance" 

 

### Prepare the data for plotting the proportions of genetic variances due to 

additive/dominance. 

gen.var <- varcomp[,c(1:5)] 

gen.var[,4] <- gen.var[,4]/(varcomp[,4] + varcomp[,5]) 

gen.var[,5] <- gen.var[,5]/(varcomp[,4] + varcomp[,5]) 

names(gen.var)[4:5] <- c("Va","Vd") 

 

gen.var <- melt(gen.var, id.vars=c("Trait","Pop","Group")) 

 

gen.var$Trait <- as.factor(gen.var$Trait) 

gen.var$Trait <- 

factor(gen.var$Trait,c("DTA","DTS","PLHT","LFLN","LFWD","TILN","PROL","LBNN","LBLN","LBIL

","EL","CUPR","ED","GE","EILN","TGPP","TGWP","GW")) 

 

gen.var$Pop <- as.factor(gen.var$Pop) 

gen.var$Pop <- factor(gen.var$Pop, c("Teosinte", "Maize Landrace")) 

 

gen.var$Group <- as.factor(gen.var$Group) 

gen.var$Group <- factor(gen.var$Group, c("Vegetative/Flowering Time","Environmental 

Response","Reproductive")) 

 

colnames(gen.var)[4] <- "Variance" 

 

#### Construct the plot. 

pheno.var.plot <- ggplot(data=pheno.var, aes(x=Trait, y=value, fill=Variance)) +  

geom_bar(stat="identity") +  

scale_y_continuous(limits=c(0,1), breaks=c(0,0.25,0.50,0.75,1.00)) +  

facet_grid(Pop~Group, scales="free_x", space="free_x", labeller=labeller(Pop=label_value, 

Group=label_value)) +  

theme(panel.grid=element_blank()) + 

theme(strip.text=element_text(size=8), axis.text.x=element_text(angle=0, size=6)) + 

theme(axis.title.x=element_text(size=10), axis.title.y=element_text(size=10)) + 
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ylab("Proportion of Phenotypic Variance") 

 

### Construct the plot. 

gen.var.plot <- ggplot(data=gen.var, aes(x=Trait, y=value, fill=Variance)) +  

geom_bar(stat="identity") + 

scale_y_continuous(limits=c(0,1), breaks=c(0,0.25,0.50,0.75,1.00)) +  

facet_grid(Pop~Group, scales="free_x", space="free_x", labeller=labeller(Pop=label_value, 

Group=label_value)) +  

theme(panel.grid=element_blank()) + 

theme(strip.text=element_text(size=8), axis.text.x=element_text(angle=0, size=6)) + 

theme(axis.title.x=element_text(size=10), axis.title.y=element_text(size=10)) + 

ylab("Proportion of Genetic Variance") 

 

tiff("Figures/Fig02.tif", height=7.64, width=7, units="in", compression="lzw", res=1200) 

grid.arrange(pheno.var.plot, gen.var.plot, layout_matrix=matrix(c(1,1,2),3,1)) 

dev.off() 

 

################################################################# 

### PART 3. Calculate the selection intensity for each trait. ### 

################################################################# 

 

### Set the number of generations of selection (assumption of 4500 or 9000 generations of 

selection). 

N1 <- 4500 

N2 <- 9000 

 

### Obtain the average change in additive genetic and phenotypic variance over N-

generations. 

deltaVa1 <- (varcomp[19:36,4]-varcomp[1:18,4])/N1 

deltaVp1 <- (varcomp[19:36,8]-varcomp[1:18,8])/N1 

deltaVa2 <- (varcomp[19:36,4]-varcomp[1:18,4])/N2 

deltaVp2 <- (varcomp[19:36,8]-varcomp[1:18,8])/N2 

 

### Create dataframes to store our results. 

tempdf <- data.frame(N=0:N1, h2_deltaVaVp_method=vector(length=N1+1), 

Va_deltaVaVp_method=vector(length=N1+1), Vp_deltaVaVp_method=vector(length=N1+1)) 

h2vp1 <- replicate(18, tempdf, simplify=F) 

tempdf <- data.frame(N=0:N2, h2_deltaVaVp_method=vector(length=N2+1), 

Va_deltaVaVp_method=vector(length=N2+1), Vp_deltaVaVp_method=vector(length=N2+1)) 

h2vp2 <- replicate(18, tempdf, simplify=F) 

 

### Note: Selection intensity, i=Z/(h2*sqrt(Vp)) 

### Obtain the starting values for h2*sqrt(Vp), Va and Vp. 

for(i in 1:18){ 

h2vp1[[i]][1,2] <- varcomp[i,10]*sqrt(varcomp[i,8]) 

h2vp1[[i]][1,3] <- varcomp[i,4] 

h2vp1[[i]][1,4] <- varcomp[i,8] 

 

h2vp2[[i]][1,2] <- varcomp[i,10]*sqrt(varcomp[i,8]) 

h2vp2[[i]][1,3] <- varcomp[i,4] 

h2vp2[[i]][1,4] <- varcomp[i,8] 

} 

 

### Calculate h2*sqrt(Vp), Va and Vp at every generation based on the average change in 

variances. 

for(i in 1:18){for(j in 2:(N1+1)){ 

h2vp1[[i]][j,2] <- (varcomp[i,4] + h2vp1[[i]][j,1]*deltaVa1[i])/sqrt(varcomp[i,8] + 

h2vp1[[i]][j,1]*deltaVp1[i]) 

h2vp1[[i]][j,3] <- varcomp[i,4] + h2vp1[[i]][j,1]*deltaVa1[i] 

h2vp1[[i]][j,4] <- varcomp[i,8] + h2vp1[[i]][j,1]*deltaVp1[i] 

}} 

 

for(i in 1:18){for(j in 2:(N2+1)){ 

h2vp2[[i]][j,2] <- (varcomp[i,4] + h2vp2[[i]][j,1]*deltaVa2[i])/sqrt(varcomp[i,8] + 

h2vp2[[i]][j,1]*deltaVp2[i]) 

h2vp2[[i]][j,3] <- varcomp[i,4] + h2vp2[[i]][j,1]*deltaVa2[i] 

h2vp2[[i]][j,4] <- varcomp[i,8] + h2vp2[[i]][j,1]*deltaVp2[i] 

}} 

 

### Create vectors to store the selection intensities. 

i1 <- vector(length=18) 
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i2 <- vector(length=18) 

 

### Calculate the selection intensities. 

for(i in 1:18){ 

i1[i] <- Z[i]/sum(h2vp1[[i]][1:N1,2]) 

i2[i] <- Z[i]/sum(h2vp2[[i]][1:N2,2]) 

} 

 

### Combine the selection intensities for two different Ns. 

intensity <- data.frame(Trait=varcomp[1:18,1], intensity_N4500=i1, intensity_N9000=i2) 

 

### Obtain selection intensities from wild species (Kingsolver et al. 2001, PubMed ID: 

18707288, https://datadryad.org/resource/doi:10.5061/dryad.166/1) 

wild <- read.delim("selection_intensity_wild.txt", header=T, as.is=T) 

 

### Prepare the data for plotting our selection intensities against selection intensities 

in wild species. 

wild <- wild[!(wild[,1]==0),] 

intensity$temp.y <- vector(length=18) 

for(i in 1:18){intensity[i,4] <- 0.6/18*(19-i)+0.2} 

intensity$group <- c(rep("Vegetative/Flowering Time", 5), rep("Environmental Response", 

5), rep("Reproductive", 8)) 

intensity$group <- as.factor(intensity$group) 

intensity$group <- factor(intensity$group, c("Environmental 

Response","Vegetative/Flowering Time","Reproductive")) 

 

### Construct the selection intensity plot. 

tiff("Figures/selection_intensity.tiff", width=5.25, height=3, units="in", res=1200, 

compression="lzw") 

ggplot() +  

geom_density(data=wild, aes(x=log10(Intensity)), colour="#7C26CB", fill="#7C26CB") +  

xlab(expression(log[10]*(Selection ~ Intensity))) + 

geom_segment(data=intensity, aes(x=log10(abs(intensity_N9000)), 

xend=log10(abs(intensity_N4500)), y=temp.y, yend=temp.y, colour=group), size=3, 

show.legend=F) + 

geom_text(data=intensity, aes(x=log10(abs(intensity_N9000)), y=temp.y, label=Trait), 

hjust=0, 

nudge_x=c(0.06,0.06,0.03,0.04,0.02,0.05,0.03,0.03,0.04,0.06,0.10,0.02,0.08,0.08,0.05,0.03

,0.02,0.08), size=2) + 

theme(panel.grid=element_blank(), axis.title=element_text(size=8), 

axis.text=element_text(size=6)) 

dev.off() 

 

### Prepare the data for plotting fold changes in trait means to accompany the selection 

intensity plot. 

fc.trait <- data.frame(trait=varcomp[1:18,1], group=varcomp[1:18,3], 

fc=log2(varcomp[19:36,9]/varcomp[1:18,9])) 

 

fc.trait$trait <- factor(fc.trait$trait, 

c("DTA","DTS","PLHT","LFLN","LFWD","TILN","PROL","LBNN","LBLN","LBIL","EL","CUPR","ED","G

E","EILN","TGPP","TGWP","GW")) 

fc.trait$group <- factor(fc.trait$group, c("Environmental Response","Vegetative/Flowering 

Time","Reproductive")) 

 

### Construct the plot of fold changes in trait means. 

tiff("Figures/traitmean_fc.tiff", width=7, height=1.5, units="in", res=1200, 

compression="lzw") 

ggplot() +  

geom_bar(data=fc.trait, stat="identity", aes(x=trait, y=fc, fill=group)) +  

xlab("Trait") + 

ylim(-6,6) + 

scale_fill_discrete(name = "Trait Group") + 

theme(panel.grid=element_blank(), axis.text=element_text(size=6), 

axis.title=element_text(size=7)) + 

theme(legend.text=element_text(size=7), legend.title=element_text(size=8)) + 

ylab(expression(Fold ~ Change ~ log[2]*(mu[M]/mu[T]))) 

dev.off() 

 

 

###################################################################################### 

### PART 4. Show the relationship among trait groups (Vegetative/Flowering Time,   ### 
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### Environmental Response, Reproductive) via Principal Coordinate Analysis (PCoA) ###  

### and Neighbor-Joining plots.                                                    ### 

###################################################################################### 

### Calculate the distance matrices for teosinte and maize landrace. 

dT <- 1-abs(rT) 

dT <- as.dist(dT, diag=F, upper=F) 

 

dM <- 1-abs(rM) 

dM <- as.dist(dM, diag=F, upper=F) 

 

### Calculate the principal coordinate (PCoA), also known as multidimensional scaling 

(MDS). 

PCoA.T <- cmdscale(dT) 

PCoA.M <- cmdscale(dM) 

 

### Prepare the data for plotting PCoA/MDS. 

PCoA.T <- data.frame(Classification=varcomp[1:18,3], x=PCoA.T[,1], y=PCoA.T[,2]) 

PCoA.T$Classification <- as.factor(PCoA.T$Classification) 

PCoA.T$Classification <- factor(PCoA.T$Classification,c("Environmental Response", 

"Vegetative/Flowering Time", "Reproductive")) 

 

PCoA.M <- data.frame(Classification=varcomp[19:36,3], x=PCoA.M[,1], y=PCoA.M[,2]) 

PCoA.M$Classification <- as.factor(PCoA.M$Classification) 

PCoA.M$Classification <- factor(PCoA.M$Classification,c("Environmental Response", 

"Vegetative/Flowering Time", "Reproductive")) 

 

### Make the PCoA plot for teosinte. 

tiff("Figures/PCoA_teosinte.tiff", width=4.8, height=3, units="in", res=1200, 

compression="lzw") 

set.seed(89) 

ggplot(data=PCoA.T) + 

geom_point(aes(x, y), size = 1, color = "red") + 

geom_label_repel( 

    aes(x, y, fill = Classification, label = rownames(PCoA.T)), 

    fontface = 'bold', color = 'white', 

    box.padding = unit(0.35, "lines"), 

    point.padding = unit(0.5, "lines"), 

    min.segment.length = unit(0, "lines"), 

    segment.color = 'grey50', 

    size=2, 

    ) + 

xlab("Dimension 1") + 

ylab("Dimension 2") + 

theme_classic(base_size = 16) +  

theme(legend.title = element_text(size=8, face="bold"), legend.text = 

element_text(size=6)) + 

theme(text = element_text(size=6)) 

dev.off() 

 

### Make the PCoA plot for maize landrace. 

tiff("Figures/PCoA_maize.tiff", width=4.8, height=3, units="in", res=1200, 

compression="lzw") 

set.seed(89) 

ggplot(data=PCoA.M) + 

geom_point(aes(x, y), size = 1, color = "red") + 

geom_label_repel( 

    aes(x, y, fill = Classification, label = rownames(PCoA.M)), 

    fontface = 'bold', color = 'white', 

    box.padding = unit(0.35, "lines"), 

    point.padding = unit(0.5, "lines"), 

    min.segment.length = unit(0, "lines"), 

    segment.color = 'grey50', 

    size=2, 

    ) + 

xlab("Dimension 1") + 

ylab("Dimension 2") + 

theme_classic(base_size = 16) + 

theme(legend.title = element_text(size=8, face="bold"), legend.text = 

element_text(size=6)) + 

theme(text = element_text(size=6)) 

dev.off() 
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### Make a neighbor-joining (NJ) tree for teosinte. 

njT <- list(nj(dT),varcomp[1:18,3]) 

njT[[2]] <- ifelse(njT[[2]]=="Environmental Response", "#F8766D", 

ifelse(njT[[2]]=="Reproductive","#5C99FF",ifelse(njT[[2]]=="Vegetative/Flowering 

Time","#00BA38",NA))) 

tiff("SFig/NJ_teosinte.tiff", width=2000, height=2400, res=300, compression="lzw") 

plot(njT[[1]], tip.color=njT[[2]], type="unrooted", lab4ut="axial") 

dev.off() 

 

### Make a neighbor-joining (NJ) tree for maize landrace. 

njM <- list(nj(dM), varcomp[19:36,3]) 

njM[[2]] <- ifelse(njM[[2]]=="Environmental Response", "#F8766D", 

ifelse(njM[[2]]=="Reproductive","#5C99FF",ifelse(njM[[2]]=="Vegetative/Flowering 

Time","#00BA38",NA))) 

tiff("SFig/NJ_maize.tiff", width=2000, height=2400, res=300, compression="lzw") 

plot(njM[[1]], tip.color=njM[[2]], type="unrooted", lab4ut="axial") 

dev.off() 

 

 

#########################################################################################

###### 

### PART 5. Comparing the teosinte and maize landrace genetic correlations matrix and the   

### 

### three submatrices (Vegetative/Flowering Time, Environmental Response, and 

Reproductive) ### 

### via Mantel test and difference in their leading eigenvectors.                           

###             

#########################################################################################

###### 

 

### Compare the full genetic correlations matrix (CUPR and TGPP excluded) from teosinte 

and maize landrace. 

