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SUPPLEMENTARY TEXT
Materials and Methods

Sample Population and Crossing Strategy

We sampled a single teosinte (Zea mays ssp. parviglumis) population from the
Balsas region of Mexico as a proxy for the founding population that gave rise to the first
domesticated maize 10,000 years ago. This teosinte population is chosen from
individuals in the “Mound” population near Palmar Chico, Mexico (lat. 18.6403°, long. -
100.3570°, altitude 1008 m) that were previously sampled by van Heerwaarden et al.
(2010). Initially, we grew 50 teosinte parent plants under short daylength (11 h of
daylight) in our greenhouse. These 50 teosinte parents were each grown from a single
seed collected from separate plants in Palmar Chico. Our initial strategy involved selfing
and intermating these 50 parents to produce progeny with various allelic combinations
from the different parents. Given the structure of teosinte flowers, controlled pollinations
are difficult to make. Thus, we collected pollen from individual plants and applied it
randomly to as many plants as we could, including itself. Parentage of the resulting
progeny was determined with molecular markers (see below). Due to inadequate short-
day induction, 20 parents produced only pollen but not silks. To correct this deficit, we
repeated the process with 20 additional parents, of which 18 are half-sibs to the original
20 parent that produced only pollen. The flowering induction for the second set of
parents was successful. Overall, we obtained self-fertilized (“selfed”) families for 49 out
of 70 parents with family size ranging from 3 to 95 progeny. We also obtained 288
outcross families out of 1415 possibilities with family size ranging from 1 to 75 progeny.
Exact numbers of progeny in each teosinte family are summarized in SI Appendix, Table
S10.

Similarly, we also sampled a single population of the maize landrace Tuxpefio
(Zea mays ssp. mays) from a site less than one km from the teosinte population
(University of Guadalajara collection JSG-RMM-LCL-529, lat. 18.6483", long. -
100.3542°, altitude 983 m) as a proxy for the first domesticated maize from the region
where maize was domesticated. We grew 55 maize plants under short daylength (11 h
of daylight) in a winter nursery. Unlike the teosinte crossing strategy, we divided the 55
parents into 11 groups of five and applied bulked pollen samples from within each group
to female flowers of the same five. This process provided us with a mix of selfed and
outcross plants similar to that obtained for teosinte. For the selfed families, we obtained
34 out of 55 possibilities with family size ranging from 1 to 125 progeny. For the outcross
families, we obtained 55 out of 110 possibilities with family size ranging from 6 to 141
progeny. Of the 55 plants, 40 contributed to at least one progeny as male or female
parent. Exact numbers of progeny in each maize landrace family are summarized in SI
Appendix, Table S11.

Field Design

We conducted field evaluations for the teosinte progeny over two winter seasons
(2013 and 2014) under short daylength in Homestead, FL (lat. 25.5044°, long. -80.5045°,
altitude 3 m, daylengths < 12 h for the entire growing season). Within each year, a
randomized design was used, with individual plants as experimental units. We planted
the seeds in a grid of 100 plants by 30 rows in the first season and 112 plants by 54
rows in the second season. Each plant was separated by 30 cm within rows and 76 cm
between rows. Using the same seed source as the experimental plants, we also planted
the borders surrounding the experimental plants. The borders included a row before the



first experimental row, a row after the last experimental row, rows between experimental
rows and irrigation alleys, five plants before the start of each experimental row and five
plants after the end of each experimental row. Each plant was individually staked and
tagged to keep track of the plant identity for tissue and phenotypic data collection. Due
to the lower than expected germination rate of teosinte seeds, we did not obtain
sufficient plants in the main experimental plots during the first season and so we
sampled some of the border plants as well.

We also conducted field evaluation for the maize landrace progeny alongside
with the teosinte field evaluation in a similar design. We planted the seeds in a grid of
100 plants by 30 rows in both years with the same spacing as teosinte. The borders
were also planted in similar fashion as teosinte. Unlike teosinte, we did not suffer from
germination problems in the maize landrace and so we did not have to sample any of the
border plants nor change the field layout in the second year.

Tissue Collection, DNA Isolation and Genotyping

Leaf tissue samples from the parents and progeny of teosinte and maize
landrace were collected for DNA isolation using several different methods. For the
teosinte parents, 100 — 350 mg leaf tissue samples were collected depending on the
DNA isolation protocol used, which was either DNeasy® Plant Mini Kit (Qiagen Inc.,
Germantown, MD) or modified CTAB protocol (CIMMYT, 2005). Due to poor kit yield,
DNAs were isolated and pooled from three to five leaf tissue samples for each of those
affected parents. DNAs isolated from the modified CTAB protocol were sufficient so no
pooling was required. For the maize landrace parents, 100 mg leaf tissue samples were
collected and lyophilized prior to DNA isolation with the same kit but without pooling. For
the progeny, small samples of leaf tissue (1 cm by 4 cm) were collected from each plant
at approximately the 5-leaf stage. Roughly 1% of the progeny were randomly sampled
twice as a control against tissue collection error. All of the tissue samples were
lyophilized prior to DNA isolation using DNeasy® 96 Plant Kit (Qiagen Inc.,
Germantown, MD). All DNA samples from the parents and progeny were genotyped
using Genotype-by-Sequencing (GBS) (Elshire et al. 2011). As per GBS protocaol, all
DNA samples were digested using ApeKI restriction enzyme and sequenced in 96-plex
on lllumina HiSeq 2000, SE 1X100 bp (lllumina Inc., San Diego, CA). Following that,
genotypes were called from GBS raw sequencing reads using the TASSEL5-GBS
Production Pipeline based on 955,690 SNPs in the ZeaGBSv2.7 Production
TagsOnPhysicalMap (TOPM) file (Glaubitz et al. 2014). The overall genotyping process
from raw sequencing reads to final, clean and imputed GBS dataset is highlighted in a
flowchart (SI Appendix, Fig. S4).

Phenotyping

We collected phenotype data for numerous traits in both teosinte and maize
landrace populations. The trait abbreviations can be found in Table 1 and the trait details
are summarized in S| Appendix, Table S12. We scored a total of 32 traits in teosinte and
43 traits in maize. Of these traits, 18 are shared by both teosinte and maize landrace
and are the focus of our analyses (S| Appendix, Table S12). The remaining 14 traits for
teosinte and 25 traits for maize landrace were not analyzed here since these traits were
either invariable or not scored in one of the populations. In total, we collected phenotype
data for 4,455 teosinte plants and 4398 maize landrace plants. Due to various reasons
such as tractor damage to a plant or plant death, some of the plants do not have
complete phenotype data.

Since it is impractical to obtain an accurate count of Total Ears per Plant (TEPP)
for teosinte, we used a linear regression model to predict TEPP instead. TEPP itself is



not analyzed, but instead used for calculating TGPP and TGWP. We counted the actual
TEPP for 200 plants over two years and regressed these actual counts on several other
traits that we thought might be correlated to TEPP, including Plant Height (PLHT), Leaf
Length (LFLN), Leaf Width (LFWD), Lateral Branch Node Number (LBNN), Lateral
Branch Length (LBLN), Tiller Number (TILN), Culm Diameter (CULM), Branch Number
(BRAN), Prolificacy (PROL), Days to Anthesis (DTA) and Days to Silk (DTS). From the
initial model, we kept only traits that were significant (p < 0.01), resulting in the following
prediction model that explained 67.8% of variance:

TEPP = —47.7+95.3-Year —1.9-LBLN + 15.8-TILN + 27.2- BRAN + 22.1- PROL

Shapes of teosinte fruitcases are highly variable and yet the variations are often
too subtle to be scored objectively by humans. In order to capture shape variation, we
used the software SmartGrain (Tanabata et al. 2012) to analyze scanned images of
teosinte fruitcases. First, we scanned the same 50 fruitcases (a few plants had fewer
than 50 fruitcases) that were previously weighed for Grain Weight (GW). All the scans
were done at 600 dpi on a pink background and exported as “.jpeg” format using
Silverfast v8.0.1 (LaserSoft Imaging Inc., Sarasota, FL) and Epson Perfection V800
Photo Color Scanner (Epson America Inc., Long Beach, CA). The fruitcases were
spread over a rectangular area of 215.9 mm by 94.2 mm to minimize contact among the
fruitcases. We analyzed the scanned images using SmartGrain (Tanabata et al. 2012)
where the scale was set to 0.0423 mm/pixel and individual fruitcases were identified
based on color differences from the background. We also performed manual quality
checks on each of the scanned images by excluding fruitcases that were in contact with
one or more others and also fruitcases that did not lay flat. We scored a total of four
traits using this method, including Fruitcase Length (FCLN), Fruitcase Width (equivalent
to Ear Diameter, ED), Fruitcase Length-Width-Ratio (FCLW), and Fruitcase Triangularity
(FCTR). Of these four traits, only ED is analyzed here.

Modelling Shading

A covariate for shading was modelled for each progeny (x) by considering the
possible shading effects of neighboring plants that are 119cm or less away as described
in SI Appendix, Fig. S6. We first calculated individual shading (s;) from each neighboring
plant using the following formula:

1
s; = PLHT; + 5+ PLHT; - TILN,

where s; is the shading contributed by a neighboring plant i, PLHT,; is the plant height of a
neighboring plant i, and TILN; is the tiller number of a neighboring plant i. For example,
S.1 is the shading on plant x by neighboring plant L1 (SI Appendix, Fig. S6). Shading
from border (non-experimental neighboring plants) was assumed to be the average
shading of all progeny plants, §,. Shading from an empty plot or irrigation alley is O.
Specifically only in the first year teosinte data, shading from border was assumed to be
half of 5, since the amount of border was sparser. Also, considering that neighboring
plants that are farther away shade less than neighboring plants that are close by, we
scaled s; based on the distance of neighboring plant i from plant x. Summing all the
scaled s; values gave us the total shading (Sx) on plant x:

20

=1
where di is the shortest distance of neighboring plant i from plant x, and d is the shortest
possible distance of the closest neighboring plant to plant x (30cm).



Parentage Inference

Using raw GBS data of the parents and progeny, we inferred parentage of each
progeny for both teosinte and maize landrace. Parentage inference was done in two
parts, first by estimating the realized additive genomic relationship matrix (VanRaden
2008; Endelman and Jannink 2012) in TASSELS5 (Bradbury et al. 2007), followed by
identifying the parents of each progeny using a custom R script. A progeny is considered
a selfed of a parent if there is only one progeny-parent pair with the highest additive
relationship value. A progeny is considered an outcross of two parents if there are two
progeny-parent pairs with high and similar additive relationship values.

Once the parentage inference was complete, we compared the inferred
parentage to the known maternal parentage of each progeny. Owing to our crossing
strategy, we were able to trace each progeny to its maternal parent plant from which the
seed was harvested. For the maize landrace, we also knew the five most likely paternal
parents of each progeny based on our crossing design. Comparing the parentages from
duplicate samples, we verified that there were no large-scale sample mix-ups. In a
handful of cases where the inferred parentage did not meet the expected parentage, we
investigated them on a step-by-step basis. First, we verified that the additive relationship
values of the inferred progeny-parent pairs were reasonable and non-ambiguous.
Second, we checked the planting and tissue collection notes for any known error. Third,
we looked for adjacent seeds that would match up with the inferred parentage and
suggest for seed or tissue mix-up. Once all the steps are taken, we corrected the
progeny for which we could confidently identify the source of error. For progeny that we
could not identify the source of error, we re-genotyped them using DNAs isolated from
backup tissues and inferred the parentage again. If the re-genotyped progeny still had
uncertain or unlikely parentage, then those progeny were removed from the dataset. If
the re-genotyped progeny matched the expected parentage, then the GBS genotypes
were corrected accordingly.

Uplifting from AGPv2 to AGPv4

The CrossMap (Zhao et al. 2013) software was used to convert the GBS SNP
positions from maize B73 reference AGPv2 coordinates to AGPv4 coordinates.
CrossMap requires an assembly chain file to do uplifting. However, at the time when this
work was carried out, Ensembl Plants (http://plants.ensembl.org) only provided AGPv2-
>AGPv3 and AGPv3->AGPVv4 chain files, and CrossMap’s VCF functionality was not
compatible with the AGPv3->AGPv4 chain file. A three-step approach was used for
uplifting. First, the GBS AGPv2 VCF file was converted into the bed file format; second,
CrossMap was used to uplift variant positions and allele strands to AGPv3 then to
AGPvV4 in bed file formats; third, a custom made PERL script was used to create a new
GBS AGPvV4 file in VCF format by combining data from the AGPv2 VCF file and AGPv2-
to-v4 bed file.

GBS Data Imputation

We performed two rounds of imputation. Prior to the first imputation, we filtered
the GBS data for teosinte and maize landrace separately. We removed the following: (1)
sites with minor allele frequency (maf) below 0.001, (2) sites with missing rate above
20%, (3) sites that were non-biallelic, and (4) sites with insertion-deletion (indel)
polymorphism. After the first imputation, we also removed sites that were incorrectly
mapped in AGPv4, and progeny that had more than 100 crossovers total. Incorrectly
mapped sites were only identified on Chromosome 6 between 58,557,140 and
61,656,987 bp and were discovered by a quality check (QC) described below. Similarly,
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progeny with more than 100 crossovers were identified by a QC as described below. Our
GBS data workflow is summarized in SI Appendix, Fig. S4.

When using GBS data for heterozygous individuals, imputing genotypes is an
important but challenging first step due to the ambiguity of many of the genotypes. Any
sequence-based variant calling method often provides low coverage genotype calls that
are ambiguous because each sequence read only captures a single chromosome. For
an individual, if a variant site is covered by only a single read, then it will not be known
whether that individual is homozygous or heterozygous at that site. If a site is covered by
two reads, both alleles will be observed only half the time. However, if parent phase is
known, a hidden Markov model (HMM) can be used with GBS data to infer at almost
every site in the genome which chromosomes a progeny has inherited from its parents.
Based on that process, the correct genotype of the progeny can be inferred from the
parent haplotypes.

Here, we briefly describe a two-part approach in imputing the progeny genotypes
from raw GBS data, with the details to follow in the remaining paragraphs of this section.
In the first part, we used a heuristic method to phase the parents with at least 10
progeny followed by a HMM to infer the parent states at all possible sites in the progeny.
In the second part, we improved the parent phasing using the inferred parent states and
re-imputed parent states in the progeny using the improved parent phasing. Since parent
phasing is an important step in the imputation process, and yet no reliable method is
available for our low coverage genotype calls, we created and applied two separate
algorithms to phase the parents. One method used only selfed progeny and a second
independent method used both selfed and outcross progeny. The results of the two
methods were merged. For each individual in the population, the phased parent
haplotypes were used with the Viterbi algorithm (Rabiner 1989) to determine the parent
state at each site with sufficient data. Any unknown site flanked by two sites with the
same parent state was assumed to have that state. At the end, the re-imputed parent
states were used in conjunction with the phased parent haplotypes to impute the
progeny genotypes.

Parents with sufficient number of selfed progeny (here we used a minimum of 10)
can be phased relatively easily and reliably. The phasing process began by selecting all
the selfed progeny of a single parent with all of the monomorphic sites within that family
ignored. Using only polymorphic sites, each chromosome was divided into 50-site
windows. For the first window, pairwise distances were calculated between every pair of
genotypes as the number of nucleotide differences. Genotypes were clustered using
those differences. The two largest clusters were taken to be the parental haplotypes.
Because many heterozygous loci were randomly called as one or the other of the alleles,
almost every heterozygous individual had a distinct genotype and the heterozygotes did
not cluster together. The process was repeated for the second and subsequent windows
and haplotypes from the same chromosome identified by keeping track of which
individuals carried which haplotypes. Some regions had only a single haplotype because
of segregation distortion or because the parental chromosomes were identical-by-
descent (IBD). To handle these regions, the algorithm determined whether or not the
window was IBD or whether it was likely that one haplotype had been eliminated through
selection or sampling. All individuals in an IBD region are expected to form one large
cluster. In a non-IBD region, about two thirds of the individuals are expected to be
heterozygous and, as a result, not to cluster. As a result IBD could be distinguished from
segregation distortion based on cluster size. In the case of IBD, the same haplotype was
assigned to both parents. In the case of segregation distortion one parental haplotype
was set to all missing values.



Additionally, we also separately phased each parent using both selfed and
outcross progeny at sites with sufficiently high coverage (read depth > 6) to distinguish
heterozygotes reliably. For most sites where there is sufficient depth for the parents and
one progeny, the progeny can be phased, a process which provides one of the
haplotypes from each of the parents. By clustering all of the haplotypes generated by all
combinations with a single parent, the two chromosomes from that parent can be
identified. This was repeated for windows of 40 polymorphic sites across a chromosome.
Keeping track of which progeny contain each haplotype allows adjacent windows to be
joined correctly.

Subsequently, we combined the haplotypes from the two independent phasing
methods. Sites covered by only one method were kept. Sites covered by both methods
were kept only when they agreed. In almost all cases, the agreement between the two
methods was excellent. In a few cases where there was substantial disagreement, the
parent had a large region in which the two chromosomes in a pair were IBD. As a result
the haplotypes bordering that region were in weak LD and the haplotypes from the
selfed-only progeny had been interchanged in the middle of the chromosome. When the
haplotypes from the selfed and outcross progeny were used to correct the order, the two
methods were brought into agreement.

The Viterbi algorithm describes a type of HMM that identifies the most likely
genotype given the marker data. The "true" genotype is considered to be unknown or
hidden. In this application, the algorithm was used to infer the parental chromosomes
inherited by a single progeny at each position with both progeny and parent data. The
possible (hidden) parent states are maternal chromosome 1, paternal chromosome 1;
maternal chromosome 1, paternal chromosome 2; maternal chromosome 2, paternal
chromosome 1; and maternal chromosome 2, paternal chromosome 2. The Viterbi
algorithm requires a transition matrix and an emission matrix. The transition matrix was
calculated for each pair of sites based on the probability of a recombination between
those two sites. The emission matrix was calculated assuming that homozygous loci
would be genotyped correctly with an error rate of 0.002 and the heterozygous loci
would be genotyped as homozygous at a rate that depended on read depth. For
example, at read depth 1, the probability that a heterozygous locus A/B would be
genotyped as homozygous AA is 0.5 and as homozygous BB is 0.5. At read depth 2, the
probability that a heterozygous locus A/B would be genotyped as heterozygous is 0.5, as
homozygous AA is 0.25, and as homozygous BB is 0.25.

For a single progeny, once the parent states had been imputed at sites with both
parent and progeny data, sites in the genome for which states had not been imputed and
that were bordered by sites with the same state were assigned that state. In that way,
parent states were assigned for all sites except those surrounding a recombination
event. Once the states had been imputed, the progeny genotype was inferred by
combining the phased haplotypes of the parents. As a result, the density of the imputed
genotypes for a progeny depended on how many sites were phased in its parents.

The imputation algorithm is implemented as part of the TASSEL (Bradbury et al.
2007) code base as the ParentPhasingPlugin and the ImputeProgenyStatesPlugin. They
can be run from the command line using the current version of TASSEL, which is
available at http://www.maizegenetics.net/tassel. The source code is freely available at
the TASSEL Wiki (https://bitbucket.org/tasseladmin/tassel-5-source/wiki/Home).

