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Materials and instrumentation for chemistry and biological studies. 4-Chloro-2-

fluorobenzylalcohol was purchased form Matrix Scientific (Columbia, SC, USA). All other 

chemicals for the synthesis of 4-nitrobenzyl ethers, esters, and thioethers, as well as other nitro-

containing molecules were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used without 

any further purification. Chemical reactions were monitored by thin-layer chromatography (TLC) 

using Merck, Silica gel 60 F250 plates. All 1H (400 MHz) and 13C (100 MHz) NMR spectra were 

recorded on a Varian 400 MHz spectrometer. Chemical shifts (d) and coupling constant (J) are 

provided in parts per million (ppm) and Hertz (Hz), respectively. Conventional abbreviations used 

for signal shape are as follows: br s = broad singlet; s = singlet; d = doublet; t = triplet; q = quartet; 

p = pentet; sx = sextet; sp = septet; m = multiplet. Monitoring of nitroreduction reactions was 

performed on a multimode SpectraMax M5 plate reader. Reversed-phase high-pressure liquid 

chromatography (RP-HPLC) assays were performed on an Agilent Technologies 1260 Infinity 

HPLC system using the following general method 1: Flow rate = 1 mL/min; l = 254 nm; column 

= Vydac 201SP C18, 250 mm ´ 4.6 mm, 90 Å, 5 µm. Eluents: A = H2O + 0.1% TFA; B = MeCN. 

Gradient profile: starting from 5% B, increasing to 100% B over 10 min, holding at 100% B from 

10 to 16 min, decreasing from 100% B to 5% B from 16 to 20 min. Prior to each injection the 

HPLC column was equilibrated for 15 min with 5% B. Liquid chromatography-mass spectrometry 

(LCMS) experiments were performed on an Agilent 1200 Series Quaternary LC system and with 

an Eclipse XDB-C18 column (150 mm ´ 4.6 mm, 80 Å, 5 µm) equipped with an Agilent 6120 

Quadropole MSD mass spectrometer (Agilent Technologies, Santa Clara, CA). All compounds 

were at least 95% pure. 

 

CHEMISTRY 

General procedure for the synthesis of 4-nitrobenzyl ethers (26a,b,d-k,o,q). 4-

Nitrobenzylbromide (216 mg, 1 mmol) was added to a mixture of primary or secondary alcohol 

(1.1 mmol) and Ag2O (340 mg, 1.5 mmol) in dry Et2O (10 mL). The reaction mixture was heated 

at reflux temperature for 12 h. After cooling to room temperature, the solid was filtered off and 

washed with Et2O (2´25 mL). The organic layer was collected, concentrated under reduced 

pressure, and purified by column chromatography (SiO2, hexanes:CH2Cl2/1:1). 4-Nitrobenzylethyl 

ether (26a),1 4-nitrobenzylpropyl ether (26b),2 4-nitrobenzylbenzyl ether (26g),3 4-bromobenzyl 

4-nitrobenzyl ether (26h),4 di(4-nitrobenzyl) ether (26j),5 and 4-nitrobenzylphenyl ether (26q),3, 6 
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have previously been reported. The physical appearance and spectral data of all ethers are listed 

below: 

 

4-Nitrobenzylethyl ether (26a). Yellow solid (91 mg, 50%). 1H NMR (CDCl3, Fig. S1) d 8.14 (d, 

J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 4.57 (s, 2H), 3.56 (q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 

Hz, 3H); 13C NMR (CDCl3, Fig. S2) d 146.4, 127.7, 127.6, 123.5, 71.3, 66.4, 15.1. 

 

4-Nitrobenzylpropyl ether (26b). Off-white solid (51 mg, 26%). 1H NMR (CDCl3, Fig. S3) d 8.17 

(d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 4.58 (s, 2H), 3.47 (t, J = 6.8 Hz, 2H), 1.65 (q, J = 7.2 

Hz, 2H), 0.95 (t, J = 7.2 Hz, 3H); 13C NMR (CDCl3, Fig. S4) d 146.5, 130.9, 127.6, 123.5, 72.7, 

71.5, 22.9, 10.6. 

 

1-[(Cyclobutylmethoxy)methyl]-4-nitrobenzene (26d). Colorless oil (70 mg, 31%). 1H NMR 

(CDCl3, Fig. S5) d 8.18 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 8.2 Hz, 2H), 4.58 (s, 2H), 3.46 (d, J = 6.8 

Hz, 2H), 2.61 (p, J = 7.2 Hz, 1H), 2.07-2.03 (m, 2H), 1.92-1.72 (m, 4H); 13C NMR (CDCl3, Fig. 