### Mantel test 

cor(rT.re[lower.tri(rT.re)], rM.re[lower.tri(rM.re)]); mantel.test(rT.re, rM.re, 

nperm=10000) 

#r=0.5091904 

#Z=4.966196 

#p=9.999e-05 

 

### Leading eigenvectors 

theta.cal(rT.re, rM.re) 

#    label eigenvector1 eigenvector2 

#    theta     89.61667     88.35276 

# pve.mat1     27.24433     18.70337 

# pve.mat2     19.10335     14.27192 

#note that mat1vec1 and mat2vec1 are teosinte and maize landrace gmax respectively. 

 

### Compare the vegetative genetic correlations matrix from teosinte and maize landrace. 

### Mantel test 

cor(vegT[lower.tri(vegT)], vegM[lower.tri(vegM)]); mantel.test(vegT, vegM, nperm=10000) 

#r=0.899856 

#Z=1.267712 

#p=0.02289661 

 

###Leading eigenvectors 

theta.cal(vegT, vegM) 

#    label eigenvector1 eigenvector2 

#    theta     28.05962     50.62398 

# pve.mat1     64.83790     15.67222 

# pve.mat2     40.64529     21.12285 

 

### Compare the environmental response genetic correlations matrix from teosinte and 

maize landrace. 

### Mantel test 

cor(enrT[lower.tri(enrT)], enrM[lower.tri(enrM)]); mantel.test(enrT, enrM, nperm=10000) 

#r=0.7707012 

#Z=1.23834 

#p=0.01469853 

 

### Leading eigenvectors 
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theta.cal(enrT, enrM) 

#    label eigenvector1 eigenvector2 

#    theta     27.37998     27.74151 

# pve.mat1     45.61217     26.91704 

# pve.mat2     43.88581     24.59770 

 

 

### Compare the reproductive genetic correlations matrix from teosinte and maize 

landrace. 

### Mantel test 

cor(repT.re[lower.tri(repT.re)], repM.re[lower.tri(repM.re)]); mantel.test(repT.re, 

repM.re, nperm=10000) 

#r=0.7873143 

#Z=1.882289 

#p=0.00289971 

 

### Leading eigenvectors 

theta.cal(repT.re, repM.re) 

#    label eigenvector1 eigenvector2 

#    theta     87.81169     86.67189 

# pve.mat1     54.14230     29.19786 

# pve.mat2     41.97578     26.11113 

 

 

### Construct a plot of the genetic correlation matrix. 

corG.plot <- melt(corG, na.rm=T) 

corG.se.plot <- melt(corG.se, na.rm=T) 

 

corG.plot$Z <- atanh(abs(corG.plot[,3]))/atanh(corG.se.plot[,3]) 

corG.plot$label <- as.character(round(corG.plot[,3], 2)) 

corG.plot[nchar(corG.plot[,5])==1,5] <- 

paste(corG.plot[nchar(corG.plot[,5])==1,5],".00",sep="") 

corG.plot[nchar(corG.plot[,5])==3,5] <- 

paste(corG.plot[nchar(corG.plot[,5])==3,5],"0",sep="") 

corG.plot[grep("-",corG.plot[,5]),5][nchar(corG.plot[grep("-",corG.plot[,5]),5])==4] <- 

paste(corG.plot[grep("-",corG.plot[,5]),5][nchar(corG.plot[grep("-

",corG.plot[,5]),5])==4], "0", sep="") 

corG.plot[corG.plot[,4] < 1.96 ,5] <- NA #standard normal, two-tailed cutoff for P < 

0.05. 

 

temp.plot <- 0.5 

for(i in 1:18){temp.plot <- c(temp.plot,i+0.5)} 

 

tiff("Figures/corG_plot.tif", height=6.3, width=7, units="in", res=1200, 

compression="lzw") 

ggplot() +  

geom_point(data=corG.plot, aes(x=Var2, y=Var1, colour=value), shape=15, size=10) +  

geom_point(aes(x=1:18, y=18:1), shape=15, colour="black", size=10) + 

scale_y_discrete(limits = rev(levels(corG.plot$Var1))) + 

scale_x_discrete(position="top") + 

scale_colour_gradient2(low="red", mid="white", high="blue", limits=c(-1,1), breaks=c(-

1,0,1), name=expression(bolditalic('r'[g]))) + 

theme(panel.grid.major = element_blank()) + 

theme(panel.background = element_rect(fill = "white", colour = "white")) + 

theme(axis.text.x = element_text(angle=90, hjust=0)) + 

theme(axis.ticks = element_blank()) + 

geom_vline(xintercept=temp.plot, colour="grey") + 

geom_hline(yintercept=temp.plot, colour="grey") + 

geom_vline(xintercept=c(5.5,10.5), colour="black", size=1) + 

geom_hline(yintercept=c(8.5,13.5), colour="black", size=1) + 

xlab("Maize Landrace") + 

ylab("Teosinte") + 

theme(axis.title=element_text(size=18, face="bold")) + 

theme(axis.text.x=element_text(colour=c(rep("#00BA38",5),rep("#F8766D",5),rep("#5C99FF",8

)), size=12, face="bold")) + 

theme(axis.text.y=element_text(colour=c(rep("#5C99FF",8),rep("#F8766D",5),rep("#00BA38",5

)), size=12, face="bold")) + 

guides(size=FALSE) + 

geom_text(data=corG.plot, aes(x=Var2, y=Var1, label=label), size=2.5, nudge_y=0.25) 

dev.off() 
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#########################################################################################

###### 

### PART 6. Comparing the teosinte and maize landrace genetic covariances matrix and the    

### 

### three submatrices (Vegetative/Flowering Time, Environmental Response, and 

Reproductive) ###  

### via Mantel test, Flury hierarchy, and random skewers.                                   

###                               

#########################################################################################

###### 

 

############################### NOTES on using the CPC software 

############################### 

# Many of the CPC versions have compatibilities issue (Windows, Mac, etc.)                                           

# 

# We used the Linux version 

(https://pages.uoregon.edu/pphil/programs/cpc/linux/cpc.tar.gz).                         

# 

# CPC requires the matrices to be PD; we only used the nearPD function when necessary, 

i.e. non-PD matrices.         # 

# After we export the ".dat" file, we manually edit the file into the following format 

(description in parentheses): # 

# 2 (number of matrices)                                                                                             

# 

# 16 (number of traits, 5/5/8 for submatrices)                                                                       

# 

# 4455 (number of teosinte individuals)                                                                              

# 

# GT (teosinte G-matrix)                                                                                             

# 

# 4398 (number of maize landrace individuals)                                                                        

# 

# GM (maize landrace G-matrix)                                                                                       

# 

#########################################################################################

############################# 

 

### Compare the FULL genetic covariances matrix from teosinte and maize landrace. 

### Mantel test 

cor(GT.re[lower.tri(GT.re)], GM.re[lower.tri(GM.re)]); mantel.test(GT.re, GM.re, 

nperm=10000) 

#r=0.02511114 

#Z=44981.04 

#p=0.2144786 

 

### Flury hierarchy (Prepare file for CPC) 

combined.G <- rbind(GT.re.PD, GM.re.PD) 

write.table(combined.G, "cpc_covG.dat", row.names=F, col.names=F, quote=F, sep=" ") 

 

### Random Skewers 

skewers(GT.re, GM.re, nsim=1000, method="unifcorrmat") 

#r=0.1853682 

#p=1 

 

### Ovaskainen's test 

#Comparing full G-matrices between teosinte and maize landrace. 

q.Ova(G1=GT.re.PD, G2=GM.re.PD, Nsamp=1000) 

#q.mean   q.se  

#     0      0 

 

 

### Compare the VEGETATITVE genetic covariances matrix from teosinte and maize landrace. 

### Mantel test 

cor(vegGT[lower.tri(vegGT)], vegGM[lower.tri(vegGM)]); mantel.test(vegGT, vegGM, 

nperm=10000) 

#r=0.9011552 

#Z=1190.493 

#p=0.05169483 

 

### Flury hierarchy (Prepare file for CPC) 
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combined.vegG <- rbind(vegGT.PD, vegGM.PD) 

write.table(combined.vegG, "cpc_covG_veg.dat", row.names=F, col.names=F, quote=F, sep=" 

") 

 

### Random Skewers 

skewers(vegGT, vegGM, nsim=1000, method="unifcorrmat") 

#r=0.8925812 

#p=0.001 

 

### Ovaskainen's test 

#Comparing Vegetative submatrices between teosinte and maize landrace. 

q.Ova(G1=vegGT.PD, G2=vegGM.PD, Nsamp=1000) 

#     q.mean        q.se  

#0.306186899 0.006744435 

 

 

### Compare the ENVIRONMENTAL RESPONSE genetic covariances matrix from teosinte and maize 

landrace. 

### Mantel test 

cor(enrGT[lower.tri(enrGT)], enrGM[lower.tri(enrGM)]); mantel.test(enrGT, enrGM, 

nperm=10000) 

#r=0.9624238 

#Z=38991.71 

#p=0.05029497 

 

### Flury hierarchy (Prepare file for CPC) 

combined.enrG <- rbind(enrGT.PD, enrGM.PD) 

write.table(combined.enrG, "cpc_covG_enr.dat", row.names=F, col.names=F, quote=F, sep=" 

") 

 

### Random Skewers 

skewers(enrGT, enrGM, nsim=1000, method="unifcorrmat") 

#r=0.8027262 

#p=0.01 

 

### Ovaskainen's test 

#Comparing Environmental Response submatrices between teosinte and maize landrace. 

q.Ova(G1=enrGT.PD, G2=enrGM.PD, Nsamp=1000) 

#       q.mean          q.se  

#2.246688e-100 2.246688e-100 

 

 

### Compare the REPRODUCTIVE genetic covariances matrix from teosinte and maize landrace. 

### Mantel test 

cor(repGT.re[lower.tri(repGT.re)], repGM.re[lower.tri(repGM.re)]); mantel.test(repGT.re, 

repGM.re, nperm=10000) 

#r=0.1406578 

#Z=4599.029 

#p=0.3086691 

 

### Flury hierarchy (Prepare file for CPC) 

combined.repG <- rbind(repGT.PD, repGM.PD) 

write.table(combined.repG, "cpc_covG_rep.dat", row.names=F, col.names=F, quote=F, sep=" 

") 

 

### Random Skewers 

skewers(repGT.re, repGM.re, nsim=1000, method="unifcorrmat") 

#r=0.08677437 

#p=1 

 

### Ovaskainen's test 

#Comparing Reproductive submatrices between teosinte and maize landrace. 

q.Ova(G1=repGT.PD, G2=repGM.PD, Nsamp=1000) 

#     q.mean        q.se  

#1.09343e-12 1.08513e-12 

 

 

#########################################################################################

##### 

### PART 7. Comparing Blows' subspace (1-5 eigenvectors) for teosinte and maize landrace 

G ### 
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#########################################################################################

##### 

 

### Compare Blows subspace of leading two eigenvectors to beta. 

blows.cal2(rT.re, rM.re, Z.stdT.re, Z.stdM.re, 2, 9000) 

# $`pve.mat1` 

# [1] 45.9477 

#  

# $pve.mat2 

# [1] 33.37526 

#  

# $theta.beta1 

# [1] 89.97862 

#  

# $theta.beta2 

# [1] 89.65813 

#  

# $theta.r1 

# [1] 64.67802 

#  

# $theta.r2 

# [1] 99.53384 

#  

# $theta.r1.eig 

# [,1]     [,2] 

# [1,] 67.27738 79.41768 

#  

# $theta.r2.eig 

# [,1]    [,2] 

# [1,] 74.26973 59.9559 

#  

# $theta.b1.eig 

# [,1]     [,2] 

# [1,] 89.98242 89.98783 

#  

# $theta.b2.eig 

# [,1]     [,2] 

# [1,] 89.87179 89.68308 

 

### Compare Blows subspace of leading three eigenvectors to beta. 

blows.cal2(rT.re, rM.re, Z.stdT.re, Z.stdM.re, 3, 9000) 

# $`pve.mat1` 

# [1] 61.23287 

#  

# $pve.mat2 

# [1] 45.60396 

#  

# $theta.beta1 

# [1] 89.97845 

#  

# $theta.beta2 

# [1] 89.54612 

#  

# $theta.r1 

# [1] 64.59429 

#  

# $theta.r2 

# [1] 78.68411 

#  

# $theta.r1.eig 

# [,1]     [,2]     [,3] 

# [1,] 67.27738 79.41768 88.07245 

#  

# $theta.r2.eig 

# [,1]    [,2]    [,3] 

# [1,] 74.26973 59.9559 66.1641 

#  

# $theta.b1.eig 

# [,1]     [,2]     [,3] 

# [1,] 89.98242 89.98783 89.99727 

#  
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# $theta.b2.eig 

# [,1]     [,2]     [,3] 

# [1,] 89.87179 89.68308 89.70146 

 

### Compare Blows subspace of leading four eigenvectors to beta. 

blows.cal2(rT.re, rM.re, Z.stdT.re, Z.stdM.re, 4, 9000) 