Quality Check on Imputation

Upon completing the first imputation, we performed a quality check (QC) using
several metrics on our GBS data to ensure high quality data for our subsequent
analyses (SI Appendix, Fig. S4-5). We first checked for crossover density along every



chromosome, where we expected to see low crossover density near centromeres and
high crossover density away from centromeres. We identified a region on Chromosome
6: 58,557,140 - 61,656,987 bp with unusually high crossover density in both teosinte and
maize landrace (Sl Appendix, Fig. S5A). We removed SNPs in this region prior to the
second imputation. We also looked at total crossover counts for each individual, where
we identified six teosinte and 98 maize landrace individuals with 100 or more
crossovers. These individuals were also removed prior to the second imputation. Since a
small proportion of crossover errors are expected to have little impact on genome-wide
association tests at individual markers, we used a liberal threshold for removing
individuals with 100 or more crossovers, even though individuals with more than 40
imputed crossovers are likely to be imputed incorrectly, as maize gametes typically carry
20 or fewer recombinations (Anderson et al. 2004; Bauer et al. 2013; Sidhu et al. 2015).
For a few self/outcross families, we plotted the minor allele frequencies (maf) along each
chromosome (Sl Appendix, Fig. S5C-E). Under Mendelian segregation, we expected to
see maf of 0 and 0.5 in a selfed family, or 0, 0.25 and 0.5 in an outcross family. Regions
showing deviations from those expected mafs would suggest either segregation
distortion (SD) or identity-by-descent (IBD). While we identified regions with SD or IBD
from the maf plots, none of these needed any correction. Lastly, we estimated the
realized additive genomic relationship matrix from the imputed GBS data and plotted the
matrix diagonals separately for self and outcross progeny (Sl Appendix, Fig. S5F-G).
The diagonals of the additive relationship matrix are estimates of 1 + f where f is the
individual’s inbreeding coefficient (Endelman and Jannink, 2012). Assuming no history of
selfing among the parents, we expected the diagonals for selfed progeny (f = 0.5) to be
centered around 1.5 and outcross progeny (f = 0) to center around 1.0. Initially the
diagonal estimates fit the 1.5 (self) and 1.0 (outcross) expectations imperfectly, so we
applied a conservative but not overly stringent post-imputation filtering criteria by
removing progeny with more than 70% missing data and sites with more than 10%
missing data. After this filtering, the expectations of diagonal values neearl.5 and 1.0
were met very well.

We also applied the QC to the output from the second imputation to ensure a
high quality imputation. The second imputation resulted in 4,669 progeny and 349,964
sites for teosinte, and 4,792 progeny and 351,719 sites for maize landrace. After the
second imputation, the previously identified erroneous spike in the crossover density plot
was gone (S| Appendix, Fig. S5B). The individual crossover counts were satisfactory,
where the crossover counts range from 10 to 95 (mean = 27.3 + 8.8) for teosinte, 12 to
105 (mean = 28.42 + 0.10) for maize landrace. Even though one individual did not pass
the 100 crossovers threshold in the second imputation, we left the individual in the
dataset since incorrectly imputed crossovers are unlikely to impact our downstream
analyses. Similar to the first QC, we did not identify any issue with the maf distribution
along chromosomes. We also applied the same post-imputation filtering of removing
progeny with more than 70% missing data and sites with more than 10% missing data.
After this step, we filtered out any monomorphic sites, leaving 4,455 progeny and 34,899
sites for teosinte, and 4,398 progeny and 40,255 sites for maize landrace. Lastly, we
imputed most of the remaining missing data using LD-kNNi (Money et al. 2015)
implemented in TASSELS (Bradbury et al. 2007) with default parameters. For teosinte,
the final dataset for analysis had 0 to 2.38% missing data per site and 0 to 0.75%
missing data per progeny. For maize landrace, these numbers are 0 to 3.62% missing
data per site and 0 to 0.23% missing data per progeny.



Univariate Analysis

Realized additive and dominance genomic relationship matrices were estimated
from the final GBS datasets using the observed allele frequencies method of VanRaden
(2008) and Endelman and Jannink (2012) implemented in TASSEL5 (Bradbury et al.
2007). Realized dominance genomic relationship matrices were estimated using the
method of Mufioz et al. (2014). The distribution of diagonal and off-diagonal elements
from these matrices are shown in S| Appendix, Fig. S7. Reliable estimation of
dominance variance components requires some close relatives with higher realized
estimates of fraternity (off-diagonal elements of the dominance relationship matrix).
Among all pairs of individuals in 0.8% (80,114 pairs) in the teosinte population and 1.6%
(156,772 pairs) in the maize landrace population were full-sibs or S1 relatives from a
common parent. These close relatives had realized dominance relationship coefficients
centered around 0.5 (SI Appendix, Fig.S8), providing sufficient information for reliable
estimation of dominance variance within each population.

A common univariate linear mixed model was fitted for each trait using ASReml
version 4 (Gilmour et al. 2015), which implements restricted maximum likelihood
estimation of model parameters.

Y;j = u+E; + (Fj — F)Br + (Fij — F)Bri + x51jBs + x5ijB(Y); + XgijBrii + XijBrai +
XpiiBr3i + Xg1jBrai + XcijBcui + X&1jBezi + X8ijBesi + XrijBeai + Aij + Dij + G X Ejj + &,

Where:
Y;; is the observed phenotype on individual j in environment i.

The following fixed effects are included in the model:

E; is the effect of environment (year) i,

F;; is the marker-based inbreeding coefficient estimate for individual j in environment i,
F is the average inbreeding coefficient for all individuals across both years,

F, is the mean inbreeding coefficient for all individuals in environment i,

Br is the average regression coefficient for phenotypes on the inbreeding coefficient (the
estimate of inbreeding depression),

Br; is the interaction effect of inbreeding depression effect with years.

xsij is the deviation of the shading measurement on the ijth individual from the overall
average shading measurement,

Bs is the average shading effect,

xpi; IS a dummy variable indicating if a plant is in an edge (border) row for teosinte plants
or in a row adjacent to a tractor tire passing lane for maize landrace plants,

B(Y); is the effect of border rows in the first year (since no plants were measured in
border rows in the second year),

xgij and xgi]. are p = first to fourth order polynomials of the deviation in the row and
column directions, respectively, of the ijth plant’s position from the center of the field in
year i,

Brpi and B¢p,; are the regression coefficients associated with the pth polynomials for row
and column trend effects within year i, respectively.

The following random effects are included in the model:

A;; is the polygenic additive effect of the ijth plant, with distribution A;; ~ MVN(0, Ad}),
where A is the realized additive genomic relationship matrix and ¢?is the estimate of the
additive genetic variance,



D;; is the polygenic dominance effect of the ijth plant, with distribution D;; ~

MVN(0, Da3), where D is the realized dominance genomic relationship matrix and o3 is
the estimate of the dominance genetic variance,

G X Ej; is the interaction of polygenic effect of the ijth plant with environment i, with
distribution G x E;; ~ MVN(0, (A; @ Az)0z), Where 4; is the realized additive
relationship matrix for individuals grown in year i and (4, @ A,) is a block-diagonal
structure that includes non-zero covariances for plants grown in the same year, but zero
covariance for plants grown in different years.

g;j s the residual effect associated with the ijth plant, with heterogeneous variances

across years: g; ~ N(0,02).

Based on the model’s variance component estimates, we estimated the following:

~2
Narrow-sense heritability as h? = ——4—— where 62 is the average error variance
GA+O-D+O-G><E+GE
across years.
o 2 65+55
Broad-sense heritability as H* = 7——X4"——
04+0p+0Gxgt0%
: o . : Vo, 3
Proportion of phenotypic variance due to dominance variance as /Vp = S153+00.400

Proportion of phenotypic variance due to genetic-by-environment variance as VGXE/VP =

~2
OGxE

=222 | =2 ~2

O'A+O'D+O'GxE+O'§

We inferred the evolutionary history for each individual trait by applying the
univariate breeder’s equation (Lush 1937) on our univariate analysis results. The
univariate breeder’s equation is given by the following (Equation 13.6b from Walsh and
Lynch (2018)):

Va

VVp
where R is the response or the difference in population mean before (z,,_;) and after (z,,)
selection, h? is the narrow sense heritability, i is the selection intensity, V is the

phenotypic variance and V, is the additive genetic variance. We can generalize and re-
express the univariate breeder’s equation as:

R=h2V, =i

For N generations of selection with a constant i, we have the following equations:

Vao

Ve

Zl_ZOZi

10



Summing up all the equations leads to:

N-1
|4 % Van- v,
Zy — Zp =i<—A’0 + Al +"'+—A'N L ) ZiZ An
VVpo Ve VVeN-1 n=0 Ven
Or equivalently:

. ZN — Zp
l =
N-1_Van

n=0 ,—VP,n

The phenotypic variance is often simplified as the sum of additive genetic and
environmental variances as the other variances are assumed to be negligible.
Furthermore, common literatures often assume that the environmental variance remains
constant over multiple generations of selection and that the additive genetic variance
always decreases under selection (Bulmer 1971; Verrier et al. 1990; Hospital and
Chevalet 1993; Roff 1997). However, we found these assumptions to be unrealistic as
our results clearly show that the environmental variances between teosinte and maize
landrace are different and that the additive genetic variances do not necessarily
decrease under selection (SI Appendix, Table S1-2). Environmental variance has been
shown to increase with fixation of alleles that affect environmental sensitivity (Mackay
and Lyman 2005). Such alleles may either be directly selected or indirectly selected via
linkage disequilibrium during maize domestication. Additive genetic variance can
increase with mutations and epistasis, especially in a population that has a long period
of time to evolve. Thus, we opted against modeling the change in additive genetic
variance using the methods described in the current literature. We instead modelled the
change in genetic architecture of each quantitative trait due to selection as constant
change in additive genetic and phenotypic variances per generation. Even though our
models are likely naive, our models are still probably closer to the reality than any model
proposed in the current literature.

For our model, we assumed that the change in variance is constant every generation,
where:

Vo=V +AV
V, =V, +nAV
For N generations, the change in variance can be estimated as following:

VW =V
N

AV =

Using our teosinte population as the starting point (generation 0) and maize landrace
population as the ending point (generation N), we can easily estimate V,,, and Vp , for
any n < N generation and thus obtain the estimate of selection intensity (i) as following:
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ZN — 29
N—1 VA,O + nAVA

n=0 A/ VP,O + nAVP

1=

X

Where:

N is the number of generations of selection

zy is the trait outcross mean for maize landrace

Z, Is the trait outcross mean for teosinte

V4,0 is the additive genetic variance for teosinte

Vs o is the phenotypic variance for teosinte

V4 n is the additive genetic variance for maize landrace
Vp v is the phenotypic variance for maize landrace

AV, can be estimated as AV, = (Vyy — Va0)/N

AVp can be estimated as AVp = (Vpy — Vpo)/N

Multivariate Analysis

Bivariate linear mixed model analyses were conducted using ASReml version 4
(Gilmour et al. 2015) for each pair of traits to estimate additive genetic correlations.
Because computational demand increased dramatically for bivariate analysis compared
to univariate analysis, we used a reduced multivariate analog of the univariate analysis
model:

Yijik = M + Ei + (Fij — F)Bri + (Fij — E)Brik + XsijBskc + XpijB(Y)ix + XgijBruir +
x}z?ij.BRZik + x133ij.8R3ik + xl%ijﬁRéLik + xcijiBerik + x(,z“ijk.BCZik + xgijkﬁcsik + xl%ij.BCzLik + Ajji +
Eijk

Where Y is the measurement of trait k on individual j in environment i, and the fixed
model terms are the same as in the univariate model, but they are nested within trait.
The random terms in this model include the additive polygenic effect, A, which has
distribution A;;, ~ MVN(0,A ® T), where T is a 2x2 additive genetic variance-
covariance matrix for traits 1 and 2:

Van Covy 2
T = c
0Vp 1,2 Va2

The random residual terms in this model are correlated across traits within a plant: &;; ~
MVN(0,I ® E), where | is an identify matrix with dimension equal to the total number of
plants measured and E is a 2x2 residual variance-covariance matrix:

E= [ Verra CovErr,l,Z].

CoVgrr 12 VErr,2

Restricted maximum likelihood estimates of the variance and covariance
components were used to estimate the additive genetic correlation between traits k and
K’

O Akkr

Takker = 202
O Ak9 Akr
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Significance of the genetic correlations can be determined by first applying
Fisher's Z-transformation to the correlations and their standard errors, and then
compared to the standard normal distribution for the corresponding two-tailed P-values

tanh™1(rg)

of 2-P| |————=
< tanh—l(SErG)
can be found in SI Appendix, Table S4 and S5.

> 1.96) < 0.05. The genetic correlations and their standard errors

Using teosinte and maize landrace distance matrices, we confirmed the genetic
relationship among the 18 traits. Elements of the distance matrix are calculated from the
elements of the genetic correlation matrix as 1 — |r;| where 7, is the genetic correlation
between any two traits. To visualize the distance matrices, we used Principal Coordinate
Analysis (PCoA) and Neighbor-Joining (NJ) tree. PCoA is performed using cmdscale
function in R (R Core Team 2018) while NJ-tree is calculated using nj function
implemented in the “ape” package (Paradis et al. 2004) in R (R Core Team 2018).
Based on the results shown in Fig. 4 and S| Appendix, Fig. S1, we saw a good
agreement between the PCoA and NJ plots and our pre-defined trait groups of
Vegetative/Flowering Time, Environmental Response and Reproductive.

A clear result of the genetic correlation estimates is that GE and CUPR are
identical in teosinte, whereas GE and TGPP are nearly identical in maize. Further
analysis of the genetic correlation matrices and genetic covariance matrices (G-matrices)
is hindered by the singularity (or near-singularity) in the matrices caused by these
identical or nearly identical traits. Therefore, for subsequent tests on the eigenstructure
of genetic correlation matrices and G-matrices, we dropped CUPR and TGPP from the
matrices and analyzed the resulting sub-matrices of 16 traits.

We tested for conservation in genetic correlations by comparing teosinte and
maize landrace genetic correlation matrices using Mantel test (Mantel, 1967). The
Mantel test calculates correlation between the elements of two matrices and tests if the
correlation is significantly different from zero. Therefore, significant Mantel test would
suggest that two matrices are correlated and in our case, genetic correlations are
preserved during domestication. Aside from testing the overall conservation in genetic
correlations, we also applied Mantel test on genetic correlations within each trait group.
These additional tests allow us to compare whether the overall genetic correlations or
within trait group genetic correlations are better conserved. All Mantel tests are
performed using mantel.test function with 10,000 permutations implemented in the
package “ape” (Paradis et al. 2004) in R (R Core Team 2018).

Additionally, we also calculated the angle between the first two leading
eigenvectors of the teosinte and maize landrace genetic correlation matrices as a
supporting evidence for Mantel tests. The eigenvectors are identified using eigen
function in R. The angle between eigenvectors measures the deviation between teosinte
and maize landrace genetic correlations, i.e. the larger the angle, the less similar the
genetic correlations are. Similar analysis was also repeated on the three submatrices
based on trait groups.

We compared the structure of G-matrices for teosinte and maize landrace using
Mantel test (Mantel 1967), Flury hierarchy (Flury 1988), Random Skewers (Cheverud
and Marroig 2007), Bayesian estimation (Ovaskainen et al. 2008), and multivariate Q¢; —
Fyr tests (Martin et al. 2008). For the first four tests, we used G-matrices from teosinte
(G7) and maize landrace (G,) that were previously calculated from our multivariate
analysis. For the multivariate Qqr — Fgr test, we used G-matrices from between-
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population (Gg) and within-population (Gy,). Formally, Gg and Gy, ought to be calculated
by combining the teosinte and maize landrace raw datasets and running the multivariate
analysis again. We opted for a more time-efficient method by estimating the elements of
Gg as Gg;; = J(T:-My)(T;-;) where Ti/j and 1\7[l-/j are teosinte and maize landrace
outcross means for i"/j'" trait estimated from the univariate analysis. We also estimated
the elements of Gy, as Gy ;; = 3(6r,;+6m,5). Both Gg and Gy, were bent to be positive
definite (PD) using nearPD function implemented in the “Matrix” package (Bates and
Maechler 2017) in R (R Core Team 2018). In addition, we also estimated the Fg; for
teosinte and maize landrace using varcomp.glob function implemented in the “hierfstat”
package (Goudet 2004) in R (R Core Team 2018). A total of 21,157 imputed GBS SNPs
that are presumably neutral and shared between teosinte and maize landrace were used
in estimating neutral Fg;.

Mantel test for the two G-matrices was performed similarly to the previous Mantel
test for genetic correlation matrices, with the exception that we did not perform Mantel
test for each trait group within the G-matrices.

Flury hierarchy tests for similarity between two matrices by comparing their
eigenvectors and eigenvalues in a hierarchical way (Flury, 1988). The test is provided in
the Common Principal Component (CPC) software (Phillips and Arnold, 1999). The CPC
software allows us to test multiple hypotheses between different models like unrelated
structure, partial common principal components, common principal components, matrix
proportionality and matrix equality (Phillips and Arnold, 1999). Using the CPC software,
we tested the G-matrices from teosinte and maize landrace using jump-up approach.
This approach tests between the model of unrelated structure and other higher models
in the hierarchy. The null hypothesis can be rejected based on the first significant test (P
< 0.05) starting from the bottom of the hierarchy and any subsequent significant test is
ignored. Since the CPC software uses maximum likelihood method for matrix
comparison, both teosinte and maize landrace G-matrices are required to be strictly PD.
To achieve that, we bent our G-matrices to be PD using nearPD function implemented in
the “Matrix” package (Bates and Maechler 2017) in R (R Core Team 2018).

Random Skewers tests for similarity between two matrices (G) by comparing the
predicted evolutionary responses (R) calculated using the multivariate breeder’s
equation of R = GB (Cheverud and Marroig 2007). Under the null hypothesis, correlation
between teosinte and maize landrace R is no different from the correlation between R
calculated from two random G-matrices. As for the alternative hypothesis, correlation
between teosinte and maize landrace R is higher than the null correlation. The R for
teosinte, maize landrace and null distribution are generated by multiplying each G to n-
randomly simulated . The two random G-matrices for the null distribution are made to
have the same size as teosinte and maize landrace G-matrices and the diagonal
(variance) components are bound by the smallest and largest diagonal (variance)
components of teosinte and maize landrace G-matrices. Random Skewers is performed
using skewers function implemented in the phytools package (Revell 2012) in R (R Core
Team 2018). We applied 1000 simulations and obtained the correlation of those
resulting R, where the test significance (P < 0.05) suggests that the R under comparison
are more correlated than R generated by random chance and thus the two G-matrices
are similar. In addition, we also sub-divided the G-matrices into trait groups and tested
each group with Random Skewers to identify group-specific difference in R.