S6) d 147.2, 146.5, 127.6, 123.5, 75.5, 71.6, 35.0, 25.0, 18.6. 

 

1-[(Cyclopentylmethoxy)methyl]-4-nitrobenzene (26e). Colorless oil (83 mg, 35%). 1H NMR 

(CDCl3, Fig. S7) d 8.17 (d, J = 7.2 Hz, 2H), 7.49 (d, J = 7.2 Hz, 2H), 4.59 (s, 2H), 3.37 (d, J = 5.6 

Hz, 2H), 2.21 (sp, J = 6.0 Hz, 1H), 1.76 (m, 2H), 1.52 (m, 4H), 1.26 (m, 2H); 13C NMR (CDCl3, 

Fig. S8) d 147.2, 146.6, 127.6, 123.5, 75.6, 71.6, 39.5, 29.6, 25.4. 

 

1-[(Cyclohexylmethoxy)methyl]-4-nitrobenzene (26f). Colorless oil (178 mg, 71%). 1H NMR 

(CDCl3, Fig. S9) d 8.15 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 8.8 Hz, 2H), 4.56 (s, 2H), 3.29 (d, J = 6.4 

Hz, 2H), 1.78-1.60 (m, 6H), 1.21-1.11 (m, 3H), 0.95 (m, 2H); 13C NMR (CDCl3, Fig. S10) d 147.2, 

146.6, 127.5, 123.5, 76.9, 71.6, 38.1, 30.0, 26.5, 25.8. 

 

4-Nitrobenzylbenzyl ether (26g). Note: For the preparation of compound 1f, 4-nitrobenzyl alcohol 

and benzyl bromide were used instead of 4-nitrobenzyl bromide and benzyl alcohol. Pale yellow 

solid (122 mg, 50%). 1H NMR (CDCl3, Fig. S11) d 8.19 (d, J = 8.8 Hz, 2H), 7.52 (d, J = 8.8 Hz, 
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2H), 7.33 (m, 5H), 4.65 (s, 2H), 4.62 (s, 2H); 13C NMR (CDCl3, Fig. S12) d 147.3, 146.0, 137.6, 

128.6, 128.0, 127.80, 127.76, 123.6, 72.8, 70.8. 

 

4-bromobenzyl 4-nitrobenzyl ether (26h). White solid (315 mg, 50%). 1H NMR (CDCl3, Fig. S13) 

d 8.20 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 

2H), 4.62 (s, 2H), 4.55 (s, 2H); 13C NMR (CDCl3, Fig. S14) d 147.4, 145.6, 136.5, 131.7 (2 

carbons), 129.3 (2 carbons), 127.7 (2 carbons), 123.7 (2 carbons), 121.9, 72.0, 70.9. 

 

4-Chlorobenzyl 4-nitrobenzyl ether (26i). Yellow oil (121 mg, 44%). 1H NMR (CDCl3, Fig. S15) 

d 8.20 (d, J = 8.8 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.8 Hz, 2H), 7.29 (d, J = 8.8 Hz, 

2H), 4.62 (s, 2H), 4.56 (s, 2H); 13C NMR (CDCl3, Fig. S16) d 147.4, 145.6, 136.0, 133.7, 129.0 (2 

carbons), 128.7 (2 carbons), 127.7 (2 carbons), 123.7 (2 carbons), 72.0, 70.9. 

 

Di(4-nitrobenzyl) ether (26j). Off-white solid (130 mg, 45%). 1H NMR (CDCl3, Fig. S17) d 8.22 

(d, J = 8.4 Hz, 4H), 7.54 (d, J = 8.4 Hz, 4H), 4.72 (s, 4H); 13C NMR (CDCl3, Fig. S18) d 147.5, 

145.1, 127.8, 123.7, 71.5. 

 

4-Chloro-2-fluorobenzyl 4-nitrobenzyl ether (26k). White solid (8 mg, 3%). 1H NMR (CDCl3, 

Fig. S19) d 8.20 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.37 (m, 1H), 7.12 (m, 2H), 4.66 (s, 

2H), 4.61 (s, 2H); 13C NMR (CDCl3, Fig. S20) d 161.73-159.24 (1JC-F  = 249.7 Hz), 147.5, 145.4, 

134.73-134.64 (3JC-F  = 9.4 Hz), 130.81-130.75 (3JC-F  = 5.3 Hz), 127.7 (2 carbons), 124.67-124.64 

(4JC-F  = 3.8 Hz), 123.7 (2 carbons), 123.44-123.29 (3JC-F  = 14.4 Hz), 116.34-116.10 (2JC-F  = 29.4 

Hz), 71.22, 65.85-65.81 (3JC-F  = 3.8 Hz). 