# $`pve.mat1` 

# [1] 70.96228 

#  

# $pve.mat2 

# [1] 57.06434 

#  

# $theta.beta1 

# [1] 89.92216 

#  

# $theta.beta2 

# [1] 89.52534 

#  

# $theta.r1 

# [1] 43.35824 

#  

# $theta.r2 

# [1] 74.09296 

#  

# $theta.r1.eig 

# [,1]     [,2]     [,3]     [,4] 

# [1,] 67.27738 79.41768 88.07245 54.05518 

#  

# $theta.r2.eig 

# [,1]    [,2]    [,3]     [,4] 

# [1,] 74.26973 59.9559 66.1641 79.85031 

#  

# $theta.b1.eig 

# [,1]     [,2]     [,3]     [,4] 

# [1,] 89.98242 89.98783 89.99727 89.92521 

#  

# $theta.b2.eig 

# [,1]     [,2]     [,3]     [,4] 

# [1,] 89.87179 89.68308 89.70146 89.86109 

 

### Compare Blows subspace of leading five eigenvectors to beta. 

blows.cal2(rT.re, rM.re, Z.stdT.re, Z.stdM.re, 5, 9000) 

#$`pve.mat1` 

#[1] 78.22545 

#  

# $pve.mat2 

# [1] 66.42401 

#  

# $theta.beta1 

# [1] 89.91775 

#  

# $theta.beta2 

# [1] 89.46881 

#  

# $theta.r1 

# [1] 41.96595 

#  

# $theta.r2 

# [1] 75.14963 

#  

# $theta.r1.eig 

# [,1]     [,2]     [,3]     [,4]     [,5] 

# [1,] 67.27738 79.41768 88.07245 54.05518 81.04738 

#  

# $theta.r2.eig 

# [,1]    [,2]    [,3]     [,4]     [,5] 

# [1,] 74.26973 59.9559 66.1641 79.85031 75.69734 

#  

# $theta.b1.eig 

# [,1]     [,2]     [,3]     [,4]     [,5] 

# [1,] 89.98242 89.98783 89.99727 89.92521 89.97344 
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#  

# $theta.b2.eig 

# [,1]     [,2]     [,3]     [,4]     [,5] 

# [1,] 89.87179 89.68308 89.70146 89.86109 89.76155 

 

#########################################################################################

######## 

# PART 8. Multivariate Qst-Fst Test using R scripts by Martin et al. (2008) PubMed ID: 

18245845 #  

#########################################################################################

######## 

 

### Step 5.1: Preparing additional files. 

# Within-population G-matrix 

Gw <- matrix(NA,18,18) 

for(i in 1:18){for(j in 1:18){ 

Gw[i,j] <- mean(c(GT[i,j],GM[i,j])) 

}} 

 

# Between-population G-matrix 

Gb <- matrix(NA,18,18) 

for(i in 1:18){for(j in 1:18){ 

Gb[i,j] <- 0.5*Z[i]*Z[j] 

}} 

 

# Within-population additive genetic variance 

Vw <- diag(Gw) 

 

# Between-population additive genetic variance 

Vb <- diag(Gb) 

 

# Bent within- and between-population G-matrices to be positive definite 

Gw <- as.matrix(nearPD(Gw, corr=F)[[1]]) 

Gb <- as.matrix(nearPD(Gb, corr=F)[[1]]) 

 

# "genoTM.txt" is a merged genotype file of both teosinte and maize landrace. 

# Only common markers between teosinte and maize landrace can be used here. 

# The file is coded such as row is individual, column is GBS marker. 

# This file can be obtained by exporting the genotype file as "Table" format in TASSEL. 

geno <- read.delim("genoTM.txt", header=T, as.is=T) 

 

# Read in the marker names for the "genoTM.txt" file. 

marker.names <- read.delim("markers.txt", header=F, as.is=T) 

 

# Create a column for the population identifier in geno; top 4398 are maize landraces; 

bottom 4455 are teosinte. 

geno <- data.frame(Pop=c(rep(1,4398),rep(2,4455)), geno) 

 

# Rename the columns 

colnames(geno) <- c("Pop", "Individual", marker.names[,1]) 

 

# Recode genotypes into format that hierfstat recognizes 

geno[geno=="A"] <- 11 

geno[geno=="C"] <- 22 

geno[geno=="G"] <- 33 

geno[geno=="T"] <- 44 

geno[geno=="R"] <- 13 

geno[geno=="Y"] <- 24 

geno[geno=="K"] <- 34 

geno[geno=="M"] <- 12 

geno[geno=="W"] <- 14 

geno[geno=="S"] <- 23 

geno[geno=="N"] <- "NA" 

 

 

### Step 5.2: Calculate Fst 

# WARNING: THIS STEP TAKES A VERY LONG TIME 

# For a dataset of 8853 individuals and 21,157 markers, the following script took ~22hr 

fst.dat <- varcomp.glob(as.factor(geno[,1]), geno[,-c(1:2)]) 

 



 

 

32 
 

# It is advisable to save everything at this point to avoid redoing lengthy Fst 

calculation.  

save.image("temp.RData") 

 

 

### Step 5.3: Bootstrapping Fst 

### Fst bootstrapping function from Whitlock and Guillaume (2009) 

 

fst.sample <- function(obs, nloci){ 

loc.smpl <- sample(1:nloci,size=nloci,replace=TRUE) 

dat <- obs[loc.smpl,]                                 #select the sampled loci from the 

input table 

return( sum(dat[,1])/sum(dat[,1]+dat[,2]+dat[,3]) )   # Fst = a/(a+b+c); from 

Weir&Cockerham 1984 

} 

 

# Set the bootstrap parameters 

nboot <- 10000 

nloci <- length(fst.dat[,1]) 

fst.est  = vector(length = nboot) 

 

# Bootstrapping by sampling nloci from the neutral markers, with replacement 

for(i in 1:nboot){ 

fst.repl = fst.sample(fst.dat, nloci) 

fst.est[i] = fst.repl 

} 

 

# Mean of Fst 

fst.mean <- mean(fst.est, na.rm=TRUE) 

# 0.1567261 

 

# Standard deviation of Fst 

fst.sd <- sd(fst.est, na.rm=TRUE) 

# 0.001606596 

 

# 95% CI of Fst 

fst.CI <- quantile(fst.est,c(0.025,0.975), na.rm=TRUE) 

#      2.5%     97.5% 

# 0.1536479 0.1598973 

 

# mean of 2*Fst/(1-Fst) 

2*fst.mean/(1-fst.mean) 

# 0.3717086 

 

# 95% CI of 2*Fst/(1-Fst) 

c(2*fst.CI[1]/(1-fst.CI[1]),2*fst.CI[2]/(1-fst.CI[2])) 

#      2.5%     97.5% 

# 0.3630828 0.3806612 

 

 

### Step 5.4: Calculating Qst 

 

# Load in the Qst scripts by Martin et al (2008) 

# Require the package corpcor. 

# Link to the scripts as of 22 October 2018; http://mbb.univ-

montp2.fr/MBB/uploads/codes_Qst_Fst.rar 

source("package neutrality test.r") 

 

# Number of traits 

ntrt <- length(Gw[,1]) 

 

# Number of individuals in teosinte and maize landrace 

nind <- c(4455,4398) 

 

# Number of populations 

npop <- 2 

 

# df for unbalanced design (Equation 9 of Martin et al (2008)) 

nf <- mean(nind)-1/npop*((mean(nind^2)-mean(nind)^2)/mean(nind)) 

 

# Back-calculate within-population mean square from Gw 
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MSw <- Gw 

 

# Back-calculate between-population mean square from Gb 

MSb <- nf*Gb + Gw 

 

# df for within-population 

dfw <- nind[1] + nind[2] - npop - (ntrt-1)^2 

 

# df for between-population 

dfb <- npop - 1 

 

# Combine the inputs for calculating Qst 

DF <- c(dfw,dfb) 

G <- list(Gw,Gb) 

MS <- list(MSw,MSb) 

 

# Compute rho from test between G matrices, under neutrality: rho=2*Fst/(1-Fst) 

testG <- k.prop(DF,G) 

cat("rho_P (population) =", testG$rho[[2]], "\n95% CI for rho_P :", testG$CI[[2]], "\n") 

#rho_P (population) = 314.6347  

#95% CI for rho_P : 190.3003 907.6686  

 

# Compute p-values from test between MS matrices 

testMS <- k.prop(DF,MS) 

cat("pBartlett=", testMS$pt1, "\npChi2=", testMS$pX,"\n") 

#pBartlett= 0.4680047  

#pChi2= 0.4680044 

 

 

#########################################################################################

######## 

### PART 9. Univariate Qst-Fst Test using R scripts provided by Whitlock and Guillaume 

(2009) PubMed ID: 19687138 ### 

#########################################################################################

######## 

# Use the Fst calculated from PART 8. 

Fst.dat <- fst.dat$loc 

 

# Calculate the observed Fst 

Fst.obs <- sum(Fst.dat[,1])/sum(Fst.dat[,1] + Fst.dat[,2] + Fst.dat[,3]) 

#0.1567383 

 

# Calculate the observed Qst 

Qst.obs <- Vb/(Vb + 2*Vw) 

 

# [1] 0.5681129 0.7822637 0.9455266 0.9393080 0.9301162 0.9457644 0.9503338 

# [8] 0.9617537 0.9187057 0.9385364 0.9731977 0.9698326 0.9865557 0.9715125 

#[15] 0.9823915 0.9599634 0.0751920 0.9768512 

 

 

################################################################## 

### Several functions for bootstrapping Qst, Fst, and Qst-Fst. ### 

################################################################## 

 

### Qst bootstrapping function from Whitlock and Guillaume (2009) 

qst.sample <- function(VarW, VarB, dfW, dfB){ 

VarW.sim <- VarW*rchisq(1, dfW)/dfW 

VarB.sim <- VarB*rchisq(1, dfB)/dfB 

return(VarB.sim/(VarB.sim+2*VarW.sim)) 

} 

 

### Fst bootstrapping function from Whitlock and Guillaume (2009) 

fst.sample <- function(obs, nloci){ 

loc.smpl <- sample(1:nloci,size=nloci,replace=TRUE) 

dat <- obs[loc.smpl,]                                 #select the sampled loci from the 

input table 

return( sum(dat[,1])/sum(dat[,1]+dat[,2]+dat[,3]) )   # Fst = a/(a+b+c); from 

Weir&Cockerham 1984 

} 

 

### Qst-Fst bootstrapping function 
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qstfst.bootstrap <- function(fst.dat, Vw, Vb, dfw, dfb, qst.obs, fst.obs){ 

# Set the bootstrap parameters 

nboot <- 10000 

nloci <- length(fst.dat[,1]) 

qst.est <- vector(length = nboot) 

fst.est <- vector(length = nboot) 

boot.est <- vector(length = nboot) 

 

# Bootstrapping Qst and Fst 

for(i in 1:nboot){ 

qst.repl <- qst.sample(Vw, Vb, dfw, dfb) 

fst.repl <- fst.sample(fst.dat, nloci) 

qst.est[i] <- qst.repl 

fst.est[i] <- fst.repl 

boot.est[i] = qst.repl - fst.repl 

} 

 

QstFst.obs <- qst.obs - fst.obs 

 

# Summarizing results 

bootstrap.results <- list( 

    QstObs       = qst.obs, 

    FstObs       = fst.obs, 

    QstFstObs    = QstFst.obs, 

    Pvalue       = 2*min(sum(boot.est < QstFst.obs),sum(boot.est > QstFst.obs))/nboot, 

    boot         = mean(boot.est, na.rm=TRUE), 

    boot.stdev   = sd(boot.est, na.rm=TRUE), 

    boot.CI      = quantile(boot.est,c(0.025,0.975), na.rm=TRUE), 

    Fst          = mean(fst.est, na.rm=TRUE), 

    Fst.stdev    = sd(fst.est, na.rm=TRUE), 

    Fst.CI       = quantile(fst.est,c(0.025,0.975), na.rm=TRUE), 

    Qst          = mean(qst.est, na.rm=TRUE), 

    Qst.stdev    = sd(qst.est, na.rm=TRUE), 

    Qst.CI       = quantile(qst.est,c(0.025,0.975), na.rm=TRUE) ) 

return(bootstrap.results) 

} 

 

all.results <- list() 

 

# Use the above function to bootstrap Qst-Fst. 

for(i in 1:ncol(Gw)){ 

all.results[[i]] <- qstfst.bootstrap(Fst.dat, Vw[i], (2*Fst.obs*Vw[i])/(1-Fst.obs), 4455 

+ 4398 - 2, 2 - 1, Qst.obs[i], Fst.obs) 

} 

 

# Qst-Fst bootstrapping results for all 18 traits. 

for(i in 1:18){print(all.results[[i]][[4]])} 

#[1] 0.016 

#[1] 0 

#[1] 0 

#[1] 0 

#[1] 0 

#[1] 0 

#[1] 0 

#[1] 0 

#[1] 0 

#[1] 0 

#[1] 0 

#[1] 0 

#[1] 0 

#[1] 0 

#[1] 0 

#[1] 0 

#[1] 0.986 

#[1] 0 

 

fst.plot <- all.results[[1]][[14]] 

for(i in 2:18){fst.plot <- c(fst.plot, all.results[[i]][[14]])} 

 

 

fst.plot <- fst.dat[,1]/(fst.dat[,1]+fst.dat[,2]+fst.dat[,3]) 
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fst.plot[fst.plot<0] <- 0 

 

names(Qst.obs) <- names(Z) 

qst.plot <- data.frame(qst=Qst.obs, group=varcomp[1:18,3], xpos=NA, ypos=NA) 

qst.plot$group <- as.factor(qst.plot$group) 

qst.plot$group <- factor(qst.plot$group, levels=c("Environmental 

Response","Vegetative/Flowering Time","Reproductive")) 

qst.plot <- qst.plot[order(qst.plot$qst),] 

qst.plot$xpos <- c(0.2,0.52,0.73,rep(0.89,15)) 

qst.plot$ypos <- c(9,seq(1,9,0.5)) 

 

tiff("Figures/fstqst.tiff", width=7, height=4, units="in", res=1200, compression="lzw") 

ggplot() + 

geom_density(aes(fst.plot), colour="#A9A9A9", fill="#A9A9A9") + 

geom_segment(data=qst.plot, aes(x=qst,y=0,xend=qst,yend=ypos,colour=group), 

show.legend=F, size=0.5) + 

geom_label(data=qst.plot,  

 aes(x=xpos, y=ypos, label=rownames(qst.plot), fill=group), 

 nudge_y=c(0,0.5,0.5,rep(0,15)), 

 show.legend=T, 

 hjust=1, 

 fontface = 'bold', 

 color = 'white', 

      size = 2.5) + 

geom_segment(aes(x=median(fst.plot), y=0, xend=median(fst.plot), yend=10), linetype=2) + 

theme(axis.text.y=element_blank(), axis.ticks.y=element_blank()) + 

theme(panel.background=element_blank(), panel.grid=element_blank()) + 

theme(legend.text=element_text(size=6), legend.title=element_text(size=8)) + 

theme(axis.text.x=element_text(size=5), axis.title=element_text(size=7)) + 

xlab("Fst") + 

ylab("Frequency") + 

scale_x_continuous(limits=c(0,1)) + 

scale_y_continuous(expand=c(0,0)) + 

expand_limits(y=0) 

dev.off() 

 

######################################################### 

### PART 10. Gmax: Genetic Lines of Least Resistance. ### 

######################################################### 

 

### Gmax is calculated as the first eigenvector of a G-matrix (Schluter 1996, Pubmed ID: 

28565589) 

### Gmax is sensitive to magnitudes of traits, so we use the genetic correlation matrices 

instead of G-matrices. 