We also implemented a Bayesian method to compare the teosinte and maize
genetic covariance matrices developed by Ovaskainen et al. (2008). This method takes
random samples of vectors from a multivariate normal distribution described by the
teosinte G-matrix and computes the probability of the vector arising from the teosinte G-
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matrix (prr) and the probability of the vector arising from the maize G-matrix (prm). The

ratio g = pp+"; is a measure of the differentiation of the two matrices, ranging from 0
™ TT

for completely distinct matrices to 0.5 for identical matrices. A posterior mean value of g
was estimated by sampling 1000 random vectors from the teosinte G-matrix and
averaging over the resulting 1000 individual estimates of q. We used the formula for
estimating q from Walsh and Lynch (2018), Appendix 3, with the following correction:

n

1
|G, | "Zexp(—x{ 63" xi/2)

1
Q(f: g) = ; 1 1
i=1 |G| Z exp(—x] 63" x;/2) + |G| Zexp(—x] 61" x;/2)

The converse probabilities were also tested (probability of a vector sampled from
the maize G matrix arising from either the maize or teosinte G-matrix), with nearly
identical results. The tests were also performed for sub-matrices of traits within each of
the three trait groups.

Multivariate Q¢ — Fgr test, similar to its original univariate counterpart (Spitze,
1993), assesses for neutral evolution by comparing genetic differentiation of two or more
populations at multiple-trait level (Qsr) to genetic differentiation at neutral loci (Fsr).
Under the null hypothesis, any difference in the G-matrices from different populations is
solely attributable to neutral drift and thus Qsr = Fgr (Martin et al. 2008; Leinonen et al.
2013). Using a dual test developed by Martin et al. (2008), we can perform multivariate
Qsr — Fgr test on our teosinte and maize landrace populations. The dual test is provided
as R scripts in Martin et al. (2008) and the scripts were designed to use raw dataset from
a breeding design as the input. Since we already had the necessary components
calculated from our multivariate analyses, we instead modified the scripts to
accommodate our dataset. For the first part of the test, the original null hypothesis of the
Qsr — Fgr test can be re-expressed as Gg = 2Fsr /(1 — Fsp) Gy = psr Gy (Martin et al.
2008). Neutrality is rejected if the observed coefficient psr ; is significantly greater than
the expected neutral coefficient psr , in which the significance is determined by non-
overlapping 95% confidence intervals (CIs) for psr ¢ and psr 5. Cl for psr ¢ is calculated
using the R scripts (Martin et al. 2008) through maximum likelihood method. ClI for psr
is calculated by bootstrapping the neutral Fg; values for 10,000 times and deriving the
lower and upper bound of the interval from Fgr Cl using psr y = 2Fsr/(1 — Fsr) (Whitlock
and Guillaume 2009). For the second part of the test, the estimates of mean square
matrices between (MSg) and among (MS),,) populations are compared using likelihood
ratio test and expected to be proportional under the null hypothesis (Martin et al. 2008).
To test for this, we again modified the R scripts to back-calculate the mean squares
using MSg = nsGp + Gy and MSy, = Gy, where n, is the adjusted sample size to
account for unbalanced sample sizes between populations, as provided in equation (9)
in Martin et al. (2008).

Univariate Q¢ — Fgr test assesses for neutral evolution of individual traits by
comparing genetic differentiation of two or more populations at single-trait level (Qsr) to
genetic differentiation at neutral loci (Fsr). Under the null hypothesis, any difference in
the trait additive genetic variance from different populations is solely attributable to
neutral drift and thus Q¢ = Fsr Or Qs — Fsr = 0 (Leinonen et al. 2013). Using an
improved parametric bootstrapping approach developed by Whitlock and Guillaume
(2009), we can perform univariate Q¢ — Fgp test on our teosinte and maize landrace
populations. We modified the R scripts for the test from Whitlock and Guillaume (2009)
to fit our test inputs as we already had the necessary components calculated from our
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univariate analyses. We calculated the Qg for each trait as Qg = Vg (Vz + 2Vi,,) where
Vy is the between-population additive genetic variance while vy, is the within-population
additive genetic variance. For every i" trait, we calculated V; as Vg ; = g(ﬂ-m)z where T;
and M; are teosinte and maize landrace outcross means respectively. We also
calculated Vyy, as Vyy,; = 2(vr,+va,) Where Vr; and Vy,; are teosinte and maize landrace
additive genetic variances respectively. F; is derived by averaging previously calculated
Fsr across all GBS loci. The null distribution of Q¢ — Fgp is constructed by simulating
each component in Vgo/(Vgo + 2Vy,) — Fsr 10,000 times (Whitlock and Guillaume 2009).
For each trait null distribution, Vy,, is taken as is, while Vy, is estimated from V;,, and Fqr
by assuming neutrality. Under neutrality, Qsr = Fgr and thus Vgo/(Vgo + 2Vy,) = Fsr. By

rearranging the equation, we get Vg, = @ Within each simulation, Vz, and V},, can
—4SsT

be sampled from Vg, respectively by assuming Lewontin-Krakauer

w
distribution for Vo and Vy,, (Whitlock 2008). Fgr, on the other hand, can be obtained by
sampling with replacement from the previously calculated Fg; at multiple GBS loci.
Finally, we computed the two-tailed P-value for each Q¢; — Fsr from the null distribution.
For the analyses in the following section, we relied heavily on matrix algebra and
hence, some useful terminologies are provided here:

x2(dfp) x2(dfw)
—Bfg and VW—W

Given two vectors of the same size, a and b,

1. @ is the unit vector of a as given by @ = %

2. a-bisthe dot product of a and b, which is the sum of product of the pairwise
elements

3. |a] is the length of a, which is the square root of the sum of squares of the elements

We compared the genetic lines of least resistance, gmnq, (Schluter 1996), to the
actual domestication trajectory Z. g..ax iS the eigenvector of G that accounts for the most
variation in G while Z is a vector of difference in trait means between teosinte and maize
landrace. Since the eigenvectors sensitive to the magnitude of each trait, we opted to
standardized the G-matrix and Z such that each trait has a genetic standard deviation or
variance of 1. We first calculated g,,q,r from the teosinte G-matrix and compared the
angle between Z and g4, Using the following formula:

— 17,5
0 =cos " Z" Gnax

The angle 08 ranges from 0° to 90° where larger angle means larger deviation in the
direction between Z and g,,4x, OF equivalently, stronger evolutionary constraint.
Additionally, we also repeated the same process using the g,,,,x» cOmputed from the
maize landrace G-matrix. The angle 8 obtained from teosinte and maize landrace were
compared.

We inferred the co-evolutionary history of multiple traits by using the multivariate
version of the breeder’s equation, as given by R = Gf. For n traits, R is a vector of
responses (R, R,, ..., R,), G is an n X n additive genetic variance-covariance matrix, and
B is a vector of selection gradients (84, 82, ..., Bn)- B; €lements are the partial linear
regression coefficients of relative fitness on individual trait, where ; = 0 represents no
fithess advantage for any given trait value, 8; < 0 represents stronger fithess advantage
for lower trait value and S; > 0 represents stronger fithess advantage for higher trait
value. Unlike its univariate counterpart, the change in G in every generation is likely
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complicated and cannot be easily modelled. Instead, we applied a “what-if’ approach on
the multivariate breeder’s equation.

We first simulated 18 unique g where each B¢ had only a single element with a
value of one and the remaining elements with a value of zero. We then multiplied G by
each B to obtain R?, which is the hypothetical overall response given selection on a
single trait i. Under the assumption that maize domestication is largely driven by
selection on a single trait, we compared each R! to the actual domestication trajectory Z.
Again, the G-matrix and Z are standardized such that each trait has a genetic standard
deviation or variance of 1. The comparison between R’ and Z is measured by the angle
between the two vectors (8;) and also the scalar projection of R* on Z (|proj;R'|). 6,
measures the deviation in the direction between R! and Z and it ranges from 0° to 180°
where larger angle means larger deviation. |pronR"| measures the amount of
evolutionary gain contributed by R? towards Z and so larger value means larger
evolutionary gain.

The angles 8, are calculated as following:
0; =cos 1R'-Z
The scalar projection |pronR"| is calculated as following:

|proj;R!|=R"-Z
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R Scripts

FHAHEHH A R R
#HEHHHAE

## R scripts used in this manuscript (roughly in the same order as presented in the
Results). ##

FHAHEHH A R R
#HEHHHAE

library (Matrix)

library (reshape?)

library (ggplot2)

library (ggrepel)

library (ape)

library (phytools)

library (hierfstat)

library (mvtnorm)

library(gridExtra)

setwd ("./")

### Read in genetic correlation (lower left triangle is teosinte; upper right triangle is
maize landrace)

corG <- read.delim("corG.txt", header=T, as.is=T)

corG <- corG[,-1]

rownames (corG) <- colnames (corG)

corG <- as.matrix (corG)

### Read in the standard errors for genetic correlation (lower left triangle is teosinte;
upper right triangle is maize landrace)

corG.se <- read.delim("corG se.txt", header=T, as.is=T)

corG.se <- corG.sel[,-1]

rownames (corG.se) <- colnames (corG.se)

corG.se <- as.matrix (corG.se)

### Isolate teosinte genetic correlations, mirror over to the lower/upper triangle and
fills in diagonals with 1.

rT <- corG

rT[upper.tri(rT)] <- NA

rT.temp <- rT

rT <- t(rT.temp)

rT[lower.tri(rT)] <- rT.temp[lower.tri (rT.temp)]

diag(rT) <- 1

### Isolate maize landrace genetic correlations, mirror over to the lower/upper triangle
and fills in diagonals with 1.

rM <- corG

rM[lower.tri(rM)] <- NA

rM.temp <- t(rM)

rM[lower.tri(rM)] <- rM.temp[lower.tri (rM.temp) ]

diag(rM) <- 1

### Read in the variance components
varcomp <- read.delim("varcomp.txt", header=T, as.is=T)

### Construct the genetic variance-covariance (G) matrix for teosinte and maize landrace
stdT <- sqgrt(varcomp[1:18,4])
stdM <- sqgrt(varcomp[19:36,4])

GT <- rT

GM <- rM

for(i in 1l:length (stdT)) {
GT[i,] <- GT[i,]*stdT[i]
GT[,1] <- GT[,i]*stdT[i]
GM[i,] <- GM[1i,]*stdM[1i]
GM[,1] <= GM[,i]*stdM[1]

### Calculate the difference in trait means between teosinte and maize landrace
7 <- varcomp[19:36,9] - varcomp[1:18,9]

names (Z) <- rownames (GT)

7 .stdT <- Z/stdT
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7Z.stdM <- Z/stdM

### Subset the teosinte genetic correlations matrix into vegetative (veg), environmental

response (enr) and reproductive (rep).
vegT <- rT[1:5,1:5]

enrT <- rT[6:10,6:10]

repT <- rT[11:18,11:18]

### Subset the maize landrace genetic correlations matrix into vegetative (veg),
environmental response (enr) and reproductive (rep).

vegM <- rM[1l:5,1:5]

enrM <- rM[6:10,6:10]

repM <- rM[11:18,11:18]

### Subset the teosinte genetic covariances matrix into vegetative (veg), environmental
response (enr) and reproductive (rep).

vegGT <- GT[1l:5,1:5]

enrGT <- GT[6:10,6:10]

repGT <- GT[11:18,11:18]

### Subset the maize landrace genetic covariances matrix into vegetative (veg),
environmental response (enr) and reproductive (rep).

vegGM <- GM[1:5,1:5]

enrGM <- GM[6:10,6:10]

repGM <- GM[11:18,11:18]

### Create new datasets to exclude CUPR and TGPP for some of the multivariate analyses.
temp.re <- c("CUPR","TGPP")

varcomp.re <- varcomp[! (varcomp[,1l]%in%temp.re),]; rownames (varcomp.re) <- NULL

### Genetic correlation matrices for 16 traits (CUPR and TGPP excluded) .

rT.re <- rT[! (rownames (rT)%in%temp.re), ! (colnames (rT)%in%temp.re)]
rM.re <- rM[! (rownames (rM)%in%temp.re), ! (colnames (rM)%in%temp.re)]

### Genetic covariance matrices for 16 traits (CUPR and TGPP excluded) .

GT.re <- GT[! (rownames (GT) $in%temp.re), ! (colnames (GT)%inStemp.re)]
GM.re <- GM[! (rownames (GM) $in%temp.re), ! (colnames (GM)%in%temp.re) ]

### Difference in trait means between teosinte and maize landrace for 16 traits (CUPR and

TGPP excluded) .

Z.re <- Z[!(names(Z)%in%temp.re) ]

Z.stdT.re <- Z.stdT[! (names (Z.stdT)%in%temp.re) ]
Z.stdM.re <- Z.stdM[! (names (Z.stdM) %in%temp.re) ]

### Genetic correlation sub-matrices for 6 Reproductive traits (CUPR and TGPP excluded)

repT.re <- repT[! (rownames (repT)%in%temp.re), ! (colnames (repT)%in%temp.re) ]
repM.re <- repM[! (rownames (repM) $in%temp.re), ! (colnames (repM)Sin%temp.re) ]

### Genetic covariance sub-matrices for 6 Reproductive traits (CUPR and TGPP excluded) .

repGT.re <- repGT[! (rownames (repGT) %$in%temp.re), ! (colnames (repGT)%in%temp.re) ]
repGM.re <- repGM[! (rownames (repGM) %$in%temp.re), ! (colnames (repGM)%in%temp.re) ]

### Bent the genetic covariance matrices for 16 traits (CUPR and TGPP excluded) to be
Positive Definite.

GT.re.PD <- as.matrix (nearPD(GT.re, corr=F)[[1]])

GM.re.PD <- as.matrix (nearPD(GM.re, corr=F)[[1]])

### Bent the genetic covariance sub-matrices for 5 Vegetative traits to be Positive
Definite.

vegGT.PD <- as.matrix (nearPD(vegGT, corr=F)[[1]])

vegGM.PD <- as.matrix (nearPD(vegGM, corr=F)[[1]])

### Bent the genetic covariance sub-matrices for 5 Environmental Response traits to be
Positive Definite.

enrGT.PD <- as.matrix (nearPD(enrGT, corr=F)[[1]])

enrGM.PD <- as.matrix (nearPD(enrGM, corr=F)[[1]])

### Bent the genetic covariance sub-matrices for 6 Reproductive traits (CUPR and TGPP
excluded) to be Positive Definite.

repGT.PD <- as.matrix (nearPD (repGT.re, corr=F)[[1]])

repGM.PD <- as.matrix (nearPD (repGM.re, corr=F)[[1]])
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### Custom functions used in this R script. ###
FHHF A F A A AR AR FF SR A AR A FF SRS H

### The following function is used in PART 5.

### Function to compare the first two leading eigenvectors of two matrices by measuring
the angles between them.

### Also outputs the percent variance explained by the two leading eigenvectors for each
matrix.

theta.cal <- function (matl, mat2) {

matlvecl <- eigen(matl) [[2]][,1]
matlvec2 <- eigen(matl) [[2]][,2]
mat2vecl <- eigen(mat2) [[2]][,1]
mat2vec2 <- eigen(mat2) [[2]][,2]

out.theta.pve <- data.frame (label=c("theta","pve.matl", "pve.mat2"), eigenvectorl=NA,
eigenvector2=NA)

out.theta.pve[l,2] <- if (acos (matlvecl%*%mat2vecl)*180/pi < 90)

{acos (matlvecl%*%mat2vecl) *180/pi} else {180 - acos(matlvecl%*$mat2vecl)*180/pi}
out.theta.pve[l,3] <- if (acos(matlvec2%*%mat2vec2)*180/pi < 90)

{acos (matlvec2%*%mat2vec2) *180/pi} else {180 - acos(matlvec2%*%mat2vec2)*180/pi}
out.theta.pve[2,2] <- 100*eigen(matl) [[1]][1]/sum(eigen(matl) [[1]] [eigen(matl) [[
out.theta.pvel[2,3] <- 100*eigen(matl) [[1 /sum(eigen (matl) [[1]] [eigen (matl) [[
out.theta.pve[3,2] <- 100*eigen(mat2) [[1 /sum(eigen(mat2) [[1]] [eigen (mat2) [[
out.theta.pve[3,3] <- 100*eigen(mat2) [[1 /sum(eigen(mat2) [[1]] [eigen (mat2) [[
return (print (out.theta.pve, row.names=F)

}

1
1
1
1

1
11102 1
1101 ]
1102 ]
)

### The following function is used in PART 6.

### Function to compute 'q' from Ovaskainen's test for comparing two G-matrices.

### Originated from Ovaskainen et al. (2008)

### Modified by Walsh & Lynch (2018) Appendix 3, Example A3.1.

### Corrected by Jim Holland.

### 'q' is the probability that a vector of values sampled from one MVN distribution
could be closer to another MVN distribution.

### If two G matrices are identical, then g = 0.5.

### If two G matrices are completely unrelated, then g = 0.

### Nsamp refers to the number of samples drawn from a MVN distribution that is based on
Gl.

g.Ova <- function(Gl, G2, Nsamp) {

X1 <- rmvnorm(n=Nsamp, sigma=Gl, method="chol")

pl <- apply(X1l, MARGIN=1, FUN=dmvnorm, sigma=Gl)

p2 <- apply(X1l, MARGIN=1, FUN=dmvnorm, sigma=G2)

g.out <- p2/(pl + p2)

g.summary <- c(mean(g.out), sd(g.out)/sqrt (Nsamp))

names (gq.summary) <- c("g.mean", "g.se")

return (g.summary)

}

### The following function is used in PART 7.
### Function to compare the Blows' subspace of each teosinte and maize landrace
standardized G-matrices to the response Z.
blows.cal2 <- function(matl, mat2, zl1l, z2, k, n){
matlval <- eigen(matl) [[1]]
mat2val <- eigen(mat2) [[1]]
pvel <- sum(matlval[l:k])/sum(matlval[matlval>0])*100
pve2 <- sum(mat2val[l:k])/sum(mat2val[mat2val>0])*100

Al <- eigen(matl) [[2]1]1[,1:k]

A2 <- eigen(mat2) [[2]]1[,1:k]

betal <- c(solve(matl)%*%(z1/n))

beta2 <- c(solve(mat2)%*%(z2/n))

pl <- c(Al%*%solve (t (Al)%$*%Al)%$*%t (Al)$*Sbetal)

P2 <- c(A2%*%solve (t (A2) $*SA2) $*St (A2) $*Sbeta?2)

theta.betal <- acos(pl%*%betal/ (sqrt (sum(pl”2))*sqrt (sum(betal”2))))*180/pi
theta.beta2 <- acos(p2%*%beta?2/ (sqgrt (sum(p2°2)) *sqgrt (sum(beta272))))*180/pi

#project RESPONSE into the subspace

pl.r <- c(Al%*%solve (t(ALl)3*%ALl)3*St (ALl)$*%zl)

p2.r <- c(A2%*%solve (Lt (A2)3*%A2)3*St (A2)$*%22)

#compute angle between response and its projection into G subspace
theta.rl <- acos(pl.r%$*%z1/ (sqrt(sum(pl.r”2))*sqgrt(sum(z172))))*180/pi
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theta.r2 <- acos(p2.r%*%zl/ (sqrt (sum(p2.r"2))*sqrt (sum(z2°2))))*180/pi
#compute the angle between response vector and each eigenvector of G

theta.rl.eig = acos(abs(t(zl)%*%Al/sqrt (sum(z172))))*180/pi

theta.r2.eig = acos (abs(t(z2)%*%$A2/sqgrt (sum(z2°2))))*180/pi #compute the angle between
beta and each eigenvector of G

theta.bl.eig = acos(abs(t(betal)%$*%Al/sqrt (sum(betal”2))))*180/pi

theta.b2.eig = acos(abs (t (beta2)%$*%A2/sqgrt (sum(beta2”2))))*180/pi

return (list (pve.matl=pvel, pve.mat2=pve2, theta.betal=c(theta.betal),
theta.beta2=c (theta.beta?2), theta.rl = c(theta.rl),
theta.r2 = c(theta.r2), theta.rl.eig = theta.rl.eig, theta.r2.eig =
theta.r2.eig, theta.bl.eig = theta.bl.eig, theta.b2.eig = theta.b2.eiqg) )
}