 

1-[(Cyclopentyloxy)methyl]-4-nitrobenzene (26o). Colorless oil (70 mg, 31%). 1H NMR (CDCl3, 

Fig. S21) d 8.18 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 4.55 (s, 2H), 4.01 (s, 1H), 1.73 (m, 

6H), 1.55 (m, 2H); 13C NMR (CDCl3, Fig. S22) d 147.2, 146.9, 127.5, 123.5, 81.7, 69.5, 32.3, 

23.5. 
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4-Nitrobenzylphenyl ether (26q). White solid (141 mg, 62%). 1H NMR (CDCl3, Fig. S23) d 8.22 

(d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 7.33 (t, J = 7.8 Hz, 2H), 7.01 (m, 3H), 5.17 (s, 2H); 
13C NMR (CDCl3, Fig. S24) d 158.1, 147.5, 144.7, 129.7, 127.6, 123.8, 121.5, 114.8, 68.5. 

 

General procedure for the synthesis of 4-nitrobenzyl esters (27c-i,k-n). The carboxylic acid 

(1.1 mmol) and K2CO3 (150 mg, 1.1 mmol) were added to acetone (15 mL). The reaction mixture 

was stirred for 10 min, and then the 4-nitrobenzylbromide (216 mg, 1 mmol) was added portion-

wise. The reaction mixture was continuously stirred at 50 °C for 6 h, and then cooled down to 

room temperature. The inorganic salts were removed by filtration. The organic materials were 

collected and concentrated under vacuum, and then partitioned between EtOAc (30 mL) and 1 M 

aq. K2CO3 (30 mL). The organic layer was separated, dried over anhydrous MgSO4, and 

evaporated under reduced pressure. The obtained oily materials were purified by column 

chromatography (SiO2, hexanes:CH2Cl2/2:1). The butanoate (27c),7 benzoate (27g),8 4-

bromobenzoate (27h),9 and 4-chlorobenzoate (27i) derivatives have previously been reported. The 

physical appearance and spectral data of all esters are listed below: 

 

4-Nitrobenzyl butanoate (27c). White solid (162 mg, 73%). 1H NMR (CDCl3, Fig. S25) d 8.14 (d, 

J = 8.8 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 5.16 (s, 2H), 2.33 (t, J = 7.6 Hz, 2H), 1.63 (sx, J = 7.6 

Hz, 2H), 0.90 (t, J = 7.6 Hz, 3H); 13C NMR (CDCl3, Fig. S26) d 173.0, 147.5, 143.5, 128.2, 123.7, 

64.4, 35.9, 18.3, 13.6. 

 

4-Nitrobenzyl cyclobutanecarboxylate (27d). Colorless oil (208 mg, 88%). 1H NMR (CDCl3, Fig. 

S27) d 8.20 (d, J = 8.4 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 5.18 (s, 2H), 3.21 (p, J = 8.4 Hz, 1H), 

2.32-2.18 (m, 4H), 2.02-1.88 (m, 2H); 13C NMR (CDCl3, Fig. S28) d 174.9, 147.6, 143.5, 128.2, 

123.8, 64.5, 37.9, 25.2, 18.4. 

 

4-Nitrobenzyl cyclopentanecarboxylate (27e). Colorless oil (155 mg, 62%). 1H NMR (CDCl3, 

Fig. S29) d 8.13 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 5.14 (s, 2H), 2.78 (p, J = 8.4 Hz, 

1H), 1.85-1.52 (m, 8H); 13C NMR (CDCl3, Fig. S30) d 176.2, 147.5, 143.7, 128.1, 123.6, 64.5, 

44.6, 43.6, 29.9, 29.4, 25.7. 
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4-Nitrobenzyl cyclohexanecarboxylate (27f). Colorless oil (105 mg, 40%). 1H NMR (CDCl3, Fig. 

S31) d 8.17 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 5.16 (s, 2H), 2.34 (tt, J1 = 11.2 Hz, J2 = 

3.2 Hz, 1H), 1.90 (d, J = 12.0 Hz, 2H), 1.72 (m, 2H), 1.61 (m, 1H), 1.43 (q, J = 12.0 Hz, 2H), 1.30-

1.16 (m, 3H); 13C NMR (CDCl3, Fig. S32) d 175.5, 147.5, 143.7, 128.1, 123.7, 64.4, 43.0, 28.9, 

25.6, 25.3. 