### Genetic correlation matrix is essentially G-matrices where each trait is standardized 

by its genetic standard deviation. 

 

### Teosinte Gmax and its percent variance explained (PVE). 

GmaxT <- eigen(rT.re)[[2]][,1] 

 

eigenvalueT <- eigen(rT.re)[[1]] 

eigenvalueT[1]/sum(eigenvalueT[eigenvalueT>0])*100 

#27.24433 

 

### Maize landrace Gmax and its percent variance explained (PVE). 

GmaxM <- eigen(rM.re)[[2]][,1] 

 

eigenvalueM <- eigen(rM.re)[[1]] 

eigenvalueM[1]/sum(eigenvalueM[eigenvalueM>0])*100 

#19.10335 

 

### Genetic constrain, as measured by angle between evolution trajectory (Z) and Gmax 

### Theta for teosinte 

thetaT <- acos(GmaxT%*%Z.stdT.re/sqrt(sum(Z.stdT.re^2)))*180/pi 

cat(ifelse(thetaT>90, 180-thetaT, thetaT), "\n") 

#67.27738 

 

### Theta for maize landrace 

thetaM <- acos(GmaxM%*%Z.stdM.re/sqrt(sum(Z.stdM.re^2)))*180/pi 

cat(ifelse(thetaM>90, 180-thetaM, thetaM), "\n") 

#74.26973 
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################################################################ 

### PART 11. Extension to Gmax: individual trait constraints. ### 

################################################################ 

 

### Create a data frame to store the results from dropone analysis 

dropone <- data.frame(Trait=varcomp.re[1:16,1], thetaD=NA) 

 

### Calculate the theta (genetic constraint) from dropping one trait at a time. 

for(i in 1:length(dropone[,1])){ 

temp.rT <- rT.re[-i,-i] 

temp.GmaxT <- eigen(temp.rT)[[2]][,1] 

temp.Z.stdT <- Z.stdT.re[-i]/sqrt(sum(Z.stdT.re[-i]^2)) 

dropone[i,2] <- acos(temp.GmaxT%*%temp.Z.stdT)*180/pi 

dropone[i,2] <- ifelse(dropone[i,2]>90, 180-dropone[i,2], dropone[i,2]) 

} 

 

### Compare the theta from dropone vs full 16-traits (teosinte). 

dropone$diff <- dropone[,2]-67.27738 

 

### Display the results from dropone analysis 

print(dropone[order(dropone$diff),], row.names=F) 

 

# The higher the decrease in theta, the more constraint that specific trait contributes. 

# The higher the increase in theta, the more the specific trait aligns with desired 

evolution. 

 

# Trait   thetaD        diff 

#    GE 62.82114 -4.45623585 

#   DTA 63.22377 -4.05360998 

#   DTS 63.35238 -3.92500055 

#  PLHT 64.62573 -2.65165476 

#  LFLN 65.03726 -2.24011950 

#  LFWD 66.34697 -0.93041221 

#  LBIL 66.52490 -0.75248410 

#  PROL 67.00083 -0.27654897 

#  LBLN 67.19671 -0.08066613 

#  EILN 67.20138 -0.07599899 

#  TILN 67.31564  0.03826208 

#  LBNN 67.39876  0.12137953 

#    GW 69.17319  1.89580571 

#    ED 69.71071  2.43332908 

#  TGWP 70.60707  3.32969345 

#    EL 71.41978  4.14240418 

 

 

#########################################################################################

####### 

### PART 12. What-if analysis: investigate how far can we get from single trait selection 

on ### 

### G-matrix, and the associated constrains. Note that comparison of this to gmax is 

skipped.### 

#########################################################################################

####### 

 

### Normalize the evolutionary trajectory (Z-vector) into length 1.  

unit.Z.stdT <- Z.stdT.re/sqrt(sum(Z.stdT.re^2)) 

 

### Create a data frame to summarize the results from what-if analysis. 

whatif <- data.frame(Trait=varcomp.re[1:16,1], Direction=Z.re/abs(Z.re), 

ScalarProj1=vector(length=16), Theta1=vector(length=16), 

ScalarProjGmax=vector(length=16), ThetaGmax=vector(length=16)) 

 

### Calculate the scalar projection and theta (constraint) between the response and 

evolutionary trajectory (Z) when we select on ith trait (Column 3,4). 

### Calculate the scalar projection and theta (constraint) between the response and Gmax 

(teosinte) when we select on ith trait (Column 5,6). 

for(i in 1:16){ 

GBeta <- whatif[i,2]*rT.re[,i] 

unit.GBeta <- GBeta/sqrt(sum(GBeta^2)) 
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whatif[i,3] <- GBeta%*%unit.Z.stdT 

whatif[i,4] <- acos(unit.GBeta%*%unit.Z.stdT)*180/pi 

whatif[i,5] <- GBeta%*%GmaxT 

temp <- acos(unit.GBeta%*%GmaxT)*180/pi 

whatif[i,6] <- ifelse(temp > 90, 180-temp, temp) 

} 

 

# Trait Direction ScalarProj1   Theta1 ScalarProjGmax ThetaGmax 

#   DTA         1  0.30837688 80.39072     -1.5836123  30.99303 

#   DTS         1  0.27975367 81.13283     -1.5434593  31.73983 

#  PLHT         1  0.34050696 77.86373     -1.4322251  27.83552 

#  LFLN         1  0.34843638 77.23302     -1.3835701  28.65863 

#  LFWD         1  0.45225311 73.07725     -1.3344259  30.80987 

#  TILN        -1  0.09386849 84.84097     -0.1823446  79.94024 

#  PROL        -1  0.17160613 82.89246      0.1885700  82.18567 

#  LBNN         1  0.26004793 79.86122     -0.8104191  56.72945 

#  LBLN        -1  0.05404702 87.98209     -0.4160557  74.27254 

#  LBIL        -1  0.17077299 83.63877     -0.8623796  55.97834 

#    EL         1  0.97179312 53.76805     -1.2531874  40.34123 

#    ED         1  0.49884978 72.23520     -0.8480237  58.75661 

#    GE         1  1.07471697 45.55443     -1.1191808  43.18049 

#  EILN        -1  0.20906572 80.99600      0.1391024  84.02296 

#  TGWP         1  0.84177340 63.30709     -1.6329615  29.37568 

#    GW         1  0.42008161 75.87721     -0.7302340  64.90313 

 

 

### Plot the results from dropone and what-if analyses. 

constraint <- merge(whatif, dropone, by="Trait", all=T, sort=F) 

 

constraint$Trait <- as.factor(constraint$Trait) 

constraint$Trait <- factor(constraint$Trait, 

c("DTA","DTS","PLHT","LFLN","LFWD","TILN","PROL","LBNN","LBLN","LBIL","EL","ED","GE","EIL

N","TGWP","GW")) 

 

constraint$Classification <- varcomp.re[1:16,3] 

constraint$Classification <- as.factor(constraint$Classification) 

constraint$Classification <- factor(constraint$Classification, levels=c("Environmental 

Response", "Vegetative/Flowering Time", "Reproductive")) 

 

### First, we plot the vector R (from whatif) against Z (evolutionary trajectory). 

plotZ <- constraint[,c(1,3,4,9)] 

names(plotZ)[2] <- "x" 

plotZ$y <- plotZ[,2]*tan(plotZ[,3]*pi/180) 

plotZ <- plotZ[,c(1,4,2,5)] 

plotZ <- rbind(plotZ,plotZ) 

plotZ[17:32,3] <- 0 

plotZ[17:32,4] <- 0 

 

plotZ.proj <- plotZ 

plotZ.proj$y <- 0 

 

temp.ends <- rep("last",16) 

temp.ends2 <- rep("last",16) 

 

tiff("Figures/constraintPlot_v2_thetaZ.tiff", units="in", height=3, width=3, res=1200, 

compression="lzw") 

ggplot() + 

geom_line(aes(x=c(0,1.5),y=c(0,0)), size=0.75, arrow=arrow(length=unit(0.15,"cm"), 

ends="last", type="open")) + 

geom_line(data=plotZ, aes(x=x,y=y,group=Trait,colour=Classification), size=0.75, arrow = 

arrow(length=unit(0.15,"cm"), ends=temp.ends, type="open")) + 

geom_line(data=plotZ.proj, aes(x=x, y=y, group=Trait, colour=Classification), size=0.75, 

arrow=arrow(length=unit(0.15,"cm"), ends=temp.ends2, type="open")) + 

xlim(c(0,1.5)) + 

ylim(c(0,2.0)) + 

theme(axis.line=element_blank(), axis.text=element_blank(), axis.ticks=element_blank(), 

axis.title=element_blank(), panel.background = element_blank()) + 

guides(colour=F) 

dev.off() 

 

### Next, we plot the gmax calculated from dropone. 
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plotD <- constraint[,c(1,7,9)] 

plotD$x <- cos(plotD[,2]*pi/180) 

plotD$y <- sin(plotD[,2]*pi/180) 

plotD <- plotD[,c(1,3,4,5)] 

plotD <- rbind(plotD, plotD) 

plotD[17:32,3] <- 0 

plotD[17:32,4] <- 0 

 

tiff("Figures/constraintPlot_v2_thetaDropone.tiff", units="in", height=3, width=3, 

res=1200, compression="lzw") 

ggplot() + 

geom_line(aes(x=c(0,1.25),y=c(0,0)), size=0.5, arrow=arrow(length=unit(0.1,"cm"), 

ends="last", type="open")) + 

geom_line(aes(x=c(0,1.25*cos(pi*67.27738/180)),y=c(0,1.25*sin(pi*67.27738/180))), 

size=0.5, arrow=arrow(length=unit(0.1,"cm"), ends="last", type="open")) + 

geom_line(data=plotD, aes(x=x,y=y,group=Trait,colour=Classification), size=0.5, arrow = 

arrow(length=unit(0.1,"cm"), ends="last", type="open")) + 

xlim(c(0,1.25)) + 

ylim(c(0,1.25)) + 

theme(axis.line=element_blank(), axis.text=element_blank(), axis.ticks=element_blank(), 

axis.title=element_blank(), panel.background = element_blank()) + 

guides(colour=F) 

dev.off() 

#########################################################################################  
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Fig. S1. Genetic relationship of 18 teosinte-maize landrace comparable traits. Plots of 
principal coordinate analysis (PCoA) [A,B] and neighbor-joining (NJ) tree [C,D] of 18 
teosinte-maize landrace comparable traits are constructed from absolute distance 
calculated from 1 – |rg|. Our pre-defined trait groups fit well with the genetic relationship 
of these 18 traits in teosinte [A,C] and maize landrace [B,D].  
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Fig. S2. Scree plot for eigenvectors of teosinte and maize landrace genetic correlation 
matrices. Percent variance explained (PVE) of all 16 eigenvectors are shown here. PVE 
for 𝒈𝒎𝒂𝒙,𝑻 is 27˚ and PVE for 𝒈𝒎𝒂𝒙,𝑴 is 19˚. 
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Fig. S3. Change in additive and dominance genetic variance as functions of allele 

frequency. When dominance is present, additive genetic variance is calculated as 𝑉𝐴 =
2𝑝(1 − 𝑝)𝑎2[1 + 𝑘(2𝑝 − 1)]2 while dominance genetic variance is calculated as 𝑉𝐷 =
[2𝑎𝑘𝑝(1 − 𝑝)]2. Using these two formulas, we plotted 𝑉𝐴, 𝑉𝐷, 𝑉𝐴 𝑉𝐺⁄  and 𝑉𝐷 𝑉𝐺⁄   for five 
different scenarios: no dominance (k=0), weakly recessive (k=-0.25), moderately 
recessive (k=-0.5), strongly recessive (k=-0.75) and complete recessive (k=-1.00). 
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Fig. S4. Workflow from raw sequencing reads to final GBS data. Flowchart highlighting 
important steps along the path from raw sequencing reads to final GBS data. Steps 
include SNP calling, parentage inference, data filtering, coordinate conversion, 
imputation and quality check. 
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Fig. S5. Quality check (QC) plots. Various quality control plots are shown using the teosinte 

GBS data as example (maize landrace is similar and thus not shown). Crossover densities along 
chromosome 6 from the first imputation [A] and the second imputation [B] are presented. The 
crossover spike in the middle of chromosome 6 disappeared after we removed the bad SNPs 
prior to second imputation. Minor allele frequency (maf) distribution along chromosome 1 within 
the PC_O51_ID2 selfed family is shown as raw [C] and imputed [D]. Similar maf distribution is 
shown for the imputed PC_N13_ID1 x PC_N07_ID1 outcross family [E]. Under our expectation, 
maf for selfed family should be either 0 or ~0.5 and maf for outcross family should be 0, ~0.25 or 
~0.5. Notice that the noise between 0 and 0.5 [C] is absent in the imputed GBS data [D]. Density 
plots of the diagonals of additive genomic relationship matrix are displayed for selfed [F] and 
outcross [G] progenies, where Data 1 is imputed and unfiltered, Data 2 is imputed and filtered 
(progenies <70% missing, sites <10% missing), and Data 3 is imputed, filtered (same), and 
imputed again with LD-kNNi. Medians are shown in red vertical lines, and Data 3 has the closest 
median to the expected value of 1.5 (selfed) and 1.0 (outcross). 
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Fig. S6. Position and distance of neighboring plants under consideration for shading. 
Neighboring plants of plant x within 119cm or less away are considered in modelling for 
shading on plant x. This criterion results in 20 neighboring plants that are arbitrarily 
named after their positions: left (L1 – L7), center (C1 – C7), and right (R1 – R7). Shown 
in each box is the neighboring plant i and distance d in bracket. 
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Fig. S7. Histograms of elements of the genomic relationship matrices (GRM). The 
columns are arranged from left to right in the following order: additive GRM elements for 
teosinte, dominance GRM elements for teosinte, additive GRM elements for maize 
landrace and dominance GRM elements for maize landrace. The rows are arranged 
from top to bottom in the following order: diagonal elements of the GRM, off-diagonal 
elements of the GRM, and off-diagonal elements of the GRM for full-sibs and S1 
relatives from a common parent. 
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Table S1. Variance component estimates for teosinte. The following estimates (and their ratios) and their standard errors are 
displayed: additive genetics variance (VA); dominance genetic variance (VD); genetic-by-environment variance (VGxE); residual 
variance (VE); phenotypic variance (VP); broad-sense heritability (H2); narrow-sense heritability (h2); outcross trait mean (µ). 