FHEH A AR AR AR A R A R R R A
### PART 1. Plot the proportions of phenotypic variance: additive/dominance/gxe. ###
### PART 2. Plot the proportions of genetic variance: additive/dominance. #H#
FHEH A AR AR A R A R R R R A

### Prepare the data for plotting the proportions of phenotypic variances due to
additive/dominance/genetic-by-environment.

pheno.var <- varcompl[,c(1,2,3,10,11,12)]

names (pheno.var) [4:6] <- c("va","vd","vge")

pheno.var <- melt (pheno.var, id.vars=c("Trait","Pop","Group"))

pheno.var$Trait <- as.factor (pheno.var$Trait)

pheno.var$Trait <-

factor (pheno.var$Trait,c ("DTA","DTS", "PLHT", "LFLN", "LFWD", "TILN", "PROL", "LBNN", "LBLN", "LB
IL", "EL", "CUPR", "ED", "GE", "EILN", "TGPP", "TGWP", "GW") )

pheno.var$Pop <- as.factor (pheno.var$Pop)
pheno.var$Pop <- factor (pheno.var$Pop, c("Teosinte", "Maize Landrace"))

pheno.var$Group <- as.factor (pheno.var$Group)
pheno.var$Group <- factor (pheno.var$Group, c("Vegetative/Flowering Time","Environmental
Response", "Reproductive"))

colnames (pheno.var) [4] <- "Variance"

### Prepare the data for plotting the proportions of genetic variances due to
additive/dominance.

gen.var <- varcomp[,c(1l:5)]

gen.var[,4] <- gen.var([,4]/ (varcomp[,4] + varcompl[,5])

gen.var[,5] <- gen.var([,5]/ (varcomp[,4] + varcompl[,5])

names (gen.var) [4:5] <- c("va","vd")

gen.var <- melt(gen.var, id.vars=c("Trait","Pop","Group"))

gen.var$Trait <- as.factor(gen.var$Trait)

gen.var$Trait <-

factor (gen.var$Trait,c ("DTA","DTS", "PLHT", "LFLN", "LFWD", "TILN", "PROL", "LBNN", "LBLN", "LBIL
", "EL", "CUPR", "ED", "GE", "EILN", "TGPP", "TGWP", "GW") )

gen.var$Pop <- as.factor (gen.var$Pop)
gen.var$Pop <- factor(gen.var$Pop, c("Teosinte", "Maize Landrace"))

gen.var$Group <- as.factor (gen.var$Group)
gen.var$Group <- factor(gen.var$Group, c("Vegetative/Flowering Time","Environmental
Response", "Reproductive"))

colnames (gen.var) [4] <- "Variance"

###4 Construct the plot.

pheno.var.plot <- ggplot (data=pheno.var, aes(x=Trait, y=value, fill=Variance)) +

geom_bar (stat="identity") +

scale_y continuous (limits=c(0,1), breaks=c(0,0.25,0.50,0.75,1.00)) +

facet grid(Pop~Group, scales="free x", space="free x", labeller=labeller (Pop=label value,
Group=label value)) +

theme (panel.grid=element blank()) +
theme (strip.text=element text (size=8), axis.text.x=element text(angle=0, size=6)) +
theme (axis.title.x=element text(size=10), axis.title.y=element text (size=10)) +
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ylab ("Proportion of Phenotypic Variance")

### Construct the plot.

gen.var.plot <- ggplot(data=gen.var, aes(x=Trait, y=value, fill=Variance)) +
geom_bar (stat="identity") +

scale y continuous (limits=c(0,1), breaks=c(0,0.25,0.50,0.75,1.00)) +

facet grid(Pop~Group, scales="free x", space="free x", labeller=labeller (Pop=label value,
Group=label value)) +

theme (panel.grid=element blank()) +

theme (strip.text=element text (size=8), axis.text.x=element text(angle=0, size=6)) +

theme (axis.title.x=element text(size=10), axis.title.y=element text (size=10)) +

ylab ("Proportion of Genetic Variance")

tiff ("Figures/Fig02.tif", height=7.64, width=7, units="in", compression="1lzw", res=1200)
grid.arrange (pheno.var.plot, gen.var.plot, layout matrix=matrix(c(1,1,2),3,1))
dev.off ()

0
### PART 3. Calculate the selection intensity for each trait. ###
FHE

### Set the number of generations of selection (assumption of 4500 or 9000 generations of
selection) .
N1 <- 4500
N2 <- 9000

### Obtain the average change in additive genetic and phenotypic variance over N-
generations.

deltaval <- (varcomp[19:36,4]-varcomp[l:18,4]) /N1
deltavpl <- (varcomp[19:36,8]-varcomp[1:18,8]) /N1
deltava2 <- (varcomp[19:36,4]-varcomp[1:18,4]) /N2
deltavp2 <- (varcomp[19:36,8]-varcomp[1:18,8]) /N2

### Create dataframes to store our results.

tempdf <- data.frame(N=0:N1, h2 deltaVaVp method=vector (length=N1+1),
Va_deltaVaVp method=vector (length=N1+1), Vp deltaVaVp method=vector (length=N1+1))
h2vpl <- replicate (18, tempdf, simplify=F)

tempdf <- data.frame (N=0:N2, h2 deltaVaVp method=vector (length=N2+1),
Va_deltaVaVp method=vector (length=N2+1), Vp deltaVaVp method=vector (length=N2+1))
h2vp2 <- replicate (18, tempdf, simplify=F)

### Note: Selection intensity, i=2/(h2*sqrt (Vp))

### Obtain the starting values for h2*sqrt(Vp), Va and Vp.
for(i in 1:18){

h2vpl[[i]][1,2] <- varcomp[i,10]*sqgrt (varcomp([i,8])
h2vpl[[1]][1,3] <- varcomp[i,4]

h2vpl[[i]]1[1,4] <- varcomp[i, 8]

h2vp2[[i]1]1[1,2] <- varcomp[i,10]*sqgrt (varcomp[i,8])
h2vp2[[i]]1[1,3] <- varcompl[i,4]

h2vp2[[11]1([1,4] <- varcompl[i,8]

}

### Calculate h2*sqgrt(Vp), Va and Vp at every generation based on the average change in
variances.
for(i in 1:18) {for(j in 2: (N1+1)) {

h2vpl([[1]]1[3,2] <- (varcomp[i,4] + h2vpl[[i]][j,1l]*deltaval[i])/sqrt(varcompl[i,8] +
h2vpl[[i]][j,1]1*deltaVpl[i])

h2vpl[[i]11[3,3] <- varcomp[i,4] + h2vpl[[i]]1[j,1l]l*deltavalli]

h2vpl[[1]11[7,4] <- varcomp([i,8] + h2vpl[[i]][]j,l]*deltavVpl[i]

for(i in 1:18){for(j in 2:(N2+1)) {

h2vp2[[1]]1[3,2] <- (varcomp[i,4] + h2vp2[[i]][j,1l]*deltava2[i])/sqrt(varcompl[i,8] +
h2vp2[[i]]1[j,1]*deltavp2[i])

h2vp2[[i]11[3,3] <- varcomp[i,4] + h2vp2[[i]l]1[j,1l]l*deltava2[i]

h2vp2 [[i]][3,4] <- varcomp[i,8] + h2vp2[[i]][j,1]*deltavp2[i]

b}

### Create vectors to store the selection intensities.
il <- vector (length=18)
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i2 <- vector (length=18)

### Calculate the selection intensities.
for(i in 1:18){

11[i] <= Z[i]/sum(h2vpl[[1]][1:N1,2])
i2[i] <= Z[i]/sum(h2vp2[[1]]1[1:N2,2])

}

### Combine the selection intensities for two different Ns.
intensity <- data.frame(Trait=varcomp([1:18,1], intensity N4500=il, intensity N9000=i2)

### Obtain selection intensities from wild species (Kingsolver et al. 2001, PubMed ID:
18707288, https://datadryad.org/resource/doi:10.5061/dryad.166/1)
wild <- read.delim("selection intensity wild.txt", header=T, as.is=T)

### Prepare the data for plotting our selection intensities against selection intensities
in wild species.

wild <- wild[!(wild[,1]==0),]

intensity$temp.y <- vector (length=18)

for(i in 1:18) {intensity[i,4] <- 0.6/18*(19-1)+0.2}

intensity$group <- c(rep("Vegetative/Flowering Time", 5), rep("Environmental Response",
5), rep("Reproductive", 8))

intensity$group <- as.factor (intensity$group)

intensity$group <- factor (intensity$group, c("Environmental

Response", "Vegetative/Flowering Time", "Reproductive"))

### Construct the selection intensity plot.
tiff ("Figures/selection intensity.tiff", width=5.25, height=3, units="in", res=1200,
compression="1zw")

ggplot () +
geom density(data=wild, aes(x=1oglO(Intensity)), colour="#7C26CB", fill="#7C26CB") +
xlab (expression(log[l0]* (Selection ~ Intensity))) +

geom_segment (data=intensity, aes(x=1logl0 (abs(intensity N9000)),
xend=1o0gl0 (abs (intensity N4500)), y=temp.y, yend=temp.y, colour=group), size=3,
show.legend=F) +

geom_text (data=intensity, aes(x=1logl0 (abs(intensity N9000)), y=temp.y, label=Trait),
hjust=0,

nudge x=c(0.06,0.06,0.03,0.04,0.02,0.05,0.03,0.03,0.04,0.06,0.10,0.02,0.08,0.08,0.05,0.03
,0.02,0.08), size=2) +

theme (panel.grid=element blank (), axis.title=element text (size=8),
axis.text=element text (size=6))

dev.off ()

### Prepare the data for plotting fold changes in trait means to accompany the selection
intensity plot.

fc.trait <- data.frame(trait=varcomp([1:18,1], group=varcomp[l:18,3],

fc=log2 (varcomp[19:36,9] /varcomp[1:18,9]))

fc.trait$trait <- factor(fc.trait$trait,

¢ ("DTA", "DTS", "PLHT", "LFLN", "LEFWD", "TTLN", "PROL", "LBNN", "LBLN", "LBTIL", "EL", "CUPR", "ED", "G
E", "ETLN", "TGPP", "TGWP", "GW") )

fc.traitSgroup <- factor (fc.trait$group, c("Environmental Response","Vegetative/Flowering
Time", "Reproductive"))

### Construct the plot of fold changes in trait means.

tiff ("Figures/traitmean fc.tiff", width=7, height=1.5, units="in", res=1200,
compression="1lzw")

ggplot () +

geom bar (data=fc.trait, stat="identity", aes(x=trait, y=fc, fill=group)) +
xlab ("Trait") +

ylim(-6,6) +

scale fill discrete(name = "Trait Group") +

theme (panel.grid=element blank(), axis.text=element text (size=6),
axis.title=element text(size=7)) +

theme (legend.text=element text (size=7), legend.title=element text(size=8)) +
ylab (expression (Fold ~ Change ~ log[2]* (mu[M]/mu[T])))

dev.off ()

B i A R Rk Ak
### PART 4. Show the relationship among trait groups (Vegetative/Flowering Time, ##4#
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### Environmental Response, Reproductive) via Principal Coordinate Analysis (PCoA) ###
### and Neighbor-Joining plots. #H#4#
FHAHHHH A R R
### Calculate the distance matrices for teosinte and maize landrace.

dT <- 1l-abs(rT)

dT <- as.dist(dT, diag=F, upper=F)

dM <- l-abs (rM)
dM <- as.dist (dM, diag=F, upper=F)

### Calculate the principal coordinate (PCoA), also known as multidimensional scaling
(MDS) .

PCoOA.T <- cmdscale (dT)

PCoA.M <- cmdscale (dM)

### Prepare the data for plotting PCoA/MDS.

PCoA.T <- data.frame(Classification=varcomp[1:18,3], x=PCoA.T[,1l], y=PCoA.T[,2])
PCoA.T$Classification <- as.factor (PCoA.TS$SClassification)

PCoA.T$Classification <- factor (PCoA.T$Classification,c("Environmental Response",
"Vegetative/Flowering Time", "Reproductive"))

PCoA.M <- data.frame(Classification=varcomp[19:36,3], x=PCoA.M[,1], y=PCoA.M[,2])
PCoA.MS$Classification <- as.factor (PCoA.MS$Classification)

PCoA.M$Classification <- factor (PCoA.M$Classification,c("Environmental Response",
"Vegetative/Flowering Time", "Reproductive"))

### Make the PCoA plot for teosinte.
tiff ("Figures/PCoA teosinte.tiff", width=4.8, height=3, units="in", res=1200,
compression="1zw")
set.seed (89)
ggplot (data=PCoA.T) +
geom point (aes(x, y), size = 1, color = "red") +
geom_ label repel (
aes(x, y, fill = Classification, label = rownames (PCoA.T)),
fontface = 'bold', color = 'white',
box.padding = unit (0.35, "lines"),
point.padding = unit (0.5, "lines"),
min.segment.length = unit (0, "lines"),

segment.color = 'grey50',
size=2,
) +

xlab ("Dimension 1") +

ylab ("Dimension 2") +

theme classic(base size = 16) +

theme (legend.title = element text (size=8, face="bold"), legend.text =
element text (size=6)) +

theme (text = element text (size=6))

dev.off ()

### Make the PCoA plot for maize landrace.
tiff ("Figures/PCoA maize.tiff", width=4.8, height=3, units="in", res=1200,
compression="1lzw")
set.seed (89)
ggplot (data=PCoA.M) +
geom point (aes(x, y), size = 1, color = "red") +
geom_ label repel (
aes(x, y, fill = Classification, label = rownames (PCoA.M)),
fontface = 'bold', color = 'white',
box.padding = unit (0.35, "lines"),
point.padding = unit (0.5, "lines"),
min.segment.length = unit (0, "lines"),

segment.color = 'grey50',
size=2,
) +

xlab ("Dimension 1") +

ylab ("Dimension 2") +

theme classic(base_size = 16) +

theme (legend.title = element text(size=8, face="bold"), legend.text =
element text(size=6)) +

theme (text = element text (size=6))

dev.off ()
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### Make a neighbor-joining (NJ) tree for teosinte.

njT <- list(nj (dT),varcomp[l:18,3])

njT[[2]] <- ifelse(njT[[2]]=="Environmental Response", "#F8766D",

ifelse (njT[[2]]=="Reproductive","#5C99FF",ifelse (njT[[2]]=="Vegetative/Flowering
Time", "#00BA38",NA)))

tiff ("SFig/NJ teosinte.tiff", width=2000, height=2400, res=300, compression="lzw")
plot(njT([[1]], tip.color=njT[[2]], type="unrooted", labdut="axial")

dev.off ()

### Make a neighbor-joining (NJ) tree for maize landrace.

njM <- list(nj (dM), varcomp[l19:36,3])

njM[[2]] <- ifelse(njM[[2]]=="Environmental Response", "#F8766D",

ifelse (njM[[2]]=="Reproductive","#5C99FF",ifelse (njM[[2] ]=="Vegetative/Flowering
Time", "#00BA38",NA)))

tiff ("SFig/NJ maize.tiff", width=2000, height=2400, res=300, compression="lzw")
plot(njM[[1]], tip.color=njM[[2]], type="unrooted", labdut="axial")

dev.off ()

5
FHEHHH

### PART 5. Comparing the teosinte and maize landrace genetic correlations matrix and the
###

### three submatrices (Vegetative/Flowering Time, Environmental Response, and
Reproductive) ###

### via Mantel test and difference in their leading eigenvectors.

###
5 i
FHEfHA

### Compare the full genetic correlations matrix (CUPR and TGPP excluded) from teosinte
and maize landrace.

### Mantel test

cor (rT.re[lower.tri(rT.re)], rM.re[lower.tri(rM.re)]); mantel.test (rT.re, rM.re,
nperm=10000)

#r=0.5091904

#2=4.966196

#0=9.999%e-05

### Leading eigenvectors
theta.cal(rT.re, rM.re)

# label eigenvectorl eigenvector?2
# theta 89.61667 88.35276
# pve.matl 27.24433 18.70337
# pve.mat2 19.10335 14.27192

#note that matlvecl and mat2vecl are teosinte and maize landrace gmax respectively.