 

4-Nitrobenzyl benzoate (27g). White solid (222 mg, 86%). 1H NMR (CDCl3, Fig. S33) d 8.24 (d, 

J = 8.8 Hz, 2H), 8.07 (d, J = 8.4 Hz, 2H), 7.59 (m, 3H), 7.46 (t, J = 8.0 Hz, 2H), 5.45 (s, 2H); 13C 

NMR (CDCl3, Fig. S34) d 166.1, 147.7, 143.3, 133.5, 129.7, 129.4, 128.6, 128.3, 123.9, 65.2. 

 

4-Nitrobenzyl 4-bromobenzoate (27h). White solid (226 mg, 67%). 1H NMR (CDCl3, Fig. S35) d 

8.24 (d, J = 8.4 Hz, 2H), 7.92 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.8 Hz, 

2H), 5.43 (s, 2H); 13C NMR (CDCl3, Fig. S36) d 165.4, 147.8, 143.0, 131.9 (2 carbons), 131.2 (2 

carbons), 128.7, 128.4 (2 carbons), 128.3, 123.9 (2 carbons), 65.4. 

 

4-Nitrobenzyl 4-chlorobenzoate (27i). White solid (276 mg, 74%). 1H NMR (CDCl3, Fig. S37) d 

8.23 (d, J = 8.8 Hz, 2H), 8.01 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 8.8 Hz, 2H), 7.42 (d, J = 8.8 Hz, 

2H), 5.43 (s, 2H); 13C NMR (CDCl3, Fig. S38) d 165.2, 147.8, 143.0, 140.0, 131.1 (2 carbons), 

128.9 (2 carbons), 128.4 (2 carbons), 127.9, 123.9 (2 carbons), 65.4. 

 

4-Nitrobenzyl 4-chloro-2-fluorobenzoate (27k). Brown solid (197 mg, 64%). 1H NMR (CDCl3, 

Fig. S39) d 8.24 (d, J = 8.4 Hz, 2H), 7.92 (m, 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.22 (dd, J1 = 8.4 Hz, 

J2 = 2.0 Hz, 1H), 7.20 (dd, J1 = 11.2 Hz, J2 = 2.0 Hz, 1H), 5.43 (s, 2H); 13C NMR (CDCl3, Fig. 

S40) d 163.23-163.16 (3JC-F  = 7.6 Hz), 163.20-160.61 (1JC-F  = 258.8 Hz), 147.8, 142.7, 140.68-

140.57 (3JC-F  = 10.6 Hz), 133.1, 128.3 (2 carbons), 124.83-124.80 (4JC-F  = 3.8 Hz), 123.9 (2 

carbons), 118.04-117.78 (2JC-F  = 25.8 Hz), 116.61-116.51 (3JC-F  = 9.9 Hz), 65.6. 

 

4-Nitrobenzyl 2-cyclohexylacetate (27l). Colorless oil (98 mg, 35%). 1H NMR (CDCl3, Fig. S41) 

d 8.14 (d, J = 7.6 Hz, 2H), 7.46 (d, J = 7.6 Hz, 2H), 5.15 (s, 2H), 2.23 (d, J = 6.8 Hz, 2H), 1.74 

(sp, J = 4.0 Hz, 1H), 1.60 (m, 5H), 1.21-1.06 (m, 3H), 0.95 (m, 2H); 13C NMR (CDCl3, Fig. S42) 

d 172.5, 147.5, 143.5, 128.2, 123.7, 64.4, 41.8, 34.8, 32.9, 26.0, 25.9. 
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4-Nitrobenzyl 1-adamantanecarboxylate (27m). Colorless oil (112 mg, 37%). 1H NMR (CDCl3, 

Fig. S43) d 8.19 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 5.21 (s, 2H), 2.66 (t, J = 5.6 Hz, 

1H), 2.29 (m, 2H), 2.06 (d, J = 2.1 Hz, 2H), 1.81 (m, 5H), 1.63-1.54 (m, 5H); 13C NMR (CDCl3, 

Fig. S44) d 177.0, 147.5, 143.9, 127.9, 123.8, 64.5, 53.7, 46.8, 46.4, 44.2, 43.6, 43.5, 37.4, 37.3, 

34.6. 