Trait VA 
(se) 

VD 
(se) 

VGxE 
(se) 

VE 
(se) 

VP 
(se) 

H2 
(se) 

h2 
(se) 

VD/VP 
(se) 

VGxE/VP 
(se) 

VA/VG 
(se) 

VD/VG 
(se) 

VD/VA 
(se) 

µ 
(se) 

units 

DTA 20.517 
(1.886) 

1.186 

(0.736) 
3.159 

(0.792) 
25.401 

(0.869) 
50.262 

(1.705) 
0.432 

(0.028) 
0.408 
(0.027) 

0.024 
(0.015) 

0.063 
(0.016) 

0.945 
(0.033) 

0.055 
(0.033) 

0.058 
(0.037) 

68.482 
(0.296) day 

DTS 20.226 

(1.608) 
1.328 

(0.558) 
2.425 

(0.567) 
17.866 

(0.620) 
41.846 

(1.467) 
0.515 

(0.025) 
0.483 
(0.025) 

0.032 
(0.013) 

0.058 
(0.014) 

0.938 
(0.025) 

0.062 
(0.025) 

0.066 
(0.029) 

66.869 
(0.275) day 

PLHT 207.476 

(19.647) 
34.460 

(9.339) 
32.224 

(8.319) 
298.88 

(10.599) 
573.04 

(18.521) 
0.422 

(0.027) 
0.362 
(0.026) 

0.060 
(0.016) 

0.056 
(0.015) 

0.858 
(0.036) 

0.142 
(0.036) 

0.166 
(0.049) 

132.875 
(1.292) cm 

LFLN 22.167 

(2.620) 
3.692 

(1.373) 
8.142 

(1.691) 
52.78 

(1.833) 
86.782 

(2.573) 
0.298 

(0.027) 
0.255 
(0.026) 

0.043 
(0.016) 

0.094 
(0.019) 

0.857 
(0.049) 

0.143 
(0.049) 

0.167 
(0.067) 

53.189 
(0.470) cm 

LFWD 0.403 

(0.036) 
0.024 

(0.014) 
0.066 

(0.016) 
0.513 

(0.018) 
1.007 

(0.033) 
0.424 

(0.027) 
0.400 
(0.026) 

0.024 
(0.014) 

0.066 
(0.016) 

0.944 
(0.031) 

0.056 
(0.031) 

0.059 
(0.035) 

5.524 
(0.043) cm 

TILN 1.403 

(0.245) 
0.490 

(0.195) 
0.581 

(0.151) 
0.000 

(0.000) 
9.508 

(0.257) 
0.199 

(0.027) 
0.148 
(0.024) 

0.052 
(0.020) 

0.061 
(0.016) 

0.741 
(0.090) 

0.259 
(0.090) 

0.349 
(0.163) 

7.145 
(0.167) count 

PROL 1.956 

(0.343) 
1.112 

(0.274) 
0.702 

(0.200) 
8.096 

(0.263) 
11.867 

(0.334) 
0.259 

(0.029) 
0.165 
(0.027) 

0.094 
(0.023) 

0.059 
(0.017) 

0.638 
(0.075) 

0.363 
(0.075) 

0.569 
(0.185) 

9.763 
(0.218) count 

LBNN 0.038 

(0.012) 
0.019 

(0.009) 
0.041 

(0.011) 
0.412 

(0.012) 
0.510 

(0.013) 
0.111 

(0.025) 
0.075 
(0.023) 

0.036 
(0.018) 

0.081 
(0.020) 

0.672 
(0.141) 

0.328 
(0.141) 

0.487 
(0.312) 

2.659 
(0.036) count 

LBLN 4410.72 

(797.599) 
1645.46 

(530.794) 
2524.3 

(609.560) 
19347.0 

(619.960) 
27927.0 

(782.940) 
0.217 

(0.029) 
0.158 
(0.027) 

0.059 
(0.019) 

0.090 
(0.022) 

0.728 
(0.077) 

0.272 
(0.077) 

0.373 
(0.144) 

442.782 
(9.289) mm 

LBIL 805.297 

(94.630) 
221.401 

(58.727) 
75.404 

(31.164) 
1883.20 

(60.788) 
2985.30 

(90.500) 
0.344 

(0.028) 
0.270 
(0.026) 

0.074 
(0.019) 

0.025 
(0.010) 

0.784 
(0.051) 

0.216 
(0.051) 

0.275 
(0.083) 

166.394 
(3.185) mm 

EL 20.976 

(1.560) 
0.766 

(0.491) 
0.550 

(0.257) 
17.829 

(0.589) 
40.120 

(1.426) 
0.542 

(0.023) 
0.523 
(0.023) 

0.019 
(0.012) 

0.014 
(0.006) 

0.965 
(0.022) 

0.035 
(0.022) 

0.037 
(0.024) 

46.418 
(0.243) mm 

CUPR 0.208 

(0.015) 
0.011 

(0.005) 
0.003 

(0.002) 
0.155 

(0.005) 
0.377 

(0.014) 
0.581 

(0.022) 
0.551 
(0.022) 

0.030 
(0.013) 

0.007 
(0.005) 

0.948 
(0.022) 

0.052 
(0.022) 

0.055 
(0.024) 

4.498 
(0.026) count 

ED 0.066 

(0.004) 
0.005 

(0.001) 
0.002 

(0.001) 
0.023 

(0.001) 
0.095 

(0.004) 
0.740 

(0.016) 
0.692 
(0.017) 

0.048 
(0.012) 

0.017 
(0.006) 

0.935 
(0.016) 

0.065 
(0.016) 

0.069 
(0.018) 

3.971 
(0.014) mm 

GE 0.830 

(0.059) 
0.045 

(0.020) 
0.011 

(0.007) 
0.622 

(0.022) 
1.509 

(0.054) 
0.581 

(0.022) 
0.551 
(0.022) 

0.030 
(0.013) 

0.007 
(0.005) 

0.948 
(0.022) 

0.052 
(0.022) 

0.055 
(0.024) 

8.996 
(0.052) count 

EILN 0.143 

(0.010) 
0.007 

(0.003) 
0.002 

(0.001) 
0.096 

(0.003) 
0.249 

(0.009) 
0.605 

(0.021) 
0.576 
(0.021) 

0.029 
(0.011) 

0.008 
(0.005) 

0.953 
(0.018) 

0.047 
(0.018) 

0.050 
(0.020) 

5.180 
(0.020) mm 

TGPP 328513 

(39202.0) 
25683.1 

(20880.6) 
53565.0 

(16447.0) 
816710 

(25999.0) 
1224500 

(36948.0) 
0.289 

(0.028) 
0.268 
(0.027) 

0.021 
(0.017) 

0.044 
(0.013) 

0.928 
(0.057) 

0.073 
(0.057) 

0.078 
(0.066) 

4336.062 
(48.581) count 

TGWP 373.665 

(39.458) 
71.687 

(22.543) 
69.617 

(18.067) 
555.440 

(20.389) 
1070.400 

(35.648) 
0.416 

(0.029) 
0.349 
(0.029) 

0.067 
(0.021) 

0.065 
(0.017) 

0.839 
(0.047) 

0.161 
(0.047) 

0.192 
(0.067) 

113.948 
(1.818) mg 

GW 17.446 

(0.974) 
1.270 

(0.296) 
0.440 

(0.140) 
4.907 

(0.228) 
24.061 

(0.909) 
0.778 

(0.015) 
0.725 
(0.016) 

0.053 
(0.012) 

0.018 
(0.006) 

0.932 
(0.016) 

0.068 
(0.016) 

0.073 
(0.018) 

26.300 
(0.200) mg 
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Table S2. Variance component estimates for maize landrace. The following estimates (and their ratios) and their standard errors are 
displayed: additive genetics variance (VA); dominance genetic variance (VD); genetic-by-environment variance (VGxE); residual 
variance (VE); phenotypic variance (VP); broad-sense heritability (H2); narrow-sense heritability (h2); outcross trait mean (µ). 

Trait VA 
(se) 

VD 
(se) 

VGxE 
(se) 

VE 
(se) 

VP 
(se) 

H2 
(se) 

h2 
(se) 

VD/VP 
(se) 

VGxE/VP 
(se) 

VA/VG 
(se) 

VD/VG 
(se) 

VD/VA 
(se) 

µ 
(se) 

units 

DTA 5.752 
(0.684) 

0.969 
(0.368) 

0.787 
(0.279) 

12.893 
(0.404) 

20.401 
(0.649) 

0.329 
(0.028) 

0.282 
(0.027) 

0.048 
(0.018) 

0.039 
(0.014) 

0.856 
(0.052) 

0.144 
(0.052) 

0.168 
(0.070) 

76.795 
(0.192) 

day 

DTS 8.211 
(1.089) 

0.590 
(0.522) 

1.653 
(0.566) 

21.968 
(0.682) 

32.421 
(1.024) 

0.271 
(0.029) 

0.253 
(0.028) 

0.018 
(0.016) 

0.051 
(0.017) 

0.933 
(0.057) 

0.067 
(0.057) 

0.072 
(0.066) 

81.163 
(0.229) 

day 

PLHT 172.123 
(24.415) 

21.645 
(12.298) 

43.257 
(14.09) 

575.27 
(17.823) 

812.290 
(24.467) 

0.239 
(0.028) 

0.212 
(0.026) 

0.027 
(0.015) 

0.053 
(0.017) 

0.888 
(0.060) 

0.112 
(0.060) 

0.126 
(0.076) 

247.67 
(1.177) 

cm 

LFLN 49.342 
(5.470) 

2.885 
(2.576) 

3.569 
(1.645) 

73.042 
(2.697) 

128.840 
(4.888) 

0.405 
(0.032) 

0.383 
(0.031) 

0.022 
(0.020) 

0.028 
(0.013) 

0.945 
(0.048) 

0.055 
(0.048) 

0.059 
(0.054) 

100.236 
(0.465) 

cm 

LFWD 0.616 
(0.070) 

0.094 
(0.037) 

0.050 
(0.022) 

0.997 
(0.036) 

1.757 
(0.064) 

0.404 
(0.030) 

0.350 
(0.031) 

0.054 
(0.021) 

0.028 
(0.012) 

0.867 
(0.050) 

0.133 
(0.050) 

0.153 
(0.067) 

10.730 
(0.060) 

cm 

TILN 0.005 
(0.004) 

0.029 
(0.004) 

0.014 
(0.003) 

0.096 
(0.003) 

0.144 
(0.004) 

0.234 
(0.029) 

0.036 
(0.025) 

0.198 
(0.029) 

0.099 
(0.022) 

0.154 
(0.099) 

0.846 
(0.099) 

5.504 
(4.202) 

0.137 
(0.022) 

count 

PROL 0.003 
(0.002) 

0.005 
(0.004) 

0.001 
(0.001) 

0.186 
(0.005) 

0.193 
(0.005) 

0.037 
(0.016) 

0.014 
(0.011) 

0.024 
(0.020) 

0.003 
(0.007) 

0.366 
(0.352) 

0.634 
(0.352) 

1.731 
(2.627) 

1.104 
(0.018) 

count 

LBNN 1.886 
(0.216) 

0.236 
(0.122) 

0.104 
(0.055) 

3.731 
(0.122) 

5.956 
(0.199) 

0.356 
(0.028) 

0.317 
(0.029) 

0.040 
(0.020) 

0.017 
(0.009) 

0.889 
(0.055) 

0.111 
(0.055) 

0.125 
(0.070) 

12.496 
(0.102) 

count 

LBLN 337.973 
(2.168) 

179.939 
(41.944) 

55.266 
(22.285) 

1005.20 
(34.204) 

1578.40 
(49.597) 

0.328 
(0.029) 

0.214 
(0.030) 

0.114 
(0.026) 

0.035 
(0.014) 

0.653 
(0.073) 

0.347 
(0.073) 

0.532 
(0.171) 

115.170 
(2.061) 

mm 

LBIL 2.168 
(0.366) 

1.362 
(0.303) 

0.408 
(0.157) 

6.965 
(0.240) 

10.902 
(0.341) 