### Compare the vegetative genetic correlations matrix from teosinte and maize landrace.
### Mantel test

cor (vegT [lower.tri(vegT)], vegM[lower.tri(vegM)]); mantel.test (vegT, vegM, nperm=10000)
#r=0.899856

#72=1.267712

#p=0.02289661

###Leading eigenvectors
theta.cal (vegT, vegM)

# label eigenvectorl eigenvector2
# theta 28.05962 50.62398
# pve.matl 64.83790 15.67222
# pve.mat2 40.64529 21.12285

### Compare the environmental response genetic correlations matrix from teosinte and
maize landrace.

### Mantel test

cor (enrT[lower.tri(enrT)], enrM[lower.tri(enrM)]); mantel.test (enrT, enrM, nperm=10000)
#r=0.7707012

#2=1.23834

#p=0.01469853

### Leading eigenvectors
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theta.cal (enrT, enrM)

# label eigenvectorl eigenvector2
# theta 27.37998 27.74151
# pve.matl 45.61217 26.91704
# pve.mat2 43.88581 24.59770

### Compare the reproductive genetic correlations matrix from teosinte and maize
landrace.

### Mantel test

cor (repT.re[lower.tri(repT.re)], repM.re[lower.tri(repM.re)]); mantel.test (repT.re,
repM.re, nperm=10000)

#r=0.7873143

#7=1.882289

#p=0.00289971

### Leading eigenvectors
theta.cal (repT.re, repM.re)

# label eigenvectorl eigenvector2
# theta 87.81169 86.67189
# pve.matl 54.14230 29.19786
# pve.mat2 41.97578 26.11113

### Construct a plot of the genetic correlation matrix.
corG.plot <- melt (corG, na.rm=T)
corG.se.plot <- melt(corG.se, na.rm=T)

corG.plot$Z <- atanh (abs(corG.plot[,3]))/atanh(corG.se.plot([,3])
corG.plot$label <- as.character (round(corG.plot[,3]1, 2))

corG.plot[nchar (corG.plot[,5])==1,5] <-

paste (corG.plot[nchar (corG.plot[,5])==1,5],".00", sep="")

corG.plot[nchar (corG.plot[,5])==3,5] <-

paste (corG.plot[nchar (corG.plot[,5])==3,5],"0",sep="")
corG.plot[grep("-",corG.plot[,5]),5] [nchar (corG.plot[grep("-",corG.plot[,5]),5])==4] <-
paste (corG.plot[grep ("-",corG.plot[,5]),5] [nchar (corG.plot[grep ("~
",corG.plot[,5]),5])==4], "0", sep="")

corG.plot[corG.plot[,4] < 1.96 ,5] <- NA #standard normal, two-tailed cutoff for P <
0.05.

temp.plot <- 0.5
for(i in 1:18) {temp.plot <- c(temp.plot,i+0.5)}

tiff ("Figures/corG plot.tif", height=6.3, width=7, units="in", res=1200,
compression="1zw")

ggplot () +

geom_point (data=corG.plot, aes(x=Var2, y=Varl, colour=value), shape=15, size=10) +
geom_point (aes(x=1:18, y=18:1), shape=15, colour="black", size=10) +

scale y discrete(limits = rev(levels(corG.plot$Varl))) +

scale_x discrete(position="top") +
scale colour gradient2(low="red", mid="white", high="blue", limits=c(-1,1), breaks=c (-

1,0,1), name=expression(bolditalic('r'[g]))) +

theme (panel.grid.major = element blank()) +

theme (panel.background = element rect(fill = "white", colour = "white")) +
theme (axis.text.x = element text (angle=90, hjust=0)) +

theme (axis.ticks = element blank()) +

geom vline (xintercept=temp.plot, colour="grey") +

geom_hline (yintercept=temp.plot, colour="grey") +

geom vline (xintercept=c(5.5,10.5), colour="black", size=1) +

geom_hline (yintercept=c(8.5,13.5), colour="black", size=1l) +

xlab ("Maize Landrace") +

ylab ("Teosinte") +

theme (axis.title=element text (size=18, face="bold")) +

theme (axis.text.x=element text (colour=c(rep ("#00BA38",5), rep("#F8766D",5),rep ("#5CI99FF", 8
)), size=12, face="bold")) +

theme (axis.text.y=element text (colour=c(rep ("#5CI99FF",8), rep ("#F8766D",5), rep ("#00BA38",5
)), size=12, face="bold")) +

guides (size=FALSE) +

geom_text (data=corG.plot, aes(x=Var2, y=Varl, label=label), size=2.5, nudge y=0.25)
dev.off ()
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### PART 6. Comparing the teosinte and maize landrace genetic covariances matrix and the
#H#

### three submatrices (Vegetative/Flowering Time, Environmental Response, and
Reproductive) ###

### via Mantel test, Flury hierarchy, and random skewers.

#H#

FHAHEHH A R R
#H#HE#

#HHHHHF AR AR AR AR F S H S H S HHHH 4 #4# NOTES on using the CPC software

[EEEA R AR R R R E R E R E R E kL

# Many of the CPC versions have compatibilities issue (Windows, Mac, etc.)
#

# We used the Linux version
https://pages.uoregon.edu/pphil/programs/cpc/linux/cpc.tar.gz) .

CPC requires the matrices to be PD; we only used the nearPD function when necessary,
.e. non-PD matrices. #
fter we export the ".dat" file, we manually edit the file into the following format
description in parentheses): #
2 (number of matrices)

16 (number of traits, 5/5/8 for submatrices)
4455 (number of teosinte individuals)
GT (teosinte G-matrix)

(
#
#
i
#

(
#
#
#
#
#
#
#
#
# 4398 (number of maize landrace individuals)

#

# GM (maize landrace G-matrix)

#

FHEH AR H AR F AR AR F AR A AR A AR R R
fEEE SIS E L LS LR

### Compare the FULL genetic covariances matrix from teosinte and maize landrace.
### Mantel test

cor (GT.re[lower.tri(GT.re)], GM.re[lower.tri (GM.re)]); mantel.test (GT.re, GM.re,
nperm=10000)

#r=0.02511114

#7=44981.04

#p=0.2144786

### Flury hierarchy (Prepare file for CPC)
combined.G <- rbind(GT.re.PD, GM.re.PD)
write.table (combined.G, "cpc covG.dat", row.names=F, col.names=F, quote=F, sep=" ")

### Random Skewers

skewers (GT.re, GM.re, nsim=1000, method="unifcorrmat")
#r=0.1853682

#p=1

### Ovaskainen's test

#Comparing full G-matrices between teosinte and maize landrace.
g.0va (G1=GT.re.PD, G2=GM.re.PD, Nsamp=1000)

#g.mean gq.se

# 0 0

### Compare the VEGETATITVE genetic covariances matrix from teosinte and maize landrace.
### Mantel test

cor (vegGT [lower.tri (vegGT)], vegGM[lower.tri(vegGM)]); mantel.test (vegGT, vegGM,
nperm=10000)

#r=0.9011552

#72=1190.493

#p=0.05169483

### Flury hierarchy (Prepare file for CPC)
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combined.vegG <- rbind(vegGT.PD, vegGM.PD)
write.table(combined.vegG, "cpc covG veg.dat", row.names=F, col.names=F, quote=F, sep="

"

### Random Skewers

skewers (vegGT, vegGM, nsim=1000, method="unifcorrmat")
#r=0.8925812

#p=0.001

### Ovaskainen's test

#Comparing Vegetative submatrices between teosinte and maize landrace.
g.Ova (Gl=vegGT.PD, G2=vegGM.PD, Nsamp=1000)

# g.mean g.se

#0.306186899 0.006744435

### Compare the ENVIRONMENTAL RESPONSE genetic covariances matrix from teosinte and maize
landrace.

### Mantel test

cor (enrGT[lower.tri (enrGT)], enrGM[lower.tri(enrGM)]); mantel.test (enrGT, enrGM,
nperm=10000)

#r=0.9624238

#7=38991.71

#p=0.05029497

### Flury hierarchy (Prepare file for CPC)

combined.enrG <- rbind(enrGT.PD, enrGM.PD)

write.table(combined.enrG, "cpc covG enr.dat", row.names=F, col.names=F, quote=F, sep="
"

### Random Skewers

skewers (enrGT, enrGM, nsim=1000, method="unifcorrmat")
#r=0.8027262

#p=0.01

### Ovaskainen's test

#Comparing Environmental Response submatrices between teosinte and maize landrace.
g.Ova (Gl=enrGT.PD, G2=enrGM.PD, Nsamp=1000)

# g.mean gq.se

#2.246688e-100 2.246688e-100

### Compare the REPRODUCTIVE genetic covariances matrix from teosinte and maize landrace.
### Mantel test

cor (repGT.re[lower.tri (repGT.re)], repGM.re[lower.tri(repGM.re)]); mantel.test (repGT.re,
repGM.re, nperm=10000)

#r=0.1406578

#2=4599.029

#p=0.3086691

### Flury hierarchy (Prepare file for CPC)
combined.repG <- rbind(repGT.PD, repGM.PD)
write.table (combined.repG, "cpc covG rep.dat", row.names=F, col.names=F, quote=F, sep="

")

### Random Skewers

skewers (repGT.re, repGM.re, nsim=1000, method="unifcorrmat")
#r=0.08677437

#p=1

### Ovaskainen's test

#Comparing Reproductive submatrices between teosinte and maize landrace.
q.0va (Gl=repGT.PD, G2=repGM.PD, Nsamp=1000)

# g.mean g.se

#1.09343e-12 1.08513e-12

gttt ssatasdttassssddadsdddaddsddddsddsddddddddddddsdddsddsddaddsaddddddsddadtadi
#HEHE
### PART 7. Comparing Blows' subspace (1-5 eigenvectors) for teosinte and maize landrace

G ###
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### Compare Blows subspace of leading two eigenvectors to beta.
blows.cal2 (rT.re,

S oS S S o S S S 3 S o S S 3E 3 S S S 3F 3 S S S S 3 3R S S Sk 3 3 Sk

### Compare Blows subspace of leading three eigenvectors to beta.
blows.cal2 (rT.re,

He o e e S S 3 S o S e 3R 3 S S S S 3R 3k S h S e 3k S h S e 3k

$ pve.matl’
[1] 45.9477

Spve.mat?2
[1] 33.37526

Stheta.betal
[1] 89.97862

Stheta.beta?2
[1] 89.65813

Stheta.rl
[1] 64.67802

Stheta.r2
[1] 99.53384

Stheta.rl.eig
[,1] [,2]
[1,]1 67.27738

Stheta.r2.eig
[,1] [,2]
[1,] 74.26973

Stheta.bl.eig
[,1] [,2]
[1,] 89.98242

Stheta.b2.eig
[,1] [,2]

rM.re,

79.41768

59.

89.

9559

98783

[1,] 89.87179 89.68308

$ pve.matl’
[1] 61.23287

Spve.mat2
[1] 45.60396

Stheta.betal
[1] 89.97845

Stheta.beta2
[1] 89.54612

Stheta.rl
[1] 64.59429

Stheta.r2
[1] 78.68411

Stheta.rl.eig
[,1] [,2]
[1,] 67.27738

Stheta.r2.eig
[,1] [,2]
[1,]1 74.26973

Stheta.bl.eig
[,1] [,2]

[1,] 89.98242 89.98783 89.99727

79.41768 88.07245

[
59.

rM.re,

[,3]

;3]
9559 66.1641

[,3]

Z.stdT.re,

Z.stdT.re,
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1 [,2] [,3]

# Stheta.b2.eig
# [
# [1,] 89.87179 89.68308 89.70146

;1
1,

### Compare Blows subspace of leading four eigenvectors to beta.
blows.cal2(rT.re, rM.re, Z.stdT.re, Z.stdM.re, 4, 9000)

$ pve.matl’

[1] 70.96228

Spve.mat2
[1] 57.06434

Stheta.betal
[1] 89.92216

Stheta.beta2
[1] 89.52534

Stheta.rl
[1] 43.35824

Stheta.r?2
[1] 74.09296

Stheta.rl.eig
[,1] [,2] [,3] [,4]
[1,] 67.27738 79.41768 88.07245 54.05518

Stheta.r2.eig
[,1] [,2] [,3] [,4]
[1,] 74.26973 59.9559 66.1641 79.85031

Stheta.bl.eig
[,1] [,2] [,3] [,4]
[1,] 89.98242 89.98783 89.99727 89.92521

Stheta.b2.eig
[,1] [,2] [,3] [,4]
[1,] 89.87179 89.68308 89.70146 89.86109

H= o S S e S S S Sk S S S S 3 S o S S 3 S S S S 3k 3 S S S S 3 3 S

### Compare Blows subspace of leading five eigenvectors to beta.
blows.cal2 (rT.re, rM.re, Z.stdT.re, Z.stdM.re, 5, 9000)

#$ pve.matl’

#[1] 78.22545

Spve.mat?2
[1] 66.42401

Stheta.betal
[1] 89.91775

Stheta.beta?
[1] 89.46881

Stheta.rl
[1] 41.96595

Stheta.r2
[1] 75.14963

Stheta.rl.eig
[,1] [,2] [,31] [,4] [,5]
[1,] 67.27738 79.41768 88.07245 54.05518 81.04738

Stheta.r2.eig
[,1] [,2] [,31] [,4] [,5]
[1,] 74.26973 59.9559 66.1641 79.85031 75.69734

Stheta.bl.eig
[,1] [,2] [,31] [,4] [,5]
[1,] 89.98242 89.98783 89.99727 89.92521 89.97344

H o e o S S 3 S S S e 3E 3 S S S S 3R 3k S S SR 3 3k S S SE



theta.b2.eig
1

#
# 3
# [,1] [,2] [,3] [,4] [,5]

# [1,] 89.87179 89.68308 89.70146 89.86109 89.76155

FHAHEHH A A R R R
#HHHHHAE

# PART 8. Multivariate Qst-Fst Test using R scripts by Martin et al. (2008) PubMed ID:
18245845 #

FHAHEHH A R R
#HfHHHAE

### Step 5.1: Preparing additional files.
# Within-population G-matrix

Gw <- matrix (NA,18,18)

for(i in 1:18) {for(j in 1:18) {

Gw[i,j] <- mean(c(GT[i,]],GM[i,3]))

+}

# Between-population G-matrix
Gb <- matrix(NA,18,18)

for(i in 1:18){for(j in 1:18){
Gb[i,3] <- 0.5%Z[i]*Z[]]

+}

# Within-population additive genetic variance
Vw <- diag (Gw)

# Between-population additive genetic variance
Vb <- diag(Gb)

# Bent within- and between-population G-matrices to be positive definite
Gw <- as.matrix (nearPD(Gw, corr=F)[[1]])
Gb <- as.matrix (nearPD(Gb, corr=F)[[1]])

# "genoTM.txt" is a merged genotype file of both teosinte and maize landrace.

# Only common markers between teosinte and maize landrace can be used here.

# The file is coded such as row is individual, column is GBS marker.

# This file can be obtained by exporting the genotype file as "Table" format in TASSEL.
geno <- read.delim("genoTM.txt", header=T, as.is=T)

# Read in the marker names for the "genoTM.txt" file.
marker.names <- read.delim("markers.txt", header=F, as.is=T)

# Create a column for the population identifier in geno; top 4398 are maize landraces;
bottom 4455 are teosinte.
geno <- data.frame (Pop=c(rep(1l,4398),rep(2,4455)), geno)

# Rename the columns
colnames (geno) <- c("Pop", "Individual", marker.names[,1])

# Recode genotypes into format that hierfstat recognizes
geno [geno=="A"] <- 11

geno[geno=="C"] <- 22
geno[geno=="G"] <- 33
geno [geno=="T"] <- 44
geno [geno=="R"] <- 13
geno [geno= "] <- 24
geno[geno=="K"] <- 34
geno [geno=="M"] <- 12
geno [geno=="W"] <- 14
geno[geno=="3S"] <- 23
geno[geno=="N"] <- "NA"

### Step 5.2: Calculate Fst

# WARNING: THIS STEP TAKES A VERY LONG TIME

# For a dataset of 8853 individuals and 21,157 markers, the following script took ~22hr
fst.dat <- varcomp.glob(as.factor(geno[,1]), genol[,-c(1l:2)1])
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# It is advisable to save everything at this point to avoid redoing lengthy Fst
calculation.
save.image ("temp.RData")

### Step 5.3: Bootstrapping Fst
### Fst bootstrapping function from Whitlock and Guillaume (2009)

fst.sample <- function (obs, nloci) {
loc.smpl <- sample(l:nloci,size=nloci,replace=TRUE)

dat <- obs[loc.smpl, ] #select the sampled loci from the
input table
return( sum(dat[,1])/sum(dat([,l]+dat[,2]+dat[,3]) ) # Fst = a/(atb+c); from

Weir&Cockerham 1984
}

# Set the bootstrap parameters
nboot <- 10000
nloci <- length(fst.dat

[,11)
fst.est = vector(length =

nboot)

# Bootstrapping by sampling nloci from the neutral markers, with replacement
for(i in 1:nboot) {

fst.repl = fst.sample(fst.dat, nloci)

fst.est[i] = fst.repl

}

# Mean of Fst
fst.mean <- mean(fst.est, na.rm=TRUE)
# 0.1567261

# Standard deviation of Fst
fst.sd <- sd(fst.est, na.rm=TRUE)
# 0.001606596

# 95% CI of Fst

fst.CI <- quantile(fst.est,c(0.025,0.975), na.rm=TRUE)
# 2.5% 97.5%

# 0.1536479 0.1598973

# mean of 2*Fst/(1-Fst)
2*fst.mean/ (1-fst.mean)
# 0.3717086

# 95% CI of 2*Fst/(1-Fst)
c(2*fst.CI[1]/(1-fst.CI[1]),2*fst.CI[2]/(1-fst.CI[2]))
# 2.5% 97.5%

# 0.3630828 0.3806612

### Step 5.4: Calculating Qst

# Load in the Qst scripts by Martin et al (2008)

# Require the package corpcor.

# Link to the scripts as of 22 October 2018; http://mbb.univ-
montp2.fr/MBB/uploads/codes Qst Fst.rar

source ("package neutrality test.r")

# Number of traits
ntrt <- length(Gw[,1])

# Number of individuals in teosinte and maize landrace
nind <- ¢ (4455,4398)

# Number of populations
npop <- 2

# df for unbalanced design (Equation 9 of Martin et al (2008))
nf <- mean (nind)-1/npop* ((mean (nind”2) -mean (nind) *2) /mean (nind) )

# Back-calculate within-population mean square from Gw
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MSw <- Gw

# Back-calculate between-population mean square from Gb
MSb <- nf*Gb + Gw

# df for within-population
dfw <- nind[1l] + nind[2] - npop - (ntrt-1)"2

# df for between-population
dfb <- npop - 1

# Combine the inputs for calculating Qst
DF <- c(dfw,dfb)

G <- list (Gw,Gb)

MS <- list (MSw,MSb)

# Compute rho from test between G matrices, under neutrality: rho=2*Fst/ (1-Fst)

testG <- k.prop (DF,G)

cat ("rho P (population) =", testGS$rho[[2]], "\n95% CI for rho P :", testGSCI[[2]], "\n")
#rho P (population) = 314.6347

#95% CI for rho P : 190.3003 907.6686

# Compute p-values from test between MS matrices

testMS <- k.prop (DF,MS)

cat ("pBartlett=", testMS$ptl, "\npChi2=", testMS$pX,"\n")
#pBartlett= 0.4680047

#pChi2= 0.4680044

5
FHERHHHE

### PART 9. Univariate Qst-Fst Test using R scripts provided by Whitlock and Guillaume
(2009) PubMed ID: 19687138 ###
5
FHERHHHE

# Use the Fst calculated from PART 8.

Fst.dat <- fst.dat$loc

# Calculate the observed Fst
Fst.obs <- sum(Fst.dat[,1])/sum(Fst.dat[,1] + Fst.dat[,2] + Fst.dat[,3])
#0.1567383

# Calculate the observed Qst
Ost.obs <- Vb/ (Vb + 2*Vw)

# [1] 0.5681129 0.7822637 0.9455266 0.9393080 0.9301162 0.9457644 0.9503338
# [8] 0.9617537 0.9187057 0.9385364 0.9731977 0.9698326 0.9865557 0.9715125
#[15] 0.9823915 0.9599634 0.0751920 0.9768512

R
#4## Several functions for bootstrapping Qst, Fst, and Qst-Fst. ###
B

### Qst bootstrapping function from Whitlock and Guillaume (2009)
gst.sample <- function(VarW, VarB, dfW, dfB) {

VarW.sim <- VarW*rchisqg(l, dfW)/dfw

VarB.sim <- VarB*rchisqg(l, dfB)/dfB

return (VarB.sim/ (VarB.sim+2*VarW.sim) )

}

### Fst bootstrapping function from Whitlock and Guillaume (2009)
fst.sample <- function(obs, nloci) {
loc.smpl <- sample(l:nloci,size=nloci, replace=TRUE)

dat <- obs[loc.smpl, ] #select the sampled loci from the
input table
return( sum(dat[,1])/sum(dat[,1]+dat[,2]+dat[,3]) ) # Fst = a/(atb+c); from

Weir&Cockerham 1984
}

### Qst-Fst bootstrapping function
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gstfst.bootstrap <- function(fst.dat, Vw, Vb, dfw, dfb, gst.obs, fst.obs){
# Set the bootstrap parameters

nboot <- 10000

nloci <- length(fst.dat[,1])

gst.est <- vector (length = nboot)

fst.est <- vector(length = nboot)

boot.est <- vector (length = nboot)