 

4-Nitrobenzyl lithocholate (27n). White solid (215 mg, 41%). 1H NMR (CDCl3, Fig. S45) d 8.20 

(d, J = 8.8 Hz, 2H), 7.49 (d, J = 8.8 Hz, 2H), 5.17 (s, 2H), 3.60 (p, J = 4.8 Hz, 1H), 2.43 (m, 1H), 

2.28 (m, 1H), 1.92 (d, J = 11.6 Hz, 1H), 1.77-1.63 (m, 5H), 1.49 (m, 2H), 1.46 (m, 2H), 1.23 (m, 

8H), 1.09 (m, 3H), 1.05-0.93 (m, 5H), 0.89 (s, 3H), 0.88 (s, 3H), 0.59 (s, 3H); 13C NMR (CDCl3, 

Fig. S46) d 173.8, 147.6, 143.4, 128.4, 123.8, 71.8, 64.6, 56.4, 55.8, 42.7, 42.0, 40.4, 40.1, 36.4, 

35.8, 35.3, 35.3, 34.5, 31.1, 30.9, 30.5, 28.2, 27.1, 26.4, 24.2, 23.3, 20.8, 18.2, 12.0. 

 

General procedure for the synthesis of 4-nitrobenzyl thioethers (28g-i,k,p). The thiol 

derivative (1.1 mmol) and K2CO3 (150 mg, 1.1 mmol) were added to EtOH (15 mL). The reaction 

mixture was stirred for 20 min, and then 4-nitrobenzylbromide (216 mg, 1 mmol) was added 

portion-wise. The reaction mixture was continuously stirred at reflux temperature for 2 h, and then 

cooled down to room temperature. The organic materials were collected by filtration and 

concentrated under reduced pressure. The obtained brownish oily materials were purified by 

column chromatography (SiO2, hexanes:CH2Cl2/1:1). 4-nitrobenzylbenzyl thioether (28g)10 has 

previously been reported. The physical appearance and spectral data for all thioethers are listed 

below: 

 

Benzyl(4-nitrobenzyl)sulfane (28g). Light yellow solid (153 mg, 59%). 1H NMR (CDCl3, Fig. 

S47) d 8.14 (d, J = 8.8 Hz, 2H), 7.40 (d, J = 8.8 Hz, 2H), 7.30 (d, J = 6.4 Hz, 2H), 7.26 (m, 3H), 

3.64 (s, 2H), 3.60 (s, 2H); 13C NMR (CDCl3, Fig. S48) d 146.9, 146.1, 137.3, 129.8, 129.0, 

128.6,127.3, 123.7, 35.8, 34.9. 

 

4-Bromobenzyl(4-nitrobenzyl)sulfane (28h). White solid (246 mg, 73%). 1H NMR (CDCl3, Fig. 

S49) d 8.15 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.8 Hz, 2H), 7.12 (d, J = 8.8 
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Hz, 2H), 3.62 (s, 2H), 3.53 (s, 2H); 13C NMR (CDCl3, Fig. S50) d 147.0, 145.7, 136.4, 131.7 (2 

carbons), 130.6 (2 carbons), 129.7 (2 carbons), 123.8 (2 carbons), 121.2, 35.2, 34.9. 

 

4-Chlorobenzyl(4-nitrobenzyl)sulfane (28i). White solid (210 mg, 71%). 1H NMR (CDCl3, Fig. 

S51) d 8.15 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.0 

Hz, 2H), 3.62 (s, 2H), 3.55 (s, 2H); 13C NMR (CDCl3, Fig. S52) d 147.0, 145.7, 135.8, 133.1, 

130.2 (2 carbons), 129.7 (2 carbons), 128.8 (2 carbons), 123.7 (2 carbons), 35.1, 34.9. 

 

4-Chloro-2-fluorobenzyl(4-nitrobenzyl)sulfane (28k). Note: For the preparation of compound 3d, 

4-nitrobenzyl bromide (108 mg, 0.50 mmol), the thiol derivative (97 mg, 0.55 mmol), and K2CO3 

(76 mg, 0.55 mmol) were used. Yellow solid (112 mg, 72%). 1H NMR (CDCl3, Fig. S53) d 8.15 

(d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.8 Hz, 2H), 7.21 (m, 1H), 7.07 (m, 2H), 3.70 (s, 2H), 3.60 (s, 

2H); 13C NMR (CDCl3, Fig. S54) d 161.72-159.24 (1JC-F  = 248.9 Hz), 147.1, 145.5, 133.97-133.87 

(3JC-F  = 9.8 Hz), 131.57-131.52 (3JC-F  = 4.6 Hz), 129.7 (2 carbons), 124.72-124.68 (4JC-F  = 3.8 

Hz), 123.8 (2 carbons), 123.72-123.56 (3JC-F  = 15.2 Hz), 116.47-116.22 (2JC-F  = 22.1 Hz), 35.5, 

28.31-28.28 (3JC-F  = 3.0 Hz). 