0.324 
(0.029) 

0.199 
(0.030) 

0.125 
(0.027) 

0.037 
(0.014) 

0.614 
(0.075) 

0.386 
(0.075) 

0.628 
(0.200) 

9.36 
(0.176) 

mm 

EL 186.632 
(37.552) 

62.439 
(28.642) 

55.814 
(22.781) 

887.370 
(29.223) 

1192.30 
(35.778) 

0.209 
(0.030) 

0.157 
(0.029) 

0.052 
(0.024) 

0.047 
(0.019) 

0.749 
(0.104) 

0.251 
(0.104) 

0.335 
(0.185) 

169.204 
(1.642) 

mm 

CUPR 11.459 
(2.287) 

1.009 
(1.577) 

2.638 
(1.199) 

58.205 
(1.865) 

73.312 
(2.188) 

0.170 
(0.028) 

0.156 
(0.029) 

0.014 
(0.022) 

0.036 
(0.016) 

0.919 
(0.122) 

0.081 
(0.122) 

0.088 
(0.145) 

31.886 
(0.378) 

count 

ED 3.140 
(0.466) 

0.968 
(0.309) 

0.633 
(0.215) 

7.280 
(0.271) 

12.021 
(0.419) 

0.342 
(0.032) 

0.261 
(0.033) 

0.081 
(0.025) 

0.053 
(0.018) 

0.764 
(0.069) 

0.236 
(0.069) 

0.308 
(0.119) 

25.663 
(0.172) 

mm 

GE 1791.92 
(477.845) 

865.488 
(426.349) 

563.669 
(257.383) 

12294 
(415.18) 

15515.0 
(457.420) 

0.171 
(0.029) 

0.116 
(0.029) 

0.056 
(0.027) 

0.036 
(0.017) 

0.674 
(0.142) 

0.326 
(0.142) 

0.483 
(0.313) 

358.677 
(6.192) 

count 

EILN 0.016 
(0.003) 

0.000 
(0.000) 

0.003 
(0.002) 

0.093 
(0.003) 

0.112 
(0.003) 

0.144 
(0.025) 

0.144 
(0.025) 

0.000 
(0.000) 

0.028 
(0.014) 

1.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

0.963 
(0.015) 

mm 

TGPP 1551.14 
(472.909) 

961.605 
(449.348) 

609.999 
(269.911) 

12909.0 
(431.550) 

16032.0 
(461.980) 

0.157 
(0.029) 

0.097 
(0.029) 

0.060 
(0.028) 

0.038 
(0.017) 

0.617 
(0.155) 

0.383 
(0.155) 

0.620 
(0.408) 

357.619 
(6.364) 

count 

TGWP 25.343 
(42.238) 

158.484 
(57.841) 

87.020 
(36.259) 

1571.80 
(51.044) 

1842.70 
(48.501) 

0.100 
(0.027) 

0.014 
(0.023) 

0.086 
(0.031) 

0.047 
(0.020) 

0.138 
(0.223) 

0.862 
(0.223) 

6.254 
(11.736) 

122.003 
(2.272) 

mg 

GW 1294.62 
(269.151) 

478.496 
(207.141) 

531.64 
(170.945) 

5722.00 
(198.112) 

8026.80 
(249.464) 

0.221 
(0.032) 

0.161 
(0.031) 

0.060 
(0.026) 

0.066 
(0.021) 

0.730 
(0.105) 

0.270 
(0.105) 

0.370 
(0.197) 

359.066 
(4.338) 

mg 
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Table S3. Trait mean and selection intensity. The mean and standard error for each trait 
in teosinte and maize landrace are shown here. Selection intensities are provided as 
estimates based on 9,000 generations of selection during domestication. 

Trait Units 
Teosinte Maize Landrace Selection 

Intensity Mean Std Err Mean Std Err 

DTA days 68.4821 0.2963 76.7954 0.1920 0.0004 

DTS days 66.8688 0.2750 81.1632 0.2285 0.0007 

PLHT cm 132.8754 1.2919 247.6702 1.1773 0.0018 

LFLN cm 53.1889 0.4696 100.2361 0.4645 0.0015 

LFWD cm 5.5235 0.0425 10.7302 0.0600 0.0013 

TILN count 7.1449 0.1670 0.1373 0.0223 -0.0026 

PROL count 9.7625 0.2180 1.1040 0.0183 -0.0026 

LBNN count 2.6587 0.0363 12.4956 0.1024 0.0022 

LBLN mm 442.7818 9.2892 115.1695 2.0609 -0.0019 

LBIL mm 166.3942 3.1845 9.3601 0.1758 -0.0018 

EL mm 46.4175 0.2428 169.2042 1.6420 0.0033 

CUPR count 4.4977 0.0258 31.8860 0.3781 0.0033 

ED mm 3.9706 0.0140 25.6634 0.1722 0.0039 

GE count 8.9955 0.0516 358.6766 6.1921 0.0040 

EILN mm 5.1804 0.0204 0.9628 0.0146 -0.0026 

TGPP count 4336.0619 48.5813 357.6188 6.3639 -0.0022 

TGWP g 113.9475 1.8180 122.0025 2.2717 0.0002 

GW mg 26.3000 0.2000 359.0660 4.3380 0.0038 
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Table S4. Genetic correlations, variances and covariances for teosinte. Genetic correlations (𝑟𝐺,𝑖𝑗) for all trait pairs and their standard 

errors are shown in the lower left triangle of the matrix; additive genetic variances (𝑉𝐴,𝑖) for each trait are shown in the diagonal of the 

matrix; genetic covariances (𝐶𝑜𝑣𝐺,𝑖𝑗) for all trait pairs are shown in the upper right triangle of the matrix. Standard errors are not 

available for the 𝐶𝑜𝑣𝐺,𝑖𝑗 since they are calculated as 𝐶𝑜𝑣𝐺,𝑖𝑗 = 𝑟𝐺,𝑖𝑗 ∙ √𝑉𝐴,𝑖 ∙ 𝑉𝐴,𝑗 for each trait pair instead of taking the estimates 

directly from the bivariate REML outputs.   

DTA DTS PLHT LFLN LFWD TILN PROL LBNN LBLN LBIL EL CUPR ED GE EILN TGPP TGWP GW 

DTA 
20.517 
(1.886) 

19.705 38.781 12.482 1.15 -0.214 0.016 0.269 -86.04 -63.91 3.921 0.504 -0.047 1.008 -0.135 1261.2 24.735 -2.321 

DTS 
0.967 

(0.005) 
20.226 
(1.608) 

35.875 12.241 1.166 0.086 0.223 0.289 -67.08 -57.51 3.394 0.452 -0.059 0.903 -0.150 1275.7 24.985 -2.532 

PLHT 
0.594 

(0.046) 
0.554 

(0.046) 
207.48 
(19.65) 

39.463 4.677 -1.948 3.125 0.799 15.115 -47.78 15.457 1.566 0.134 3.132 -0.131 3955.4 95.225 0.993 

LFLN 
0.585 

(0.048) 
0.578 

(0.046) 
0.582 

(0.045) 
22.167 
(2.620) 

0.931 0.301 1.333 0.220 11.569 -10.46 5.835 0.496 0.140 0.992 0.111 1183.1 31.072 1.316 

LFWD 
0.400 

(0.052) 
0.409 

(0.050) 
0.512 

(0.042) 
0.312 

(0.054) 
0.403 

(0.036) 
-0.137 0.276 0.047 5.593 -0.663 0.723 0.082 0.037 0.164 -0.012 173.40 5.665 0.412 

TILN 
-0.040 

(0.071) 
0.016 

(0.069) 
-0.114 

(0.074) 
0.054 

(0.076) 
-0.183 

(0.073) 
1.403 

(0.245) 
-0.132 -0.007 -1.101 0.565 -0.444 -0.018 -0.022 -0.036 -0.024 181.94 1.323 -0.527 

PROL 
0.002 

(0.072) 
0.036 

(0.069) 
0.155 

(0.070) 
0.202 

(0.072) 
0.310 

(0.062) 
-0.08 

(0.088) 
1.956 

(0.343) 
0.172 40.093 5.732 -1.575 -0.118 -0.039 -0.237 -0.044 262.79 2.874 -0.933 

LBNN 
0.304 

(0.079) 
0.329 

(0.076) 
0.284 

(0.080) 
0.239 

(0.083) 
0.381 

(0.072) 
-0.032 

(0.100) 
0.630 

(0.060) 
0.038 

(0.012) 
5.842 -0.321 0.048 0.013 0.000 0.025 -0.01 44.675 0.815 -0.058 

LBLN 
-0.286 

(0.067) 
-0.225 

(0.066) 
0.016 

(0.073) 
0.037 

(0.076) 
0.133 

(0.069) 
-0.014 

(0.085) 
0.432 

(0.067) 
0.451 

(0.074) 
4410.7 
(797.6) 

1644.4 -15.85 -1.425 -1.69 -2.851 0.302 -5851 -239.8 -16.17 

LBIL 
-0.497 

(0.053) 
-0.451 

(0.053) 
-0.117 

(0.067) 
-0.078 

(0.070) 
-0.037 

(0.065) 
0.017 
(0.08) 

0.144 
(0.078) 

-0.058 
(0.093) 

0.872 
(0.024) 

805.30 
(94.63) 

-6.719 -1.479 -0.427 -2.958 1.161 -6080 -162.4 0.616 

EL 
0.189 

(0.053) 
0.165 

(0.051) 
0.234 

(0.052) 
0.271 

(0.055) 
0.249 

(0.051) 
-0.082 

(0.068) 
-0.246 

(0.065) 
0.053 
(0.08) 

-0.052 
(0.068) 

-0.052 
(0.062) 

20.976 
(1.560) 

1.608 0.392 3.217 0.488 1228.0 56.882 8.065 

CUPR 
0.244 

(0.052) 
0.220 

(0.049) 
0.239 

(0.051) 
0.231 

(0.055) 
0.284 

(0.049) 
-0.034 

(0.067) 
-0.186 

(0.065) 
0.142 

(0.077) 
-0.047 

(0.067) 
-0.114 

(0.061) 
0.771 

(0.020) 
0.208 

(0.015) 
0.011 0.415 -0.067 183.99 4.224 0.047 

ED 
-0.04 

(0.049) 
-0.051 

(0.046) 
0.036 

(0.049) 
0.116 

(0.052) 
0.227 

(0.046) 
-0.073 

(0.062) 
-0.108 

(0.061) 
-0.010 

(0.074) 
-0.099 

(0.062) 
-0.058 

(0.056) 
0.333 

(0.041) 
0.093 

(0.044) 
0.066 

(0.004) 
0.022 0.033 1.252 3.568 0.972 

GE 
0.244 

(0.052) 
0.220 

(0.049) 
0.239 

(0.051) 
0.231 

(0.055) 
0.284 

(0.049) 
-0.034 

(0.067) 
-0.186 

(0.065) 
0.142 

(0.077) 
-0.047 

(0.067) 
-0.114 

(0.061) 
0.771 

(0.020) 
1.000 

(0.000) 
0.093 

(0.044) 
0.830 

(0.059) 
-0.134 367.98 8.449 0.093 

EILN 
-0.079 

(0.053) 
-0.088 
(0.05) 

-0.024 
(0.054) 

0.062 
(0.056) 

-0.050 
(0.052) 

-0.054 
(0.066) 

-0.083 
(0.065) 

-0.132 
(0.077) 

0.012 
(0.066) 

0.108 
(0.060) 

0.282 
(0.045) 

-0.390 
(0.042) 

0.342 
(0.040) 

-0.390 
(0.042) 

0.143 
(0.010) 

-79.60 1.450 0.918 

TGPP 
0.486 

(0.060) 
0.495 

(0.057) 
0.479 

(0.052) 
0.438 

(0.059) 
0.477 
(0.05) 

0.268 
(0.071) 

0.328 
(0.068) 

0.400 
(0.078) 

-0.154 
(0.081) 

-0.374 
(0.068) 

0.468 
(0.051) 

0.704 
(0.036) 

0.008 
(0.056) 

0.704 
(0.036) 

-0.367 
(0.055) 

328513 
(39202) 6676.5 -225.5 

TGWP 
0.282 

(0.058) 
0.287 

(0.055) 
0.342 

(0.053) 
0.341 

(0.057) 
0.462 

(0.047) 
0.058 

(0.071) 
0.106 

(0.071) 
0.216 

(0.082) 
-0.187 

(0.074) 
-0.296 

(0.065) 
0.642 

(0.037) 
0.480 

(0.044) 
0.718 

(0.029) 
0.480 

(0.044) 
0.198 

(0.054) 
0.603 

(0.038) 
373.67 
(39.46) 

58.269 

GW 
-0.123 

(0.048) 
-0.135 

(0.045) 
0.016 

(0.048) 
0.067 

(0.051) 
0.156 

(0.046) 
-0.107 

(0.061) 
-0.160 

(0.060) 
-0.071 

(0.073) 
-0.058 

(0.061) 
0.005 

(0.055) 
0.422 

(0.038) 
0.024 

(0.043) 
0.906 

(0.008) 
0.024 

(0.043) 
0.581 

(0.031) 
-0.094 

(0.055) 
0.722 

(0.028) 
17.445 
(0.974) 
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Table S5.  Genetic correlations, variances and covariances for maize landrace. Genetic correlations (𝑟𝐺,𝑖𝑗) for all trait pairs and their 

standard errors are shown in the lower left triangle of the matrix; additive genetic variances (𝑉𝐴,𝑖) for each trait are shown in the 

diagonal of the matrix; genetic covariances (𝐶𝑜𝑣𝐺,𝑖𝑗) for all trait pairs are shown in the upper right triangle of the matrix. Standard 

errors are not available for the 𝐶𝑜𝑣𝐺,𝑖𝑗 since they are calculated as 𝐶𝑜𝑣𝐺,𝑖𝑗 = 𝑟𝐺,𝑖𝑗 ∙ √𝑉𝐴,𝑖 ∙ 𝑉𝐴,𝑗 for each trait pair instead of taking the 

estimates directly from the bivariate REML outputs.  
 DTA DTS PLHT LFLN LFWD TILN PROL LBNN LBLN LBIL EL CUPR ED GE EILN TGPP TGWP GW 