# Bootstrapping Qst and Fst

for(i in 1:nboot) {

gst.repl <- gst.sample(Vw, Vb, dfw, dfb)
fst.repl <- fst.sample(fst.dat, nloci)
gst.est[i] <- gst.repl

fst.est[i] <- fst.repl

boot.est[i] = gst.repl - fst.repl

}

QOstFst.obs <- gst.obs - fst.obs

# Summarizing results
bootstrap.results <- list(

QstObs = gst.obs,

FstObs = fst.obs,

QstFstObs = QstFst.obs,

Pvalue = 2*min (sum(boot.est < QstFst.obs),sum(boot.est > QstFst.obs)) /nboot,
boot = mean (boot.est, na.rm=TRUE),

boot.stdev = sd(boot.est, na.rm=TRUE),

boot.CI = quantile (boot.est,c(0.025,0.975), na.rm=TRUE),
Fst = mean (fst.est, na.rm=TRUE),

Fst.stdev = sd(fst.est, na.rm=TRUE),

Fst.CI = quantile(fst.est,c(0.025,0.975), na.rm=TRUE),
Qst = mean (gst.est, na.rm=TRUE),

Ost.stdev = sd(gst.est, na.rm=TRUE),

Qst.CI = quantile(gst.est,c(0.025,0.975), na.rm=TRUE) )

return (bootstrap.results)

}
all.results <- list()

# Use the above function to bootstrap Qst-Fst.

for(i in l:ncol (Gw)) {

all.results[[i]] <- gstfst.bootstrap(Fst.dat, Vw[i], (2*Fst.obs*Vw[i])/(1-Fst.obs), 4455
+ 4398 - 2, 2 - 1, Qst.obs[i], Fst.obs)

}

# Qst-Fst bootstrapping results for all 18 traits.

for(i in 1:18) {print(all.results[[1]1]1[[4]1])}
#[1] 0.016

#[11 O

#[11 O

#[11 O

#[11 O

#[11 O

#[11 ©

#[11 ©

#[11 O

#[11 O

#[11 ©

#[11 ©

#[11 O

#[11 O

#[11 ©

#[11 ©

#[1] 0.986

#[11 O

fst.plot <- all.results[[1]]1[[14]]
for(i in 2:18) {fst.plot <- c(fst.plot, all.results[[i]][[14]])}

fst.plot <- fst.dat[,1]/(fst.dat[,1l]+fst.dat[,2]+fst.dat[,3])

34



fst.plot[fst.plot<0] <- 0

names (Qst.obs) <- names(Z)

gst.plot <- data.frame(gst=Qst.obs, group=varcomp[l:18,3], xpos=NA, ypos=NA)
gst.plot$Sgroup <- as.factor(gst.plotS$Sgroup)

gst.plot$Sgroup <- factor(gst.plot$group, levels=c ("Environmental

Response", "Vegetative/Flowering Time", "Reproductive"))

gst.plot <- gst.plot[order (gst.plot$gst),]

gst.plot$xpos <- ¢(0.2,0.52,0.73,rep(0.89,15))

gst.plot$ypos <- c(9,seq(1,9,0.5))

tiff ("Figures/fstgst.tiff", width=7, height=4, units="in", res=1200, compression="1lzw")
ggplot () +
geom density(aes (fst.plot), colour="#A9ASA9", fill="#AOAOAO") +
geom_segment (data=gst.plot, aes(x=gst,y=0,xend=gst, yend=ypos,colour=group),
show.legend=F, size=0.5) +
geom_label (data=gst.plot,

aes (x=xpos, y=ypos, label=rownames (gst.plot), fill=group),

nudge y=c(0,0.5,0.5,rep(0,15)),

show.legend=T,

hjust=1,

fontface = 'bold',

color = 'white',

size = 2.5) +

geom_segment (aes (x=median (fst.plot), y=0, xend=median (fst.plot), yend=10), linetype=2) +
theme (axis.text.y=element blank(), axis.ticks.y=element blank()) +
theme (panel.background=element blank(), panel.grid=element blank()) +
theme (legend.text=element text(size=6), legend.title=element text (size=8)) +

theme (axis.text.x=element text (size=5), axis.title=element text (size=7)) +
xlab ("Fst") +

ylab ("Frequency") +

scale x continuous (limits=c(0,1)) +

scale y continuous (expand=c(0,0)) +

expand limits (y=0)

dev.off ()

A4 4 3 A A A A A A A A A A A R R
### PART 10. Gmax: Genetic Lines of Least Resistance. ###
FHHH R FAF AR AR AR AR AR AR A S

### Gmax is calculated as the first eigenvector of a G-matrix (Schluter 1996, Pubmed ID:
28565589)

### Gmax is sensitive to magnitudes of traits, so we use the genetic correlation matrices
instead of G-matrices.

### Genetic correlation matrix is essentially G-matrices where each trait is standardized
by its genetic standard deviation.

### Teosinte Gmax and its percent variance explained (PVE).

GmaxT <- eigen(rT.re) [[2]][,1]

eigenvalueT <- eigen(rT.re) [[1]]
eigenvalueT[1]/sum(eigenvalueT[eigenvalueT>0]) *100
#27.24433

### Maize landrace Gmax and its percent variance explained (PVE).

GmaxM <- eigen(rM.re) [[2]][,1]

eigenvalueM <- eigen(rM.re) [[1]]
eigenvalueM[1l]/sum(eigenvalueM[eigenvalueM>0]) *100
#19.10335

### Genetic constrain, as measured by angle between evolution trajectory (Z) and Gmax
### Theta for teosinte

thetaT <- acos (GmaxT%*%Z.stdT.re/sqgrt (sum(Z.stdT.re”2)))*180/pi

cat (ifelse (thetaT>90, 180-thetaT, thetaT), "\n")

#67.27738

### Theta for maize landrace

thetaM <- acos (GmaxM%*%Z.stdM.re/sqrt (sum(Z.stdM.re”2)))*180/pi
cat (ifelse (thetaM>90, 180-thetaM, thetaM), "\n")

#74.26973
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### PART 11. Extension to Gmax: individual trait constraints. ###
FHHF A AR A AR A AR A F A A AR A AF SRR AFF SRR AF RS FHEH

### Create a data frame to store the results from dropone analysis
dropone <- data.frame (Trait=varcomp.re[l:16,1], thetaD=NA)

### Calculate the theta (genetic constraint) from dropping one trait at a time.
for(i in 1l:length(dropone[,11)){

temp.rT <- rT.re[-1i,-1i]

temp.GmaxT <- eigen(temp.rT) [[2]][,1]

temp.Z.stdT <- Z.stdT.re[-i]/sgrt(sum(Z.stdT.re[-1]"2))

dropone[i,2] <- acos (temp.GmaxT$*$temp.Z.stdT) *180/pi

dropone[i,2] <- ifelse(dropone[i,2]>90, 180-dropone[i, 2], droponeli,2])

}

### Compare the theta from dropone vs full 16-traits (teosinte).
dropone$diff <- dropone[,2]-67.27738

### Display the results from dropone analysis
print (dropone[order (dropone$diff), ], row.names=F)

# The higher the decrease in theta, the more constraint that specific trait contributes.
# The higher the increase in theta, the more the specific trait aligns with desired
evolution.

# Trait thetaD diff
# GE 62.82114 -4.45623585
# DTA 63.22377 -4.05360998
# DTS 63.35238 -3.92500055
# PLHT 64.62573 -2.65165476
# LFLN 65.03726 -2.24011950
# LFWD 66.34697 -0.93041221
# LBIL 66.52490 -0.75248410
# PROL 67.00083 -0.27654897
# LBLN 67.19671 -0.08066613
# EILN 67.20138 -0.07599899
# TILN 67.31564 0.03826208
# ILBNN 67.39876
# GW 69.17319
# ED 69.71071
# TGWP 70.60707
# EL 71.41978

.12137953
.89580571
.43332908
.32969345
.14240418
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### PART 12. What-if analysis: investigate how far can we get from single trait selection
on ###

### G-matrix, and the associated constrains. Note that comparison of this to gmax is
skipped. ###

FHE R R
FHEHHHH

### Normalize the evolutionary trajectory (Z-vector) into length 1.
unit.Z.stdT <- Z.stdT.re/sqgrt(sum(Z.stdT.re”2))

### Create a data frame to summarize the results from what-if analysis.
whatif <- data.frame (Trait=varcomp.re[1:16,1], Direction=Z.re/abs(Z.re),
ScalarProjl=vector (length=16), Thetal=vector (length=16),
ScalarProjGmax=vector (length=16), ThetaGmax=vector (length=16))

### Calculate the scalar projection and theta (constraint) between the response and
evolutionary trajectory (Z) when we select on ith trait (Column 3,4).

### Calculate the scalar projection and theta (constraint) between the response and Gmax
(teosinte) when we select on ith trait (Column 5,6).

for(i in 1:16){

GBeta <- whatif[i,2]*rT.rel[,1i]

unit.GBeta <- GBeta/sqgrt (sum(GBeta”"2))
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whatif[i, 3] <- GBeta%*%unit.Z.stdT

whatif[i,4] <- acos(unit.GBeta%*%unit.Z.stdT)*180/pi
whatif[i,5] <- GBeta%*%GmaxT

temp <- acos (unit.GBeta%*%GmaxT)*180/pi

whatif[i, 6] <- ifelse(temp > 90, 180-temp, temp)

# Trait Direction ScalarProjl Thetal ScalarProjGmax ThetaGmax
# DTA 1 0.30837688 80.39072 -1.5836123 30.99303
# DTS 1 0.27975367 81.13283 -1.5434593 31.73983
# PLHT 1 0.34050696 77.86373 -1.4322251 27.83552
# LFLN 1 0.34843638 77.23302 -1.3835701 28.65863
# LFWD 1 0.45225311 73.07725 -1.3344259 30.80987
# TILN -1 0.09386849 84.84097 -0.1823446 79.94024
# PROL -1 0.17160613 82.89246 0.1885700 82.18567
# LBNN 1 0.26004793 79.86122 -0.8104191 56.72945
# LBLN -1 0.05404702 87.98209 -0.4160557 74.27254
# LBIL -1 0.17077299 83.63877 -0.8623796 55.97834
# EL 1 0.97179312 53.76805 -1.2531874 40.34123
# ED 1 0.49884978 72.23520 -0.8480237 58.75661
# GE 1 1.07471697 45.55443 -1.1191808 43.18049
# EILN -1 0.20906572 80.99600 0.1391024 84.02296
# TGWP 1 0.84177340 63.30709 -1.6329615 29.37568
# GW 1 0.42008161 75.87721 -0.7302340 64.90313

### Plot the results from dropone and what-if analyses.
constraint <- merge (whatif, dropone, by="Trait", all=T, sort=F)

constraint$Trait <- as.factor(constraint$Trait)
constraint$Trait <- factor (constraint$Trait,
c ("DTA", "DTS", "PLHT"’ "LFLN"’ "LFWD"’ "TILN"’ "PROL"’ "LBNN"’ "LBLN"’ "LBIL"’ "EL", "ED", "GE", "EIL
N", "TGWP™, "GW") )
r r

constraint$Classification <- varcomp.re[l:16,3]

constraint$Classification <- as.factor (constraint$Classification)
constraint$Classification <- factor (constraint$Classification, levels=c ("Environmental
Response", "Vegetative/Flowering Time", "Reproductive"))

### First, we plot the vector R (from whatif) against Z (evolutionary trajectory).
plotZ <- constraint[,c(1,3,4,9)]

names (plotZ) [2] <- "x"

plotZ$y <- plotZ[,2]*tan(plotZ[,3]1*pi/180)

plotZ <- plotZ[,c(1,4,2,5)]

plotZ <- rbind(plotZ,plotZ)

plotz[17:32,3] <= 0

plotz[17:32,4] <= 0

plotZ.proj <- plotZ
plotZ.projsSy <- 0

temp.ends <- rep("last",16)
temp.ends2 <- rep("last",16)

tiff ("Figures/constraintPlot v2 thetaZ.tiff", units="in", height=3, width=3, res=1200,
compression="1lzw")

ggplot () +

geom line(aes(x=c(0,1.5),y=c(0,0)), size=0.75, arrow=arrow(length=unit(0.15,"cm"),
ends="last", type="open")) +

geom_ line(data=plotZ, aes(x=x,y=y,group=Trait,colour=Classification), size=0.75, arrow =
arrow (length=unit (0.15,"cm"), ends=temp.ends, type="open")) +

geom line(data=plotZ.proj, aes(x=x, y=y, group=Trait, colour=Classification), size=0.75,
arrow=arrow (length=unit (0.15,"cm"), ends=temp.ends2, type="open")) +

x1im(c(0,1.5)) +
ylim(c(0,2.0)) +

theme (axis.line=element blank(), axis.text=element blank(), axis.ticks=element blank(),
axis.title=element blank(), panel.background = element blank()) +

guides (colour=F)

dev.off ()

### Next, we plot the gmax calculated from dropone.
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plotD <- constraint[,c(1,7,9)]
plotD$x <- cos(plotD[,2]*pi/180)
plotDSy <- sin(plotD[,2]*pi/180)
plotD <- plotD[,c(1,3,4,5)]
plotD <- rbind(plotD, plotD)
plotD[17:32,3] <= 0
plotD[17:32,4] <- 0

tiff("Figures/constraintPlot7v27thetaDropone.tiff", units="in", height=3, width=3,
res=1200, compression="1lzw")

ggplot () +

geom line(aes(x=c(0,1.25),y=c(0,0)), size=0.5, arrow=arrow(length=unit(0.1,"cm"),
ends="last", type="open")) +

geom_line (aes(x=c(0,1.25*cos (pi*67.27738/180)),y=c(0,1.25*sin(pi*67.27738/180))),

size=0.5, arrow=arrow(length=unit(0.1,"cm"), ends="last", type="open")) +
geom_line (data=plotD, aes(x=x,y=y,group=Trait,colour=Classification), size=0.5, arrow =
arrow (length=unit (0.1, "cm"), ends="last", type="open")) +

xlim(c(0,1.25)) +

ylim(c(0,1.25)) +

theme (axis.line=element blank(), axis.text=element blank(), axis.ticks=element blank(),
axis.title=element blank(), panel.background = element blank()) +

guides (colour=F)

dev.off ()

FHEH AR H AR A A H AR AR A A R R R
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Fig. S1. Genetic relationship of 18 teosinte-maize landrace comparable traits. Plots of
principal coordinate analysis (PCoA) [A,B] and neighbor-joining (NJ) tree [C,D] of 18
teosinte-maize landrace comparable traits are constructed from absolute distance

calculated from 1 — |rg|. Our pre-defined trait groups fit well with the genetic relationship
of these 18 traits in teosinte [A,C] and maize landrace [B,D].
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Fig. S2. Scree plot for eigenvectors of teosinte and maize landrace genetic correlation
matrices. Percent variance explained (PVE) of all 16 eigenvectors are shown here. PVE
for gmaxr 18 27° and PVE for g,,4xm is 19°.
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Fig. S3. Change in additive and dominance genetic variance as functions of allele
frequency. When dominance is present, additive genetic variance is calculated as V, =
2p(1 — p)a?[1 + k(2p — 1)]? while dominance genetic variance is calculated as Vp, =
[2akp(1 — p)]?. Using these two formulas, we plotted V,, Vp, V,/V; and Vp /V,; for five
different scenarios: no dominance (k=0), weakly recessive (k=-0.25), moderately
recessive (k=-0.5), strongly recessive (k=-0.75) and complete recessive (k=-1.00).
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[ Raw Sequencing Reads ] Sequenced in 96-plex on lllumina HiSeq 2000, SE 1x100bp.

ll

[ GBSv2.7 SNP Calling

4

[ Parentage Inference

4

[ Data Filtering & Merging

4

955,690 SNPs from ZeaGBSv2.7 Production TOPM.

—

Inferred based on progeny-parent additive relationship values.

|

Merged duplicate progeny; deleted progeny with bad parentage and high
missing data.

|

[ AGPV2 to AGPv4 Uplifted SNP position from AGPv2 to AGPv4.
' ) Filtered out sites with maf <0.001, sites with >20% missing data, non-biallelic
[ Data Fl|te|' #1 sites, sites with indels

4

: j Phase Parent > Impute Parent State in Progeny > Phase Parent > Impute
[ ImPUtatlon #1 Parent State in Progeny > Apply Haplotype to Progeny

Quality Check #1

4

. Filtered out sites with maf <0,001, sites with >20% missing data, non-biallelic
[ Data FI”ZeI' #2 ] sites, sites with indels, incorrectly mapped sites, bad progenies

a Phase Parent > Impute Parent State in Progeny > Phase Parent > Impute
[ Imputatlon #2 J Parent State in Progeny > Apply Haplotype to Progeny

Checked for crossover count & density, maf distribution and A-diagonals.

'
——

[ Quality Check #2 ] Checked for crossover count & density, maf distribution and A-diagonals.
. Filtered out non-biallelic sites, progeny >70% and sites >10% missing; filled
[ Final GBS Data | Fiteredout s

Fig. S4. Workflow from raw sequencing reads to final GBS data. Flowchart highlighting
important steps along the path from raw sequencing reads to final GBS data. Steps
include SNP calling, parentage inference, data filtering, coordinate conversion,
imputation and quality check.
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Fig. S5. Quality check (QC) plots. Various quality control plots are shown using the teosinte
GBS data as example (maize landrace is similar and thus not shown). Crossover densities along
chromosome 6 from the first imputation [A] and the second imputation [B] are presented. The
crossover spike in the middle of chromosome 6 disappeared after we removed the bad SNPs
prior to second imputation. Minor allele frequency (maf) distribution along chromosome 1 within
the PC_0O51_ID2 selfed family is shown as raw [C] and imputed [D]. Similar maf distribution is
shown for the imputed PC_N13_ID1 x PC_NO7_ID1 outcross family [E]. Under our expectation,
maf for selfed family should be either O or ~0.5 and maf for outcross family should be 0, ~0.25 or
~0.5. Notice that the noise between 0 and 0.5 [C] is absent in the imputed GBS data [D]. Density
plots of the diagonals of additive genomic relationship matrix are displayed for selfed [F] and
outcross [G] progenies, where Data 1 is imputed and unfiltered, Data 2 is imputed and filtered
(progenies <70% missing, sites <10% missing), and Data 3 is imputed, filtered (same), and
imputed again with LD-KNNi. Medians are shown in red vertical lines, and Data 3 has the closest
median to the expected value of 1.5 (selfed) and 1.0 (outcross).
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L1 (119cm) | €1 (91cm) | R1 (119cm)
L2 (98cm) |C2(61cm) |R2 (98cm)
L3 (82cm) | C3(30cm) |R3 (82cm)
L4 (76cm) X R4 (76cm)
L5 (82cm) | C5(30cm) |RS5 (82cm)
L6 (98cm) | C6 (61cm) | R6 (98cm)
L7 (119cm) | C7 (91cm) | R7 (119cm)

Fig. S6. Position and distance of neighboring plants under consideration for shading.
Neighboring plants of plant x within 119cm or less away are considered in modelling for
shading on plant x. This criterion results in 20 neighboring plants that are arbitrarily
named after their positions: left (L1 — L7), center (C1 — C7), and right (R1 — R7). Shown
in each box is the neighboring plant i and distance d in bracket.
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Fig. S7. Histograms of elements of the genomic relationship matrices (GRM). The
columns are arranged from left to right in the following order: additive GRM elements for
teosinte, dominance GRM elements for teosinte, additive GRM elements for maize
landrace and dominance GRM elements for maize landrace. The rows are arranged
from top to bottom in the following order: diagonal elements of the GRM, off-diagonal
elements of the GRM, and off-diagonal elements of the GRM for full-sibs and S1
relatives from a common parent.
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Table S1. Variance component estimates for teosinte. The following estimates (and their ratios) and their standard errors are
displayed: additive genetics variance (V); dominance genetic variance (Vp); genetic-by-environment variance (Vexe); residual
variance (Ve); phenotypic variance (Vp); broad-sense heritability (H?); narrow-sense heritability (h?); outcross trait mean (u).