 

Cyclohexyl(4-nitrobenzyl)sulfane (28p). Faint yellow oil (65 mg, 26%). 1H NMR (CDCl3, Fig. 

S55) d 8.13 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 8.8 Hz, 2H), 3.78 (s, 2H), 2.51 (p, J = 6.8 Hz, 1H), 

1.88 (m, 2H), 1.71 (m, 2H), 1.56 (m, 1H), 1.26 (m, 5H); 13C NMR (CDCl3, Fig. S56) d 147.0, 

146.8, 129.5, 123.7, 43.2, 34.0, 33.3, 25.9, 25.7. 

 

BIOLOGICAL STUDIES 

Optimization of the conditions for CNR activity. The CNR enzyme was purified as previously 

reported.11 The nitroreduction activity of CNR was observed using the absorbance of NADPH 

(340 nm, e = 6,220 M-1cm-1), which is used to reduce the flavin mononucleotide (FMN) of the 

enzyme after oxidation due to the ongoing reaction. Reactions (200 µL total volume) consisting of 

CAM (150 µM), Tris-HCl (50 mM, pH 8.0 adjusted at room temperature), and NADPH (0.75 

mg/mL, 1.0 mM), were initiated by addition of CNR (1 µM). Reactions were monitored taking 

readings every 30 s for 60 min. The initial rates were determined using the first 2-5 min of the 

reaction. 
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pH: The conditions above were used with various pHs to determine the optimum pH for CNR 

activity. Buffers and pHs used were as follows: 100 mM citric acid buffer (pH 3, 3.5, 4, 4.5, 5, 5.5, 

6), 100 mM sodium phosphate (6.0, 6.5, 7, 7.5, 8.0), and 50 mM Tris-HCl (pH 6.8, 7.5, 8.0, 8.4, 

9.0). Each reaction contained one of the buffers listed above, NADPH (750 µM), CAM (500 µM), 

and was initiated with the addition of CNR (0.4 µM). Reactions were incubated at 25 °C and 

monitored as above in this section. These data are presented in Fig. S57. 

 

Temperature: The temperature for optimum enzyme activity was tested by monitoring reactions at 

20, 25, 30, 37, 42, 57, and 60 °C. Reactions contained Tris pH 8.0 (50 mM), NADPH (750 µM), 

CAM (500 µM), and were initiated by the addition of CNR (0.4 µM). Reactions were monitored 

as above in this section. These data are presented in Fig. S58. 

 

Determination of kinetic parameters of CAM. The kinetic parameters of CAM were determined 

using reactions containing Tris-HCl (50 mM, pH 8.0 adjusted at room temperature), NADPH (750 

µM), CAM (0, 1, 5, 10, 50, 100, 250, 500, or 2500 µM), and CNR (0.4 µM). Reactions were 

incubated at 37 or 50 °C and monitored for 30 min taking measurements every 30 s. The first 2-5 

min of reaction were used to determine the initial rates. The resulting data were fit with a 

Michaelis-Menten plot and kinetic parameters were determined using SigmaPlot 13. These data 

are presented in Fig. 1. 

 

Monitoring of nitroreduction by the CNR enzyme by UV-Vis assays. Reactions (200 µL total 

volume) consisting of nitro-containing compounds (synthesized, Scheme 2; commercially 

available, Fig. S59) (150 µM), Tris-HCl (50 mM, pH 8.0 adjusted at room temperature), and 

NADPH (0.75 mg/mL, 1.0 mM) were initiated by addition of CNR (1 µM). Reactions were 

monitored taking readings every 30 s for 60 min. The initial rates were determined using the first 

5 min of the reaction and were normalized to the rate for chloramphenicol (CAM), a known 

substrate of the CNR enzyme. 

 

Large-scale reduction reactions for LCMS. Reactions contained Tris-HCl (50 mM, pH 8.0 

adjusted at room temperature), NAPDH (100 µM), glucose (40 mM), glucose dehydrogenase (4 
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µM, used with glucose to regenerate NADPH),12 CNR (5 µM), and the compound of interest (1 

mM). Reactions were incubated at 37 °C for 24 h. After incubation, reactions were cooled and 

extracted with 3´10 mL of EtOAc. The organic fractions were pooled and dried over MgSO4. The 

remaining solvent was removed in vacuo. The residue was redisolved in 1 mL of MeOH and 

analyzed by LCMS. These data are presented in Fig. S60. 