DTA 
5.752 

(0.684) 
5.445 11.954 0.938 -0.008 0.036 -0.025 -0.102 -6.455 -0.550 -0.144 -0.780 -0.181 -12.24 0.062 -9.531 0.404 19.443 

DTS 
0.792 

(0.032) 
8.210 

(1.089) 
7.098 6.044 -0.047 0.020 -0.011 0.755 -2.534 -0.644 -3.135 -1.845 -0.121 -20.77 0.069 -19.31 -2.293 15.217 

PLHT 
0.380 

(0.077) 
0.189 

(0.084) 
172.12 
(24.42) 

7.197 -0.914 -0.074 -0.160 4.717 47.635 1.244 37.083 9.748 -1.532 49.594 -0.045 39.322 7.661 -27.80 

LFLN 
0.056 

(0.073) 
0.300 

(0.074) 
0.078 
(0.08) 

49.342 
(5.470) 

-0.444 -0.002 0.003 0.478 19.306 1.220 5.604 -1.298 -0.804 -30.18 0.060 -26.34 -6.874 16.352 

LFWD 
-0.004 

(0.071) 
-0.021 

(0.076) 
-0.089 

(0.081) 
-0.080 

(0.072) 
0.616 

(0.070) 
-0.008 0.008 0.209 2.380 0.044 1.283 0.302 0.301 4.790 -0.003 4.574 1.817 4.240 

TILN 
0.209 

(0.076) 
0.097 

(0.083) 
-0.078 

(0.087) 
-0.004 

(0.079) 
-0.140 

(0.077) 
0.005 

(0.004) 
0.001 0.000 0.237 0.020 -0.063 -0.030 0.010 -0.091 0.000 -0.039 0.010 0.192 

PROL 
-0.204 

(0.156) 
-0.077 
(0.17) 

-0.238 
(0.176) 

0.009 
(0.163) 

0.191 
(0.156) 

0.256 
(0.157) 

0.003 
(0.002) 

0.018 0.339 0.024 0.072 0.023 -0.016 0.067 0.000 0.092 0.044 0.164 

LBNN 
-0.031 

(0.073) 
0.192 

(0.076) 
0.262 

(0.075) 
0.050 

(0.072) 
0.194 

(0.069) 
-0.002 

(0.079) 
0.261 

(0.149) 
1.886 

(0.216) 
6.509 -0.484 -2.739 -0.412 -0.041 -2.093 -0.028 -1.417 0.332 3.533 

LBLN 
-0.146 

(0.073) 
-0.048 

(0.078) 
0.198 

(0.080) 
0.150 

(0.074) 
0.165 

(0.072) 
0.179 

(0.079) 
0.359 

(0.152) 
0.258 
(0.07) 

337.97 
(2.168) 

23.681 85.316 18.937 -0.492 129.18 0.014 112.66 9.088 -93.86 

LBIL 
-0.156 

(0.074) 
-0.153 

(0.078) 
0.064 

(0.085) 
0.118 

(0.076) 
0.038 

(0.076) 
0.187 
(0.08) 

0.314 
(0.165) 

-0.239 
(0.072) 

0.875 
(0.019) 

2.168 
(0.366) 

8.539 1.702 0.012 11.002 0.017 9.482 0.555 -9.478 

EL 
-0.004 

(0.085) 
-0.080 

(0.087) 
0.207 

(0.089) 
0.058 

(0.086) 
0.120 

(0.082) 
-0.064 

(0.095) 
0.102 

(0.177) 
-0.146 

(0.084) 
0.340 

(0.076) 
0.424 

(0.074) 
186.63 
(37.55) 

32.122 1.346 265.09 0.350 239.91 28.513 -98.55 

CUPR 
-0.096 

(0.088) 
-0.190 

(0.087) 
0.220 

(0.093) 
-0.055 

(0.091) 
0.114 

(0.087) 
-0.125 

(0.100) 
0.135 

(0.186) 
-0.089 

(0.089) 
0.304 

(0.084) 
0.342 

(0.084) 
0.695 

(0.052) 
11.459 
(2.287) 

-1.246 114.08 -0.170 106.78 7.718 -67.25 

ED 
-0.042 

(0.076) 
-0.024 
(0.08) 

-0.066 
(0.084) 

-0.065 
(0.077) 

0.216 
(0.072) 

0.080 
(0.083) 

-0.181 
(0.158) 

-0.017 
(0.077) 

-0.015 
(0.080) 

0.004 
(0.081) 

0.056 
(0.087) 

-0.208 
(0.094) 

3.140 
(0.466) 

0.420 -0.025 0.607 2.098 13.364 

GE 
-0.121 

(0.088) 
-0.171 
(0.09) 

0.089 
(0.100) 

-0.102 
(0.093) 

0.144 
(0.088) 

-0.030 
(0.103) 

0.031 
(0.195) 

-0.036 
(0.093) 

0.166 
(0.090) 

0.176 
(0.093) 

0.458 
(0.079) 

0.796 
(0.039) 

0.006 
(0.097) 

1791.9 
(477.8) 

-3.813 1667.2 108.19 -1142 

EILN 
0.203 

(0.091) 
0.189 

(0.096) 
-0.027 

(0.105) 
0.067 

(0.095) 
-0.028 

(0.094) 
-0.030 

(0.104) 
0.049 

(0.190) 
-0.158 

(0.094) 
0.006 

(0.098) 
0.092 

(0.100) 
0.202 

(0.115) 
-0.395 

(0.091) 
-0.111 

(0.097) 
-0.710 

(0.061) 
0.016 

(0.003) 
-3.500 -0.103 2.655 

TGPP 
-0.101 

(0.091) 
-0.171 

(0.091) 
0.076 

(0.102) 
-0.095 

(0.096) 
0.148 

(0.090) 
-0.014 

(0.105) 
0.046 

(0.198) 
-0.026 

(0.095) 
0.156 

(0.093) 
0.164 

(0.095) 
0.446 

(0.082) 
0.801 

(0.040) 
0.009 

(0.099) 
1.000 

(0.000) 
-0.701 

(0.065) 
1551.1 
(472.9) 

103.42 -1042 

TGWP 
0.034 

(0.114) 
-0.159 

(0.114) 
0.116 

(0.119) 
-0.194 

(0.119) 
0.460 

(0.098) 
0.026 

(0.128) 
0.170 

(0.208) 
0.048 

(0.117) 
0.098 

(0.114) 
0.075 

(0.119) 
0.415 

(0.099) 
0.453 

(0.099) 
0.235 

(0.107) 
0.508 

(0.096) 
-0.162 

(0.138) 
0.522 

(0.095) 
25.343 
(42.24) 

35.828 

GW 
0.225 

(0.083) 
0.148 

(0.088) 
-0.059 

(0.093) 
0.065 

(0.084) 
0.150 

(0.083) 
0.074 

(0.092) 
0.089 

(0.177) 
0.072 

(0.084) 
-0.142 

(0.087) 
-0.179 

(0.087) 
-0.200 

(0.095) 
-0.552 

(0.080) 
0.210 

(0.086) 
-0.750 

(0.059) 
0.582 

(0.078) 
-0.735 

(0.063) 
0.198 

(0.130) 
1294.6 
(269.2) 
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Table S6. Results from Jump-Up approach in Flury hierarchy. Lower model (unrelated 
structure) is compared against higher models of partial common principal component 
(PCPC), common principal component (CPC), proportionality and equality. Since the 
bottom-most comparison is significant, the test suggests that teosinte and maize 

landrace 𝑮-matrices are unrelated. 

Higher Lower χ2 df P-values 

Equality Unrelated 373168.025 136 0 

Proportionality Unrelated 373068.548 135 0 

CPC Unrelated 201724.419 120 0 

PCPC(14) Unrelated 201723.968 119 0 

PCPC(13) Unrelated 201390.193 117 0 

PCPC(12) Unrelated 201223.457 114 0 

PCPC(11) Unrelated 200907.826 110 0 

PCPC(10) Unrelated 200312.352 105 0 

PCPC(9) Unrelated 190861.067 99 0 

PCPC(8) Unrelated 190459.350 92 0 

PCPC(7) Unrelated 175875.368 84 0 

PCPC(6) Unrelated 158198.735 75 0 

PCPC(5) Unrelated 139626.102 65 0 

PCPC(4) Unrelated 113251.837 54 0 

PCPC(3) Unrelated 109270.987 42 0 

PCPC(2) Unrelated 84175.474 29 0 

PCPC(1) Unrelated 38611.482 15 0 
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Table S7. QST estimates for all 18 traits and P-values from univariate QST-FST test. For 
each trait, QST is estimated as QST = VB/(VB+2VW) where VB is the between-population 
additive genetic variance and VW is the within-population additive genetic variance. The 
difference between QST and FST is then calculated as QST - FST where FST is 0.1567. The 
observed QST - FST is then compared to the null distribution of QST - FST under neutrality 
to obtain the two-tailed P-values. 

Trait QST P-values 

DTA 0.5681 0.0160 

DTS 0.7823 <0.0001 

PLHT 0.9455 <0.0001 

LFLN 0.9393 <0.0001 

LFWD 0.9301 <0.0001 

TILN 0.9458 <0.0001 

PROL 0.9503 <0.0001 

LBNN 0.9618 <0.0001 

LBLN 0.9187 <0.0001 

LBIL 0.9385 <0.0001 

EL 0.9732 <0.0001 

CUPR 0.9698 <0.0001 

ED 0.9866 <0.0001 

GE 0.9715 <0.0001 

EILN 0.9824 <0.0001 

TGPP 0.9600 <0.0001 

TGWP 0.0752 0.9860 

GW 0.9769 <0.0001 

 
  



 

 

53 
 

Table S8. Individual trait contribution towards genetic constraint. Genetic constraint is 
measured as an angle (𝜃) between the actual domestication trajectory (Z) and genetic 
lines of least resistance (gmax). Using gmax calculated from the standardized teosinte G-

matrix, 𝜃𝑇 is 67.3°. Individual trait contribution towards genetic constraint is measured by 

dropping each trait and calculating the angle (𝜃𝑑𝑟𝑜𝑝𝑜𝑛𝑒
𝑖 ) using similar method. 𝜃𝑑𝑟𝑜𝑝𝑜𝑛𝑒

𝑖 <

𝜃𝑇 implies that trait i constrained evolution while 𝜃𝑑𝑟𝑜𝑝𝑜𝑛𝑒
𝑖 > 𝜃𝑇 implies that trait i assisted 

evolution. 

Trait 𝜃𝑑𝑟𝑜𝑝𝑜𝑛𝑒
𝑖  𝜃𝑑𝑟𝑜𝑝𝑜𝑛𝑒

𝑖 − 𝜃𝑇 

GE 62.82 -4.46 

DTA 63.22 -4.05 

DTS 63.35 -3.93 

PLHT 64.63 -2.65 

LFLN 65.04 -2.24 

LFWD 66.35 -0.93 

LBIL 66.52 -0.75 

PROL 67.00 -0.28 

LBLN 67.20 -0.08 

EILN 67.20 -0.08 

TILN 67.32 0.04 

LBNN 67.40 0.12 

GW 69.17 1.90 

ED 69.71 2.43 

TGWP 70.61 3.33 

EL 71.42 4.14 
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Table S9. Comparing the responses from single trait selection. Responses (Ri) are 
calculated from hypothetical selection of a single trait and compared to the actual 

domestication trajectory (Z). By selecting for trait i, |𝑝𝑟𝑜𝑗𝑍𝑅𝑖| measures evolutionary gain 

along Z while 𝜃𝑍 measures the deviation between Ri and Z. 

Trait Selection Direction |𝑝𝑟𝑜𝑗𝑍𝑅𝑖| 𝜃𝑍 (˚) 

DTA Positive 0.31 80.39 

DTS Positive 0.28 81.13 

PLHT Positive 0.34 77.86 

LFLN Positive 0.35 77.23 

LFWD Positive 0.45 73.08 

TILN Negative 0.09 84.84 

PROL Negative 0.17 82.89 

LBNN Positive 0.26 79.86 

LBLN Negative 0.05 87.98 

LBIL Negative 0.17 83.64 

EL Positive 0.97 53.77 

ED Positive 0.50 72.24 

GE Positive 1.07 45.55 

EILN Negative 0.21 81.00 

TGWP Positive 0.84 63.31 

GW Positive 0.42 75.88 
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Table S10. Progeny-parent information for teosinte. 