Trait Va Vb Vexe Ve Vp H2 h? Vo/Vp | Vexe/Vp | ValVe | Vo/Ve | Vb/Va [V Units
(se) (se) (se) (se) (se) (se) (se) (se) (se) (se) (se) (se) (se)
DTA 20.517 1.186 3.159 25.401 50.262 0.432 0.408 0.024 0.063 0.945 0.055 0.058 68.482 day
(1.886) (0.736) (0.792) (0.869) (1.705) (0.028) (0.027) (0.015) (0.016) (0.033) (0.033) (0.037) (0.296)
DTS 20.226 1.328 2.425 17.866 41.846 0.515 0.483 0.032 0.058 0.938 0.062 0.066 66.869 da
(1.608) (0.558) (0.567) (0.620) (1.467) (0.025) (0.025) (0.013) (0.014) (0.025) (0.025) (0.029) (0.275) y
PLHT 207.476 34.460 32.224 298.88 573.04 0.422 0.362 0.060 0.056 0.858 0.142 0.166 132.875 cm
(19.647) (9.339) (8.319) (10.599) (18.521) (0.027) (0.026) (0.016) (0.015) (0.036) (0.036) (0.049) (1.292)
LELN 22.167 3.692 8.142 52.78 86.782 0.298 0.255 0.043 0.094 0.857 0.143 0.167 53.189 cm
(2.620) (1.373) (1.691) (1.833) (2.573) (0.027) (0.026) (0.016) (0.019) (0.049) (0.049) (0.067) (0.470)
LFWD 0.403 0.024 0.066 0.513 1.007 0.424 0.400 0.024 0.066 0.944 0.056 0.059 5.524 cm
(0.036) (0.014) (0.016) (0.018) (0.033) (0.027) (0.026) (0.014) (0.016) (0.031) (0.031) (0.035) (0.043)
TILN 1.403 0.490 0.581 0.000 9.508 0.199 0.148 0.052 0.061 0.741 0.259 0.349 7.145 count
(0.245) (0.195) (0.151) (0.000) (0.257) (0.027) (0.024) (0.020) (0.016) (0.090) (0.090) (0.163) (0.167)
PROL 1.956 1.112 0.702 8.096 11.867 0.259 0.165 0.094 0.059 0.638 0.363 0.569 9.763 count
(0.343) (0.274) (0.200) (0.263) (0.334) (0.029) (0.027) (0.023) (0.017) (0.075) (0.075) (0.185) (0.218)
LBNN 0.038 0.019 0.041 0.412 0.510 0.111 0.075 0.036 0.081 0.672 0.328 0.487 2.659 count
(0.012) (0.009) (0.011) (0.012) (0.013) (0.025) (0.023) (0.018) (0.020) (0.141) (0.141) (0.312) (0.036)
LBLN 4410.72 1645.46 2524.3 19347.0 27927.0 0.217 0.158 0.059 0.090 0.728 0.272 0.373 442.782 mm
(797.599) (530.794) (609.560) (619.960) (782.940) (0.029) (0.027) (0.019) (0.022) (0.077) (0.077) (0.144) (9.289)
LBIL 805.297 221.401 75.404 1883.20 2985.30 0.344 0.270 0.074 0.025 0.784 0.216 0.275 166.394 mm
(94.630) (58.727) (31.164) (60.788) (90.500) (0.028) (0.026) (0.019) (0.010) (0.051) (0.051) (0.083) (3.185)
EL 20.976 0.766 0.550 17.829 40.120 0.542 0.523 0.019 0.014 0.965 0.035 0.037 46.418 mm
(1.560) (0.491) (0.257) (0.589) (1.426) (0.023) (0.023) (0.012) (0.006) (0.022) (0.022) (0.024) (0.243)
CUPR 0.208 0.011 0.003 0.155 0.377 0.581 0.551 0.030 0.007 0.948 0.052 0.055 4.498 count
(0.015) (0.005) (0.002) (0.005) (0.014) (0.022) (0.022) (0.013) (0.005) (0.022) (0.022) (0.024) (0.026)
ED 0.066 0.005 0.002 0.023 0.095 0.740 0.692 0.048 0.017 0.935 0.065 0.069 3.971 mm
(0.004) (0.001) (0.001) (0.001) (0.004) (0.016) (0.017) (0.012) (0.006) (0.016) (0.016) (0.018) (0.014)
GE 0.830 0.045 0.011 0.622 1.509 0.581 0.551 0.030 0.007 0.948 0.052 0.055 8.996 count
(0.059) (0.020) (0.007) (0.022) (0.054) (0.022) (0.022) (0.013) (0.005) (0.022) (0.022) (0.024) (0.052)
EILN 0.143 0.007 0.002 0.096 0.249 0.605 0.576 0.029 0.008 0.953 0.047 0.050 5.180 mm
(0.010) (0.003) (0.001) (0.003) (0.009) (0.021) (0.021) (0.011) (0.005) (0.018) (0.018) (0.020) (0.020)
TGPP 328513 25683.1 53565.0 816710 1224500 0.289 0.268 0.021 0.044 0.928 0.073 0.078 | 4336.062 count
(39202.0) (20880.6) (16447.0) (25999.0) (36948.0) (0.028) (0.027) (0.017) (0.013) (0.057) (0.057) (0.066) (48.581)
TGWP 373.665 71.687 69.617 555.440 | 1070.400 0.416 0.349 0.067 0.065 0.839 0.161 0.192 113.948 -
(39.458) (22.543) (18.067) (20.389) (35.648) (0.029) (0.029) (0.021) (0.017) (0.047) (0.047) (0.067) (1.818) g
GW 17.446 1.270 0.440 4.907 24.061 0.778 0.725 0.053 0.018 0.932 0.068 0.073 26.300 m
(0.974) (0.296) (0.140) (0.228) (0.909) (0.015) (0.016) (0.012) (0.006) (0.016) (0.016) (0.018) (0.200) g
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Table S2. Variance component estimates for maize landrace. The following estimates (and their ratios) and their standard errors are

displayed: additive genetics variance (V); dominance genetic variance (Vp); genetic-by-environment variance (Vexe); residual

variance (Ve); phenotypic variance (Vp); broad-sense heritability (H?); narrow-sense heritability (h?); outcross trait mean (J).

Trait Va Vb Vexe Ve Ve H? h? VolVe | VeelVe | ValVe | VolVe | VolVa H units
(se) (se) (se) (se) (se) (se) (se) (se) (se) (se) (se) (se) (se)
DTA 5.752 0.969 0.787 12.893 20.401 0.329 0.282 0.048 0.039 0.856 0.144 0.168 76.795 day
(0.684) (0.368) (0.279) (0.404) (0.649) (0.028) (0.027) (0.018) (0.014) (0.052) (0.052) (0.070) (0.192)
DTS 8.211 0.590 1.653 21.968 32.421 0.271 0.253 0.018 0.051 0.933 0.067 0.072 81.163 day
(1.089) (0.522) (0.566) (0.682) (1.024) (0.029) (0.028) (0.016) (0.017) (0.057) (0.057) (0.066) (0.229)
PLHT 172.123 21.645 43.257 575.27 812.290 0.239 0.212 0.027 0.053 0.888 0.112 0.126 247.67 cm
(24.415) (12.298) (14.09) (17.823) (24.467) (0.028) (0.026) (0.015) (0.017) (0.060) (0.060) (0.076) (1.177)
LELN 49.342 2.885 3.569 73.042 128.840 0.405 0.383 0.022 0.028 0.945 0.055 0.059 100.236 cm
(5.470) (2.576) (1.645) (2.697) (4.888) (0.032) (0.031) (0.020) (0.013) (0.048) (0.048) (0.054) (0.465)
LFWD 0.616 0.094 0.050 0.997 1.757 0.404 0.350 0.054 0.028 0.867 0.133 0.153 10.730 cm
(0.070) (0.037) (0.022) (0.036) (0.064) (0.030) (0.031) (0.021) (0.012) (0.050) (0.050) (0.067) (0.060)
TILN 0.005 0.029 0.014 0.096 0.144 0.234 0.036 0.198 0.099 0.154 0.846 5.504 0.137 count
(0.004) (0.004) (0.003) (0.003) (0.004) (0.029) (0.025) (0.029) (0.022) (0.099) (0.099) (4.202) (0.022)
PROL 0.003 0.005 0.001 0.186 0.193 0.037 0.014 0.024 0.003 0.366 0.634 1.731 1.104 count
(0.002) (0.004) (0.001) (0.005) (0.005) (0.016) (0.011) (0.020) (0.007) (0.352) (0.352) (2.627) (0.018)
LBNN 1.886 0.236 0.104 3.731 5.956 0.356 0.317 0.040 0.017 0.889 0.111 0.125 12.496 count
(0.216) (0.122) (0.055) (0.122) (0.199) (0.028) (0.029) (0.020) (0.009) (0.055) (0.055) (0.070) (0.102)
LBLN 337.973 179.939 55.266 1005.20 1578.40 0.328 0.214 0.114 0.035 0.653 0.347 0.532 115.170 mm
(2.168) (41.944) (22.285) (34.204) (49.597) (0.029) (0.030) (0.026) (0.014) (0.073) (0.073) (0.171) (2.061)
LBIL 2.168 1.362 0.408 6.965 10.902 0.324 0.199 0.125 0.037 0.614 0.386 0.628 9.36 mm
(0.366) (0.303) (0.157) (0.240) (0.341) (0.029) (0.030) (0.027) (0.014) (0.075) (0.075) (0.200) (0.176)
EL 186.632 62.439 55.814 887.370 1192.30 0.209 0.157 0.052 0.047 0.749 0.251 0.335 169.204 mm
(37.552) (28.642) (22.781) (29.223) (35.778) (0.030) (0.029) (0.024) (0.019) (0.104) (0.104) (0.185) (1.642)
CUPR 11.459 1.009 2.638 58.205 73.312 0.170 0.156 0.014 0.036 0.919 0.081 0.088 31.886 count
(2.287) (1.577) (1.199) (1.865) (2.188) (0.028) (0.029) (0.022) (0.016) (0.122) (0.122) (0.145) (0.378)
ED 3.140 0.968 0.633 7.280 12.021 0.342 0.261 0.081 0.053 0.764 0.236 0.308 25.663 mm
(0.466) (0.309) (0.215) (0.271) (0.419) (0.032) (0.033) (0.025) (0.018) (0.069) (0.069) (0.119) (0.172)
GE 1791.92 865.488 563.669 12294 15515.0 0.171 0.116 0.056 0.036 0.674 0.326 0.483 358.677 count
(477.845) (426.349) (257.383) (415.18) (457.420) (0.029) (0.029) (0.027) (0.017) (0.142) (0.142) (0.313) (6.192)
EILN 0.016 0.000 0.003 0.093 0.112 0.144 0.144 0.000 0.028 1.000 0.000 0.000 0.963 mm
(0.003) (0.000) (0.002) (0.003) (0.003) (0.025) (0.025) (0.000) (0.014) (0.000) (0.000) (0.000) (0.015)
TGPP 1551.14 961.605 609.999 12909.0 16032.0 0.157 0.097 0.060 0.038 0.617 0.383 0.620 357.619 count
(472.909) (449.348) (269.911) (431.550) (461.980) (0.029) (0.029) (0.028) (0.017) (0.155) (0.155) (0.408) (6.364)
TGWP 25.343 158.484 87.020 1571.80 1842.70 0.100 0.014 0.086 0.047 0.138 0.862 6.254 122.003 mg
(42.238) (57.841) (36.259) (51.044) (48.501) (0.027) (0.023) (0.031) (0.020) (0.223) (0.223) (11.736) (2.272)
GW 1294.62 478.496 531.64 5722.00 8026.80 0.221 0.161 0.060 0.066 0.730 0.270 0.370 359.066 m
(269.151) (207.141) (170.945) (198.112) (249.464) (0.032) (0.031) (0.026) (0.021) (0.105) (0.105) (0.197) (4.338) g




Table S3. Trait mean and selection intensity. The mean and standard error for each trait

in teosinte and maize landrace are shown here. Selection intensities are provided as

estimates based on 9,000 generations of selection during domestication.

) ) Teosinte Maize Landrace Selection

Trait Units :
Mean Std Err | Mean Std Err | Intensity

DTA days 68.4821 0.2963 76.7954 | 0.1920 0.0004
DTS days 66.8688 0.2750 81.1632 | 0.2285 0.0007
PLHT cm 132.8754 1.2919 | 247.6702 | 1.1773 0.0018
LFLN cm 53.1889 0.4696 | 100.2361 | 0.4645 0.0015
LFWD cm 5.5235 0.0425 10.7302 | 0.0600 0.0013
TILN count 7.1449 0.1670 0.1373 | 0.0223 -0.0026
PROL count 9.7625 0.2180 1.1040 | 0.0183 -0.0026
LBNN count 2.6587 0.0363 12.4956 | 0.1024 0.0022
LBLN mm 442.7818 9.2892 | 115.1695 | 2.0609 -0.0019
LBIL mm 166.3942 3.1845 9.3601 | 0.1758 -0.0018
EL mm 46.4175 0.2428 | 169.2042 | 1.6420 0.0033
CUPR count 4.4977 0.0258 31.8860 | 0.3781 0.0033
ED mm 3.9706 0.0140 25.6634 | 0.1722 0.0039
GE count 8.9955 0.0516 | 358.6766 | 6.1921 0.0040
EILN mm 5.1804 0.0204 0.9628 | 0.0146 -0.0026
TGPP count | 4336.0619 | 48.5813 | 357.6188 | 6.3639 -0.0022
TGWP g 113.9475 1.8180 | 122.0025 | 2.2717 0.0002
GW mg 26.3000 0.2000 | 359.0660 | 4.3380 0.0038
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Table S4. Genetic correlations, variances and covariances for teosinte. Genetic correlations (rg ;) for all trait pairs and their standard
errors are shown in the lower left triangle of the matrix; additive genetic variances (V, ;) for each trait are shown in the diagonal of the

matrix; genetic covariances (Covg, ;) for all trait pairs are shown in the upper right triangle of the matrix. Standard errors are not
available for the Covg ;; since they are calculated as Covg;; = 15 - /Va,i - Va; for each trait pair instead of taking the estimates

directly from the bivariate REML outputs.

DTA DTS PLHT LFLN LFWD TILN PROL LBNN LBLN LBIL EL CUPR ED GE EILN TGPP TGWP GW
DTA (210558%7) 10705 | 38781 | 12482 | 115 | -0.214 | 0016 | 0269 | -86.04 | -63.91 | 3921 | 0504 | -0.047 | 1008 | -0.135 | 12612 | 24.735 | -2.321
0.967 | 20.226
DTS 0008 | (Loce, | 35875 | 12241 | 1166 | 0086 | 0223 | 0289 | 67.08 | -57.51 | 3304 | 0452 | -0.059 | 0903 | -0.150 | 12757 | 24.985 | -2.532
0.594 0.554 207.48
PLHT | (outy | 0040y | (1o.g) | 39463 | 4677 | -Loag | 3125 | 0799 | 15115 | -47.78 | 15457 | 1566 | 0134 | 3132 | -0131 | 30554 | 95225 | 0993
0.585 0.578 0.582 22.167
LELN | oouy | 0046) | 00te) | Gy | 0931 | 0301 | 1333 | 0220 | 11569 | 1046 | 5835 | 049 | 0140 | 0992 | 0111 | 11831 | 3L072 | 1316
0400 | 0409 | 0512 | 0312 | 0403
LAWD | D0 | 0650y | 0015 | (0oes | (bse | O137 | 0276 | 0047 | 5503 | 0663 | 0723 | 0082 | 0037 | 0164 | -0012 | 17340 | 5665 | 0412
0040 | 0016 | -0.114 | 0054 | -0.183 | 1403
TILN (0.071) (0.069) (0.074) (0.076) (0.073) (0.245) -0.132 -0.007 -1.101 0.565 -0.444 -0.018 -0.022 -0.036 -0.024 181.94 1.323 -0.527
0002 | 0036 | 0155 | 0202 | 0310 | -008 | 1956
PROL (0.072) (0.069) (0.070) (0.072) (0.062) (0.088) (0.343) 0.172 40.093 5.732 -1.575 -0.118 -0.039 -0.237 -0.044 262.79 2.874 -0.933
0304 | 0329 | 0284 | 0239 | 038l | -0.032 | 0630 | 0038
LBNN | O | 0boey | 0600y | 0068 | 0602 | o100 | 0000y | (ols | 5842 | 0321 | 0048 | 0013 | 0000 | 0025 | -001| 44675 | 0815 | -0058
20286 | 0225 | 0016 | 0037 | 0133 | -0014 | 0432 | 0451 | 24107
LBLN (0.067) (0.066) (0.073) (0.076) (0.069) (0.085) (0.067) (0.074) (797.6) 1644.4 -15.85 -1.425 -1.69 -2.851 0.302 -5851 -239.8 -16.17
20497 | 0451 | 0117 | -0.078 | -0037 | 0017 | 0144 | -0.058 | 0872 | 80530
LBIL | (0.053) | (0.053) | (0.067) | (0.070) | (0.065) | (0.08) | (0.078) | (0.093) | (0.024) | (94.63) | ©719 | 1479 | -0427 | -2958 | 1161 | -6080 | -162.4 | 0616
0189 | 0165 | 0234 | 0271 | 0249 | 0082 | 0246 | 0053 | -0052 | -0.052 | 20.976
EL (0.053) | (0.051) | (0.052) | (0.055) | (0.051) | (0.068) | (0.065) | (0.08) | (0.068) | (0.062) | (1.560) | 698 | 0892 | 32171 0488 | 12280 | 56.882 | 8.065
0244 | 0220 | 0239 | 0231 | 0284 | 0034 | 0186 | 0142 | -0047 | 0114 | 0771 | 0208
CUPR | (0.052) | (0.049) | (0.051) | (0.055) | (0.049) | (0.067) | (0.065) | (0.077) | (0.067) | (0.061) | (0.020) | (0.015) | @01 | 0415 | -0.067 | 183.99 | 4.224 | 0047
004 | 0051 | 0036 | 0116 | 0227 | -0073 | 0108 | -0.010 | -0.099 | -0.058 | 0333 | 0093 | 0.066
ED (0.049) | (0.046) | (0.049) | (0.052) | (0.046) | (0.062) | (0.061) | (0.074) | (0.062) | (0.056) | (0.041) | (0.044) | (0.004) | 0022 | 0033 | 1252 3568 | 0972
0244 | 0220 | 0239 | 0231 | 0284 | 0034 | 0186 | 0142 | -0047 | 0114 | 0771 | 1.000 | 0093 | 0830
GE 0.052) | (0.049) | (0.051) | (0.055) | (0.049) | (0.067) | (0.065) | (0.077) | (0.067) | (0.061) | (0.020) | (0.000) | (0.044) | (0.059) | 0134 | 367.98 | 8449 | 0.093
N 0079 | 0088 | 0024 | 0062 | 0050 | 0054 | 0083 | 0132 | 0012 | 0108 | 0282 | -0.390 | 0342 | 0390 | 0143 | _o | L | oo
0.053) | (0.05) | (0.054) | (0.056) | (0.052) | (0.066) | (0.065) | (0.077) | (0.066) | (0.060) | (0.045) | (0.042) | (0.040) | (0.042) | (0.010) ' : :
Torp 0486 | 0495 | 0479 | 0438 | 0477 | 0268 | 0328 | 0400 | -0.154 | -0.374 | 0468 | 0704 | 0008 | 0704 | 0.367 | 328513 | gorce | ppes
(0.060) | (0.057) | (0.052) | (0.059) | (0.05) | (0.071) | (0.068) | (0.078) | (0.081) | (0.068) | (0.051) | (0.036) | (0.056) | (0.036) | (0.055) | (39202) : '
Towe | 0282 | 0287 | 0342 | 0341 | 0462 | 0058 | 0106 | 0216 | 0187 | 0296 | 0642 | 0480 | 0718 | 0480 | 0198 | 0603 | 37367 | oo,oco
(0.058) | (0.055) | (0.053) | (0.057) | (0.047) | (0.071) | (0.071) | (0.082) | (0.074) | (0.065) | (0.037) | (0.044) | (0.029) | (0.044) | (0.054) | (0.038) | (39.46) :
ow 0123 | -0135 | 0016 | 0067 | 0156 | -0.007 | -0.160 | -0071 | -0.058 | 0005 | 0422 | 0024 | 0906 | 0024 | 058l | -0094 | 0722 | 17.445
(0.048) | (0.045) | (0.048) | (0.051) | (0.046) | (0.061) | (0.060) | (0.073) | (0.061) | (0.055) | (0.038) | (0.043) | (0.008) | (0.043) | (0.031) | (0.055) | (0.028) | (0.974)
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Table S5. Genetic correlations, variances and covariances for maize landrace. Genetic correlations (g ;;) for all trait pairs and their

standard errors are shown in the lower left triangle of the matrix; additive genetic variances (V,;) for each trait are shown in the

diagonal of the matrix; genetic covariances (Covg, ;) for all trait pairs are shown in the upper right triangle of the matrix. Standard
errors are not available for the Cov, ;; since they are calculated as Covg;; = 15,5 - /Va, - Va ; for each trait pair instead of taking the
estimates directly from the bivariate REML outputs.