 

Large-scale reduction reactions for RP-HPLC time course. Reactions were identical to those 

used in preparation for LCMS above. After 10 min, 30 min, 60 min, 3 h, 6 h, and 24 h, a 0.5-mL 

aliquot of the reaction was extracted and dried as above. The resulting residues were dissolved in 

100 µL of MeOH. A 10-µL portion was injected onto the RP-HPLC and run with general method 

1. Results of the RP-HPLC time course are shown in Fig. S61. 
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Figs. S1-S61: 

 
Fig. S1: 1H NMR spectrum for compound 26a in CDCl3 (400 MHz). 
 

 
Fig. S2: 13C NMR spectrum for compound 26a in CDCl3 (100 MHz). 
 

 
Fig. S3: 1H NMR spectrum for compound 26b in CDCl3 (400 MHz). 
 

 
Fig. S4: 13C NMR spectrum for compound 26b in CDCl3 (100 MHz). 
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Fig. S5: 1H NMR spectrum for compound 26d in CDCl3 (400 MHz). 
 

 
Fig. S6: 13C NMR spectrum for compound 26d in CDCl3 (100 MHz). 
 

 
Fig. S7: 1H NMR spectrum for compound 26e in CDCl3 (400 MHz). 
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Fig. S8: 13C NMR spectrum for compound 26e in CDCl3 (100 MHz). 
 

 
Fig. S9: 1H NMR spectrum for compound 26f in CDCl3 (400 MHz). 
 

 
Fig. S10: 13C NMR spectrum for compound 26f in CDCl3 (100 MHz). 
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Fig. S11: 1H NMR spectrum for compound 26g in CDCl3 (400 MHz). 
 

 
Fig. S12: 13C NMR spectrum for compound 26g in CDCl3 (100 MHz). 
 

 
Fig. S13: 1H NMR spectrum for compound 26h in CDCl3 (400 MHz). 
 

 
Fig. S14: 13C NMR spectrum for compound 26h in CDCl3 (100 MHz). 
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Fig. S15: 1H NMR spectrum for compound 26i in CDCl3 (400 MHz). 
 

 
Fig. S16: 13C NMR spectrum for compound 26i in CDCl3 (100 MHz). 
 

 
Fig. S17: 1H NMR spectrum for compound 26j in CDCl3 (400 MHz). 
 

 
Fig. S18: 13C NMR spectrum for compound 26j in CDCl3 (100 MHz). 
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Fig. S19: 1H NMR spectrum for compound 26k in CDCl3 (400 MHz). 
 

 
Fig. S20: 13C NMR spectrum for compound 26k in CDCl3 (100 MHz). 
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Fig. S21: 1H NMR spectrum for compound 26o in CDCl3 (400 MHz). 
 

 
Fig. S22: 13C NMR spectrum for compound 26o in CDCl3 (100 MHz). 
 

 
Fig. S23: 1H NMR spectrum for compound 26q in CDCl3 (400 MHz). 
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Fig. S24: 13C NMR spectrum for compound 26qin CDCl3 (100 MHz). 
 

 
Fig. S25: 1H NMR spectrum for compound 27c in CDCl3 (400 MHz). 
 

 
Fig. S26: 13C NMR spectrum for compound 27c in CDCl3 (100 MHz). 
 

 
Fig. S27: 1H NMR spectrum for compound 27d in CDCl3 (400 MHz). 
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Fig. S28: 13C NMR spectrum for compound 27d in CDCl3 (100 MHz). 
 

 
Fig. S29: 1H NMR spectrum for compound 27e in CDCl3 (400 MHz). 
 

 
Fig. S30: 13C NMR spectrum for compound 27e in CDCl3 (100 MHz). 
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Fig. S31: 1H NMR spectrum for compound 27f in CDCl3 (400 MHz). 
 

 
Fig. S32: 13C NMR spectrum for compound 27f in CDCl3 (100 MHz). 
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Fig. S33: 1H NMR spectrum for compound 27g in CDCl3 (400 MHz). 
 

 
Fig. S34: 13C NMR spectrum for compound 27g in CDCl3 (100 MHz). 
 

 
Fig. S35: 1H NMR spectrum for compound 27h in CDCl3 (400 MHz). 
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Fig. S36: 13C NMR spectrum for compound 27h in CDCl3 (100 MHz). 
 

 
Fig. S37: 1H NMR spectrum for compound 27i in CDCl3 (400 MHz). 
 

 
Fig. S38: 13C NMR spectrum for compound 27i in CDCl3 (100 MHz). 
 

 
Fig. S39: 1H NMR spectrum for compound 27k in CDCl3 (400 MHz). 
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Fig. S40: 13C NMR spectrum for compound 27k in CDCl3 (100 MHz). 
 
 

 
Fig. S41: 1H NMR spectrum for compound 27l in CDCl3 (400 MHz). 
 