 

P
C

_
I0

5
_
ID

1

P
C

_
I0

6
_
ID

1

P
C

_
I0

8
_
ID

1

P
C

_
I1

1
_
ID

1

P
C

_
I5

0
_
ID

1

P
C

_
I5

2
_
ID

1

P
C

_
I5

3
_
ID

1

P
C

_
I5

8
_
ID

1

P
C

_
J
0
1
_
ID

1

P
C

_
J
0
4
_
ID

1

P
C

_
J
0
7
_
ID

1

P
C

_
J
0
8
_
ID

1

P
C

_
J
1
0
_
ID

1

P
C

_
J
1
2
_
ID

1

P
C

_
J
1
3
_
ID

1

P
C

_
J
1
4
_
ID

1

P
C

_
J
4
8
_
ID

1

P
C

_
J
5
0
_
ID

1

P
C

_
J
5
1
_
ID

1

P
C

_
K

0
2
_
ID

1

P
C

_
K

5
4
_
ID

1

P
C

_
K

5
5
_
ID

1

P
C

_
K

6
0
_
ID

1

P
C

_
L

0
6
_
ID

1

P
C

_
L

0
8
_
ID

1

P
C

_
L

1
0
_
ID

1

P
C

_
L

1
2
_
ID

1

P
C

_
L

1
4
_
ID

1

P
C

_
L

4
8
_
ID

1

P
C

_
L

5
6
_
ID

1

P
C

_
M

0
5
_
ID

1

P
C

_
M

1
5
_
ID

1

P
C

_
M

5
8
_
ID

1

P
C

_
M

5
9
_
ID

1

P
C

_
N

0
4
_
ID

1

P
C

_
N

0
7
_
ID

1

P
C

_
N

0
9
_
ID

1

P
C

_
N

1
0
_
ID

1

P
C

_
N

1
1
_
ID

1

P
C

_
N

1
3
_
ID

1

P
C

_
N

1
4
_
ID

1

P
C

_
N

4
8
_
ID

1

P
C

_
N

5
6
_
ID

1

P
C

_
N

5
7
_
ID

1

P
C

_
N

5
8
_
ID

1

P
C

_
N

6
0
_
ID

1

P
C

_
O

0
8
_
ID

1

P
C

_
O

1
0
_
ID

1

P
C

_
O

5
1
_
ID

1

P
C

_
O

5
9
_
ID

1

P
C

_
I1

1
_
ID

2

P
C

_
I5

0
_
ID

2

P
C

_
I5

5
_
ID

2

P
C

_
I5

8
_
ID

2

P
C

_
J
0
7
_
ID

2

P
C

_
J
1
4
_
ID

2

P
C

_
J
4
8
_
ID

2

P
C

_
K

5
5
_
ID

2

P
C

_
L

0
6
_
ID

2

P
C

_
L

1
2
_
ID

2

P
C

_
L

4
8
_
ID

2

P
C

_
N

0
3
_
ID

2

P
C

_
N

0
7
_
ID

2

P
C

_
N

1
0
_
ID

2

P
C

_
N

1
4
_
ID

2

P
C

_
N

5
7
_
ID

2

P
C

_
N

5
8
_
ID

2

P
C

_
O

0
8
_
ID

2

P
C

_
O

5
1
_
ID

2

P
C

_
O

5
9
_
ID

2

PC_I05_ID1 22 18 0 0 0 8 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 1 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_I06_ID1 1 37 2 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_I08_ID1 0 15 39 0 0 3 0 0 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 3 4 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_I11_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_I50_ID1 0 69 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_I52_ID1 1 33 10 0 0 43 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 6 0 0 0 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_I53_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_I58_ID1 0 4 0 0 0 4 0 22 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 2 0 0 14 0 0 0 2 0 2 3 0 0 2 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_J01_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_J04_ID1 0 5 0 0 0 0 0 1 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 27 24 0 0 1 13 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_J07_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_J08_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_J10_ID1 0 2 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 9 0 0 0 0 10 0 2 0 12 0 7 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_J12_ID1 0 2 0 0 0 0 0 0 0 1 0 0 1 15 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 23 0 0 0 33 0 10 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_J13_ID1 0 1 0 0 0 0 0 0 0 11 0 0 0 0 41 0 0 0 0 0 0 0 8 0 5 0 10 0 0 1 4 0 1 0 6 10 6 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_J14_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_J48_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_J50_ID1 0 13 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 40 1 3 0 0 0 0 1 0 5 0 0 0 16 3 5 0 0 1 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_J51_ID1 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 33 0 5 0 11 0 0 0 0 0 0 0 5 0 0 0 0 13 1 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_K02_ID1 0 5 0 0 0 0 0 0 0 8 0 0 0 0 1 0 0 2 2 40 1 0 1 0 0 0 5 2 0 0 5 1 0 0 14 0 2 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_K54_ID1 0 3 0 0 0 0 0 0 0 5 0 0 0 0 2 0 0 0 12 0 18 0 13 0 1 0 3 0 0 0 10 0 2 0 9 1 6 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_K55_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_K60_ID1 0 8 0 0 0 0 0 0 0 14 0 0 0 0 3 0 0 0 3 0 0 0 34 0 0 0 7 0 0 0 0 0 2 0 3 5 5 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_L06_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_L08_ID1 0 1 0 0 0 1 0 10 0 0 0 0 3 4 0 0 0 0 0 0 0 0 0 0 37 0 0 0 0 15 0 0 0 1 0 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_L10_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_L12_ID1 1 4 0 0 1 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 74 0 0 0 4 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_L14_ID1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 2 0 0 5 1 4 0 0 7 0 0 0 0 90 0 0 32 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_L48_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_L56_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 69 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_M05_ID1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 37 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_M15_ID1 0 22 10 0 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 1 0 0 1 2 40 1 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_M58_ID1 0 1 0 0 0 0 0 0 0 3 0 0 0 0 18 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 4 0 23 0 12 3 11 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_M59_ID1 0 0 0 0 0 1 0 1 0 0 0 0 1 7 1 0 0 0 0 0 0 0 0 0 11 0 0 2 0 13 0 0 0 36 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_N04_ID1 0 18 1 0 2 2 0 0 0 11 0 0 0 0 0 0 0 0 0 1 0 0 4 0 0 0 1 0 0 0 0 0 0 0 37 4 7 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_N07_ID1 0 4 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 3 46 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_N09_ID1 0 2 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 1 0 0 2 0 4 13 16 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_N10_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_N11_ID1 0 2 0 0 0 1 0 0 0 7 0 0 0 0 0 0 0 25 0 27 0 0 0 0 1 0 0 1 0 0 17 0 0 0 1 0 1 0 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_N13_ID1 0 2 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 2 58 10 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_N14_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_N48_ID1 0 2 0 0 0 1 0 7 0 0 0 0 0 0 1 0 0 0 2 4 0 0 1 0 1 0 0 0 0 2 0 0 0 5 1 8 2 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_N56_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_N57_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_N58_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_N60_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_O08_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_O10_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_O51_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_O59_ID1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC_I11_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41 0 0 0 2 0 0 58 0 0 0 0 0 0 0 2 13 10 0 0

PC_I50_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53 0 0 0 0 5 0 0 0 1 1 6 0 0 0 0 5 0 0

PC_I55_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 79 10 1 1 0 0 8 0 0 0 0 0 2 0 0 0 0 0

PC_I58_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 30 1 0 0 0 13 0 0 0 0 2 38 0 1 0 0 0

PC_J07_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38 0 0 0 0 9 0 0 0 0 0 23 20 0 0 0

PC_J14_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0 2 0 0 0 0 0 26

PC_J48_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 0 0 0 0 47 0 0 0 0 1 29 0 0 0 2 2 0 0

PC_K55_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 1 1 0 46 0 0 0 0 0 3 0 4 5 7 1 20

PC_L06_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 39 0 0 0 0 0 24 0 1 0 0 0 0 0 0 0 0 0

PC_L12_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 1 0 61 0 0 0 0 0 9 4 0 0 0

PC_L48_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 6 2 0 0 7 4 17 1 47 4 3 1 0 0 4 6 0 1

PC_N03_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65 1 0 0 2 5 0 11 0 13 14 3 0 0 0 0 1 0 0

PC_N07_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 35 0 1 0 2 0 38 0 0 0 3 3 0 0

PC_N10_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 22 0 0 0 0 0 0 0 44 0 0 1 0 0 6

PC_N14_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 20 0 0 1 0 4 7 1 0 0 3 56 0 0 0 0 0

PC_N57_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 18 0 0 0 0 0 44 8 3 0 0

PC_N58_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 0 1 1 0 9 0 1 0 0 1 0 0 8 45 17 0 0

PC_O08_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 2 0 4 0 0 0 0 0 1 0 0 11 16 62 0 0

PC_O51_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 2 3 2 95 0

PC_O59_ID2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 6 0 10 0 1 0 0 0 4 0 0 0 0 0 60
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Table S10. Progeny-parent information for maize landrace. 
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164_1 90 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

164_2 0 18 0 0 0 0 0 0 0 0 0 13 0 0 0 26 0 0 0 0 134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

164_4 0 0 1 0 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 90 0 0 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

164_5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

164_8 0 0 0 0 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 0 0

164_9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

164_11 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0

164_14 91 0 0 0 0 0 0 36 0 0 0 0 0 0 0 0 0 36 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

165_2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

165_4 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 87 0 0 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

165_5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

165_6 0 10 0 0 0 0 0 0 0 0 0 5 0 0 0 12 0 0 0 0 72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

165_7 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

165_10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

166_1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

166_3 0 11 0 0 0 0 0 0 0 0 0 9 0 0 0 16 0 0 0 0 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

166_8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

166_9 82 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 55 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

166_10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

166_11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

166_12 0 7 0 0 0 0 0 0 0 0 0 8 0 0 0 10 0 0 0 0 57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

167_1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

167_3 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 52 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

167_5 74 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

167_6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

167_8 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0

167_9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

167_12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 15 15 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 7 0 0 0 0

167_13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0

168_2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

168_5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 91 0 0 0 0 0

168_8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

169_1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

169_6 74 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

169_7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

169_11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 15 0 15 0 0 0 0 0 32 0 0 0 0 0 0 45

169_12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

170_1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0

170_2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 125 0 13 0 43 0 0 0 0 0 0 0 0 0 0 0 0

170_4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 13 0 28 0 0 0 0 0 20 0 0 0 0 0 0 58

170_6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 88 0 24 0 28 0 0 0 0 0 0 0 0 0 0 0 0

170_7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 20 0 39 0 0 0 0 0 25 0 0 0 0 0 0 50

170_11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 66 0 5 0 35 0 0 0 0 0 0 0 0 0 0 0 0

170_12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 5 16 0 0 0 0 0 0 0 0 0 0 0 0 0 72 0 0 0 0 0 0 2 0 0 0 0

170_13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

171_3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

171_4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 139 0 0 0 0 0

171_5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 12 0 32 0 0 0 0 0 84 0 0 0 0 0 0 57

171_6 0 0 0 0 0 0 1 0 0 0 0 0 0 70 0 0 0 0 0 0 0 72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0 0 0 0 0 0

171_7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

171_8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 35 78 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 22 0 0 0 0

171_9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

171_10 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91 0 0

171_11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0

171_13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 2 0 0 0 0 0 12 0 0 0 0 0 0 43
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Table S12. Descriptions for 18 Comparable Teosinte and Maize Landrace Traits. 
Trait Acronym Units Teosinte Description Maize Landrace Description 

Days to 
Anthesis 

DTA days 
Number of days from planting till the first 
day of at least one anther is shedding 
pollen; inspected visually. 

Number of days from planting till the first 
day of 50% of anthers are shedding 
pollen; inspected visually. 

Days to 
Silking 

DTS days 
Number of days from planting till the first 
day of silks appearing; inspected visually. 

Number of days from planting till the first 
day of silks appearing; inspected visually 

Plant Height PLHT cm 
Distance from ground to the node at the 
base of the flag leaf; measured using a 
meter stick. 

Distance from ground to the node at the 
base of the flag leaf; measured using a 
meter stick. 

Leaf Length LFLN cm 
Length of the leaf on one of the 4th to 6th 
nodes from the top of the plant; 
measured using a tape measure. 

Length of the leaf on the node bearing 
uppermost ear; measured using a tape 
measure. 

Leaf Width LFWD cm 
Width of the leaf on one of the 4th to 6th 
nodes from the top of the plant; 
measured using a tape measure. 

Width of the leaf on the node bearing 
uppermost ear; measured using a tape 
measure. 

Tiller Number TILN count Number of tillers; counted visually. Number of tillers; counted visually. 

Prolificacy PROL count 
Number of ears on the 2nd/3rd lateral 
branch from the top of the plant; counted 
visually. 

Number of ears on the uppermost lateral 
branch; counted visually 

Lateral 
Branch Node 
Number 

LBNN count 
Number of nodes in the 2nd/3rd lateral 
branch from the top of the plant; counted 
visually. 

Number of nodes/husks in the uppermost 
lateral branch; counted visually. 

Lateral 
Branch 
Length 

LBLN mm 

Length of the 2nd/3rd lateral branch from 
the top of the plant measured from main 
stalk to node below the terminal 
inflorescence; measured using a tape 
measure. 

Length of the uppermost lateral branch 
measured from main stalk to node below 
the ear; measured using a tape measure. 

Lateral 
Branch 
Internode 
Length 

LBIL mm 
Average length between two nodes on a 
lateral branch; derived from LBLN/LBNN. 

Average length between two nodes on a 
lateral branch; derived from LBLN/LBNN. 

Ear Length EL mm 

Length of an ear on the 2nd/3rd lateral 
branch from the top of the plant, 
averaged over two ears; measured using 
a ruler. 

Length of the primary ear on the 
uppermost lateral branch; measured 
using a ruler. 

Cupules per 
Row 

CUPR count 
Number of cupules/fruitcases in a row; 
derived from GE/2. 

Number of cupules/kernels in one row on 
the primary ear; counted visually. 

Ear Diameter ED mm 

Diameter of an ear as approximated by 
the average width of 10-50 fruitcases 
along the axis perpendicular to the 
fruitcase length; measured using 
SmartGrain. 

Diameter of the primary ear on the 
uppermost lateral branch at its widest 
point; measured using a caliper. 

Grains Per 
Ear 

GE count 

Number of fruitcases in an ear on the 
2nd/3rd lateral branch from the top of the 
plant, averaged over two ears; counted 
visually. 

Total number of seeds of the primary ear 
on the uppermost lateral branch; counted 
visually. 

Ear Internode 
Length 

EILN mm 
Average length between two nodes on an 
ear; derived from EL/(CUPRx2). 

Average length between two nodes on an 
ear; derived from EL/(CUPRxKRN/2) 
where KRN is number of rows on an ear. 

Total Grain 
per Plant 

TGPP count 

Predicted maximum number of fruitcases 
that a plant could have produced if all 
potential fruitcases were pollinated and 
developed to maturity; derived from GE x 
TEPP.  

Total number of seeds on a plant; 
counted visually. 

Total Grain 
Weight per 
Plant 

TGWP mg 

Predicted total seed weight that a plant 
could have produced if all potential 
fruitcases were pollinated and developed 
to maturity; derived from GW x TGPP. 

Total seed weight of a plant; measured 
on a weighing scale. 

Grain Weight GW mg 
Average weight of 50 seeds; derived 
from FCWT/2. 

Average weight of 100 seeds, in which 
50 seeds are from ears on uppermost 
lateral branch and another 50 are from all 
other ears; measured on a weighing 
scale. 
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