DTA DTS PLHT LFLN LFWD TILN PROL LBNN LBLN LBIL EL CUPR ED GE EILN TGPP TGWP GW

DTA (05678542) 5445 | 11.954 | 0938 | -0008 | 0036 | -0.025 | -0.102 | -6.455 | -0550 | -0.144 | -0.780 | -0.181 | -12.24 | 0062 | -9.531 | 0404 | 10.443
0792 | 8210

DTS 7.098 | 6044 | -0047 | 0020 | -0011 | 0755 | -2.534 | -0.644 | -3135 | -1845 | -0.121 | -2077 | 0069 | -19.31 | -2.203 | 15.217
0.032) | (1.089)
0.380 0.189 172.12

PLHT | o | (0o | (oaazy | 7197 | 0914 | -0074 | -0.060 | 4717 | 47635 | 1244 | 37.083 | 9748 | -1532 | 49.504 | -0.045 | 39322 | 7.661 | -27.80
0056 | 0300 | 0078 | 49.342

LELN | or | 060 | 008 | Gase | 0444 | -0002 | 0003 | 0478 | 19306 | 1220 | 5604 | -1298 | -0.804 | 30.18 | 0060 | -26.34 | -6.874 | 16.352
-0.004 | -0021 | -0.089 | -0.080 | 0616

LFWD | OO | oore | ooesy | ©or) | (6se | 0008 | 0008 | 0200 | 2380 | 0044 | 1283 | 0302 | 030L | 4790 | -0003 | 4574 | 1817 | 4240
0209 | 0097 | -0078 | -0004 | -0.140 | 0.005

TN | gime | 0008 | ©obn | @019 | ©oom | (0oos | 0001 | 0000 | 0287 | 0020 | -0.063 | -0.030 | 0010 | -0091 | 0000 | -0.089 | 0010 | 012
0204 | -0077 | 0238 | 0009 | 0191 | 0256 | 0003

PROL | reer | odn | vy | 0103 | oise | 0i6n | 6oy | 001 | 0339 | 0024 | 0072 | 0023 | -0.016 | 0067 | 0000 | 0092 | 0044 | 0164
0031 | 0192 | 0262 | 0050 | 0194 | -0.002 | 0261 | 1886

LBNN | T | oo | 0ors | 0603 | 0060 | ©ore | ©iae | oats | 6509 | -0484 | 2730 | 0412 | -0041 | -2003 | -0.028 | -1417 | 0332 | 3533
20146 | 0048 | 0198 | 0150 | 0165 | 0479 | 0359 | 0258 | 337.97

LBLN | 5 | oorty | 0060 | 0070 | 0072 | 007 | 0ate | on | oaety | 23681 | 85.316 | 18937 | -0492 | 12008 | 0014 | 11266 | 9088 | -93.86
20156 | -0.153 | 0064 | 0118 | 0038 | 0187 | 0314 | 0239 | 0875 | 2.168

LBIL | (0.074) | (0.078) | (0.085) | (0.076) | (0.076) | (0.08) | (0.165) | (0.072) | (0.019) | (0.366) | 8939 | 1702 | 0012} 11002 | 0017 | 9482 | 0555 | -9.478
20004 | 0080 | 0207 | 0058 | 0120 | -0.064 | 0102 | -0.146 | 0340 | 0424 | 186.63

EL | (0085 | (0.087) | (0.089) | (0.086) | (0.082) | (0.095) | (0.177) | (0.084) | (0.076) | (0.074) | (37.55) | %122 | 1346 | 26509 | 0350 | 239.91 | 28513 | -98.55
20096 | -0190 | 0220 | 0055 | 0114 | -0125 | 0135 | -0.089 | 0304 | 0342 | 0695 | 11.459

CUPR | 0.088) | (0.087) | (0.093) | (0.091) | (0.087) | (0.100) | (0.186) | (0.089) | (0.084) | (0.084) | (0.052) | (2.287) | 1246 | 11408 | -0.170 | 106.78 | 7.718 | -67.25
20042 | -0.024 | 0.066 | -0.065 | 0216 | 0080 | -0181 | -0.017 | -0.015 | 0004 | 0056 | 0208 | 3.140

ED | o76) | (0.08) | (0.084) | (0.077) | (0.072) | (0.083) | (0.158) | (0.077) | (0.080) | (0.081) | (0.087) | (0.094) | (0.466) | 0420 | -0.025 | 0607 | 2098 | 13.364
0121 | 0171 | 0089 | 0102 | 0144 | -0030 | 0031 | -0.036 | 0166 | 0176 | 0458 | 0796 | 0006 | 1791.9

CE | (0o088) | (0.09) | (0.100) | (0.093) | (0.088) | (0.103) | (0.195) | (0.093) | (0.090) | (0.093) | (0.079) | (0.039) | (0.007) | (a77.8) | ~3B13 | 1667.2 | 108.19 | -1142

N 0203 | 0189 | 0027 | 0067 | 0028 | -0.030 | 0049 | -0.158 | 0.006 | 0092 | 0202 | 0.395 | 0411 | 0710 | 0016 | oo | o103 | 2665
0.091) | (0.096) | (0.105) | (0.095) | (0.094) | (0.104) | (0.190) | (0.094) | (0.098) | (0.200) | (0.115) | (0.091) | (0.097) | (0.061) | (0.003) : : :

topp | 0101 | 0171 | 0076 | 0095 | 0148 | -0.014 | 0046 | -0.026 | 0156 | 0164 | 0446 | 0801 | 0009 | 1000 | 0701 | 15511 | yoo o | oo
0.001) | (0.091) | (0.102) | (0.096) | (0.090) | (0.105) | (0.198) | (0.095) | (0.093) | (0.095) | (0.082) | (0.040) | (0.099) | (0.000) | (0.065) | (472.9) '

Towp | 0034 | 0150 | 0116 | 0194 | 0460 | 0026 | 0170 | 0048 | 0098 | 0075 | 0415 | 0453 | 0235 | 0508 | 0162 | 0522 | 25343 | oo
0.114) | (0.114) | (0.119) | (0.119) | (0.098) | (0.128) | (0.208) | (0.117) | (0.114) | (0.119) | (0.099) | (0.099) | (0.107) | (0.096) | (0.138) | (0.095) | (42.24) :

ow 0225 | 0148 | -0059 | 0065 | 0150 | 0074 | 0089 | 0072 | -0142 | -0179 | -0.200 | -0.552 | 0210 | -0.750 | 0582 | -0.735 | 0198 | 12946
(0.083) | (0.088) | (0.093) | (0.084) | (0.083) | (0.092) | (0.177) | (0.084) | (0.087) | (0.087) | (0.095) | (0.080) | (0.086) | (0.059) | (0.078) | (0.063) | (0.130) | (269.2)
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Table S6. Results from Jump-Up approach in Flury hierarchy. Lower model (unrelated
structure) is compared against higher models of partial common principal component
(PCPC), common principal component (CPC), proportionality and equality. Since the
bottom-most comparison is significant, the test suggests that teosinte and maize
landrace G-matrices are unrelated.

Higher Lower X2 df P-values

Equality Unrelated | 373168.025 136 0
Proportionality | Unrelated | 373068.548 135 0
CPC Unrelated | 201724.419 120 0
PCPC(14) Unrelated | 201723.968 119 0
PCPC(13) Unrelated | 201390.193 117 0
PCPC(12) Unrelated | 201223.457 114 0
PCPC(11) Unrelated | 200907.826 110 0
PCPC(10) Unrelated | 200312.352 105 0
PCPC(9) Unrelated | 190861.067 99 0
PCPC(8) Unrelated | 190459.350 92 0
PCPC(7) Unrelated | 175875.368 84 0
PCPC(6) Unrelated | 158198.735 75 0
PCPC(5) Unrelated | 139626.102 65 0
PCPC(4) Unrelated | 113251.837 54 0
PCPC(3) Unrelated | 109270.987 42 0
PCPC(2) Unrelated | 84175.474 29 0
PCPC(1) Unrelated | 38611.482 15 0




Table S7. Qst estimates for all 18 traits and P-values from univariate Qsr-Fst test. For
each trait, Qsr is estimated as Qsr = Ve/(Vet+2Vw) where Vg is the between-population
additive genetic variance and Vw is the within-population additive genetic variance. The
difference between Qst and Fsr is then calculated as Qsr - Fst where Fsris 0.1567. The
observed Qsr - Fst is then compared to the null distribution of Qst - Fst under neutrality
to obtain the two-tailed P-values.

Trait Qst P-values
DTA 0.5681 0.0160
DTS 0.7823 | <0.0001
PLHT | 0.9455| <0.0001
LFLN 0.9393 | <0.0001
LFWD | 0.9301 | <0.0001
TILN 0.9458 | <0.0001
PROL | 0.9503 | <0.0001
LBNN | 0.9618 | <0.0001
LBLN 0.9187 | <0.0001
LBIL 0.9385 | <0.0001

EL 0.9732 | <0.0001
CUPR | 0.9698 | <0.0001
ED 0.9866 | <0.0001
GE 0.9715| <0.0001

EILN 0.9824 | <0.0001
TGPP | 0.9600 | <0.0001
TGWP | 0.0752 0.9860
GW 0.9769 | <0.0001
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Table S8. Individual trait contribution towards genetic constraint. Genetic constraint is
measured as an angle () between the actual domestication trajectory (Z) and genetic
lines of least resistance (gmax). Using gmax calculated from the standardized teosinte G-
matrix, 6, is 67.3°. Individual trait contribution towards genetic constraint is measured by
dropping each trait and calculating the angle (Gémpone) using similar method. Oémpone <
6+ implies that trait i constrained evolution while Gfmpone > 6 implies that trait i assisted
evolution.

Trait ecllropone gcllropone - 9T

GE 62.82 -4.46
DTA 63.22 -4.05
DTS 63.35 -3.93
PLHT 64.63 -2.65
LFLN 65.04 -2.24
LFWD 66.35 -0.93
LBIL 66.52 -0.75
PROL 67.00 -0.28
LBLN 67.20 -0.08
EILN 67.20 -0.08
TILN 67.32 0.04
LBNN 67.40 0.12
GW 69.17 1.90
ED 69.71 2.43
TGWP 70.61 3.33
EL 71.42 4.14
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Table S9. Comparing the responses from single trait selection. Responses (R;) are
calculated from hypothetical selection of a single trait and compared to the actual

domestication trajectory (Z). By selecting for trait i, |pr0jZRi| measures evolutionary gain

along Z while 8, measures the deviation between R; and Z.

Trait | Selection Direction | |proj;RY| | 6, (")
DTA Positive 0.31| 80.39
DTS Positive 0.28 | 81.13
PLHT | Positive 0.34| 77.86
LFLN Positive 0.35| 77.23
LFWD | Positive 0.45| 73.08
TILN Negative 0.09| 84.84
PROL | Negative 0.17| 82.89
LBNN | Positive 0.26 | 79.86
LBLN | Negative 0.05| 87.98
LBIL Negative 0.17| 83.64
EL Positive 097 | 53.77
ED Positive 050 | 72.24
GE Positive 1.07 | 45.55
EILN Negative 0.21| 81.00
TGWP | Positive 0.84| 63.31
GW Positive 0.42 | 75.88
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PC_J14_ID2

PC_J48_ID2

PC_K55_ID2

PC_L06_ID2

PC_L12_1D2

PC_L48_1D2

PC_NO3 ID2| 0| of of o] o] of of of of of of o of of of o of of of o] of of of o] of of of of of of o] of of of o] of of of o] of of o] o] of of of o] of of 0] o]65 1| 0] o] 2| 5 0|11 0[13[14] 3| 0O 0] 0] O

PC_N10_1D2| o] of o[ o] of of of o] o] of of o] of of of o] of of of o] of of of o] of of of o] of of of o] o] of of o] o of of o] o] of of o] o] of of o] o of of 0] 1] o[ 0[22] 0] 0] O] 0] 0] O] 0[44 0] O

PC_NO7_ID2| 0| of o] o] o] of of of of of of o of of of o of of of o] of of of o] of of of o of of o] of of of o] of of o[ o of of of o] of of of o] of of o] 1] 5[ o] 0] o] 0[35 0] 1| Of 2| 0|38 0 0] 0] 3[ 3] 0| 0

PC_N14_ID2

PC_N57_ID2

PC_N58_ID2

PC_008_ID2| 0

PC 059 1D2| 0| of o] o] o] of of of ol of of of of of of o] of of of o] of of of of of of of o of of o] of of of of o of of o] of of of o] of of of o] of of of of of 1| o] o] 6] 0o[10] Of 1| O] O] O 4 0] 0] of o 0|60

PC_0O51 I1D2| of of of o] o[ o[ of of of o] of of of of of o[ of of o o] of of of of of o[ of of of of o] o] of of of o] of of of of of o] of of of of of of of of 0f of of of 1| 1| o] o] o[ 1f o] o] o] of of 2| 3] 2[95 O

Jualed [eussien

55



Table S10. Progeny-parent information for maize landrace.
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Table S12. Descriptions for 18 Comparable Teosinte and Maize Landrace Traits.

from FCWT/2.

Trait Acronym Units Teosinte Description Maize Landrace Description
Davs to Number of days from planting till the first Number of days from planting till the first
ys [0 DTA days day of at least one anther is shedding day of 50% of anthers are shedding
Anthesis R . = )
pollen; inspected visually. pollen; inspected visually.
Days to Number of days from planting till the first Number of days from planting till the first
e DTS days . Lo . . Lo .
Silking day of silks appearing; inspected visually. | day of silks appearing; inspected visually
Distance from ground to the node at the Distance from ground to the node at the
Plant Height PLHT cm base of the flag leaf; measured using a base of the flag leaf; measured using a
meter stick. meter stick.
Length of the leaf on one of the 4" to 6" Length of the leaf on the node bearing
Leaf Length LFLN cm nodes from the top of the plant; uppermost ear; measured using a tape
measured using a tape measure. measure.
Width of the leaf on one of the 4" to 6" Width of the leaf on the node bearing
Leaf Width LFWD cm nodes from the top of the plant; uppermost ear; measured using a tape
measured using a tape measure. measure.
Tiller Number | TILN count Number of tillers; counted visually. Number of tillers; counted visually.
Number of ears on the 2'%/3“ lateral Number of ears on the uppermost lateral
Prolificacy PROL count \t;irsaun;”k;from the top of the plant; counted branch; counted visually
Lateral Number of nodes in the 2"/3" |ateral Number of nodes/husks in the uppermost
Branch Node LBNN count byanch from the top of the plant; counted lateral branch; counted visually.
Number visually.
Length of the 2"Y/3" |ateral branch from
Lateral the top of the plant measured from main Length of the uppermost lateral branch
Branch LBLN mm stalk to node below the terminal measured from main stalk to node below
Length inflorescence; measured using a tape the ear; measured using a tape measure.
measure.
Lateral
Branch LBIL mm Average length between two nodes on a Average length between two nodes on a
Internode lateral branch; derived from LBLN/LBNN. | lateral branch; derived from LBLN/LBNN.
Length
nd/rd
Length of an ear on the 2"%/3" lateral Length of the primary ear on the
branch from the top of the plant, .
Ear Length EL mm . . uppermost lateral branch; measured
averaged over two ears; measured using :
using a ruler.
a ruler.
Cupules per Number of cupules/fruitcases in a row; Number of cupules/kernels in one row on
CUPR count . . ; >
Row derived from GE/2. the primary ear; counted visually.
Diameter of an ear as approximated by
the average width of 10-50 fruitcases Diameter of the primary ear on the
Ear Diameter | ED mm along the axis perpendicular to the uppermost lateral branch at its widest
fruitcase length; measured using point; measured using a caliper.
SmartGrain.
Number of fruitcases in an ear on the Total number of seeds of the primary ear
i nd/2rd
Grains Per GE count 2"/3% lateral branch from the ,tOp of the on the uppermost lateral branch; counted
Ear plant, averaged over two ears; counted -
. visually.
visually.
Ear Internode Average length between two nodes on an Average length between two nodes on an
EILN mm ; ge leng ear; derived from EL/(CUPRxKRN/2)
Length ear; derived from EL/(CUPRx2). .
where KRN is number of rows on an ear.
Predicted maximum number of fruitcases
. that a plant could have produced if all .
Tg:alzl)lgrr]?m TGPP count potential fruitcases were pollinated and Ig;ﬂtggrcit;i;ﬁf seeds on a plant;
P developed to maturity; derived from GE x Y-
TEPP.
Total Grain Predicted total seed weight that a plant
- could have produced if all potential Total seed weight of a plant; measured
Weight per TGWP mg frui i d and developed iahi |
Plant ruitcases were pollinated and develope on a weighing scale.
to maturity; derived from GW x TGPP.
Average weight of 100 seeds, in which
. . . 50 seeds are from ears on uppermost
Grain Weight | GW mg Average weight of 50 seeds; derived lateral branch and another 50 are from all

other ears; measured on a weighing
scale.
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