 
Fig. S42: 13C NMR spectrum for compound 27l in CDCl3 (100 MHz). 
 

 
Fig. S43: 1H NMR spectrum for compound 27m in CDCl3 (400 MHz). 
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Fig. S44: 13C NMR spectrum for compound 27m in CDCl3 (100 MHz). 
 

 
Fig. S45: 1H NMR spectrum for compound 27n in CDCl3 (400 MHz). 
 

 
Fig. S46: 13C NMR spectrum for compound 27n in CDCl3 (100 MHz). 
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Fig. S47: 1H NMR spectrum for compound 28g in CDCl3 (400 MHz). 
 

 
Fig. S48: 13C NMR spectrum for compound 28g in CDCl3 (100 MHz). 
 

 
Fig. S49: 1H NMR spectrum for compound 28h in CDCl3 (400 MHz). 
 

 
Fig. S50: 13C NMR spectrum for compound 28h in CDCl3 (100 MHz). 
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Fig. S51: 1H NMR spectrum for compound 28i in CDCl3 (400 MHz). 
 

 
Fig. S52: 13C NMR spectrum for compound 28i in CDCl3 (100 MHz). 
 

 
Fig. S53: 1H NMR spectrum for compound 28k in CDCl3 (400 MHz). 
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Fig. S54: 13C NMR spectrum for compound 28k in CDCl3 (100 MHz). 
 

 
Fig. S55: 1H NMR spectrum for compound 28p in CDCl3 (400 MHz). 
 

 
Fig. S56: 13C NMR spectrum for compound 28p in CDCl3 (100 MHz). 
 

14 13 12 11 10 9 8 7 6 5 4 23 1 0 -1
(ppm)

230 220
(ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 -100



	 S29	

 
Fig. S57: Rate of reaction of CNR with CAM at different pHs in increments of 0.5 (pH 3-6 using citrate buffer; pH 
6-8 using sodium phosphate buffer; pH 7-9 using Tris-HCl buffer). 
 

 
Fig. S58: Rate of reaction of CNR with CAM at different temperatures. 
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Fig. S59: Structures of synthesized nitro-containing molecules tested with CNR. Note: The synthetic schemes along 
with yields are presented in Scheme 2. 
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Fig. S60: MS traces of CNR-catalyzed large-scale reduction reactions of A. compound 26h showing the masses of 
the reduced products 291.0 (M+, amine) and 308.0 (hydroxylamine, [M+H]+), B. compound 27h with the deprotection 
mass of 199.0 ([M-H]-), C. compound 27i having the deprotected mass of 173.0 (([M-H]-), D. compound 27k with a 
mass of 173.0 (([M-H]-) indicating deprotection, and E. compound 28h showing the reduction to the amine with a 
mass of 308.0 ([M+H]+). 
 

 
Fig. S61: RP-HPLC traces of a reaction of compound 27h with CNR and NADPH. Samples were taken at 10 min, 30 
min, 60 min, 3 h, 6 h, and 24 h. 
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Table S1: CNR activity (in %) against 4-nitrobenzyl derivatives.a 
Compound Activity (%) Compound Activity (%) 
CAM 100 ± 0 26a 56 ± 8 
1 0 ± 0 26b 0 ± 0 
2 0 ± 0 26d 7.5 ± 1.7 
3 23 ± 3 26e 21 ± 2 
4 0 ± 0 26f 7.0 ± 1.8 
5 0 ± 0 26g 29 ± 4 
6 88 ± 5 26h 116 ± 4 
7 21 ± 3 26i 90 ± 11 
8 3.5 ± 0.6 26j 21 ± 4 
9 157 ± 4 26k 88 ± 7 
10 77 ± 4 26o 67 ± 12 
11 122 ± 7 26q 45 ± 5 
12 0 ± 0 27c 11 ± 5 
13 16 ± 1 27d 1.8 ± 0.8 
14 40 ± 8 27e 0 ± 0 
15 132 ± 2 27f 9 ± 0 
16 125 ± 5 27g 0 ± 0 
17 18 ± 7 27h 0 ± 0 
18 0 ± 0 27i 2.2 ± 0.2 
19 0 ± 0 27k 0 ± 0 
20 44 ± 4 27l 0 ± 0 
21 82 ± 6 27m 120 ± 7 
22 11 ± 4 27n 1.1 ± 0.1 
23 32 ± 6 28g 136 ± 16 
24 19 ± 4 28h 92 ± 7 
25 0 ± 0 28i 133 ± 14 
  28k 124 ± 3 
  28p 62 ± 5 
a These values were used to generate Fig. 3. 

 


