Polymers **2016**, *8*, 48

Supplementary Materials: Tris(bipyridine)Metal(II)-Templated Assemblies of 3D Alkali-Ruthenium Oxalate Coordination Frameworks: Crystal Structures, Characterization and Photocatalytic Activity in Water Reduction

Alla Dikhtiarenko, Pedro Villanueva-Delgado, Rafael Valiente, José R. García and José Gimeno

Table S1. Crystallographic data and structure refinements for compounds 1–8.

Compound	1	2	3	
Formula	C36H24N6NaO12RuZn	C36H26LiN6O13RuZn	C36H24CuN6NaO12Ru	
FW (g mol ⁻¹)	922.06	924.03	920.22	
T(K)	293(2)	293(2)	298(1)	
Wavelength (Å)	1.54184	0.71073	1.54184	
Crystal system	Cubic	Cubic	Cubic	
Space group	$P2_{1}3$	P2 ₁ 3	P2 ₁ 3	
a (Å)	15.7549(2)	15.3337(4)	15.6236(2)	
α (°)	90.0	90.0	90.0	
$V(\mathring{A}^3)$	3,910.70(8)	3,605.3(3)	3,813.67(8)	
Z	4	4	4	
$D_{\rm calcd}$ (g/cm ³)	1.566	1.699	1.603	
F(000)	1,852	1,852	1,848	
μ (mm ⁻¹)	4.589	1.160	4.602	
Crystal size (mm³)	$0.21\times0.16\times0.14$	$0.61 \times 0.49 \times 0.22$	$0.15\times0.08\times0.03$	
θ_{range} data collect. (°)	4.0 to 70.3	3.8 to 31.2	4.0 to 70.4	
	$-17 \le h \le 14,$	$-15 \le h \le 15,$	$-17 \le h \le 17,$	
Index ranges	$-11 \le k \le 11,$	$-21 \le k \le 10$,	$-18 \le k \le 13,$	
	$-15 \le l \le 19$	$-4 \le l \le 20$	$-18 \le l \le 10$	
Reflection collected	4,945	7,387	7,070	
Independent reflections	$2,371[R_{\text{int}} = 0.082]$	$3,525[R_{\text{int}} = 0.034]$	$2,396[R_{\text{int}} = 0.065]$	
T_{\max} and T_{\min}	1 and 0.802	0.837 and 0.626	0.883 and 0.672	
Data/restraints/paramets.	2,371/0/173	3,525/0/176	2,396/0/172	
Final P indices [I > 2\sigma(I)]	$R_1 = 0.074$,	$R_1 = 0.052$,	$R_1 = 0.039$,	
Final R indices $[I > 2\sigma(I)]$	$wR_2 = 0.211$	$wR_2 = 0.144$	$wR_2 = 0.078$	
Dindians (all data)	$R_1 = 0.092$,	$R_1 = 0.055$,	$R_1 = 0.061$,	
R indices (all data)	$wR_2 = 0.235$	$wR_2 = 0.146$	$wR_2 = 0.085$	
Flack parameter	0.43(3)	0.15(3)	0.007(14)	
GOF on F ²	1.082	1.17	1.002	

Polymers **2016**, 8, 48 S2/S16

 Table S1. Cont.

Compound	4	5	6	
Formula	C36H24CuLiN6O12Ru	C36H24N6NaO12Ru2	C36H24LiN6O12Ru2	
FW (g mol ⁻¹)	957.74	941.69	1,046.9	
T(K)	293(2)	293(2)	293(2)	
Wavelength (Å)	0.71073	1.54184	1.54184	
Crystal system	Cubic	Cubic	Cubic	
Space group	P2 ₁ 3	P2 ₁ 3	P2 ₁ 3	
a (Å)	15.3725(1)	15.5466(1)	15.3785(1)	
α (°)	90.0	90.0	90.0	
$V(\mathring{ m A}^3)$	3,632.73(6)	3,757.56(4)	3,636.99(4)	
Z	4	4	4	
$D_{\rm calcd}$ (g/cm ³)	1.653	1.693	1.720	
F(000)	1,816	1,908	1,876	
μ (mm ⁻¹)	1.075	7.247	7.363	
Crystal size (mm³)	$0.29 \times 0.26 \times 0.16$	$0.14 \times 0.12 \times 0.08$	$0.26 \times 0.25 \times 0.14$	
$ heta_{ m range}$ data collect. (°)	3.2 to 31.3	4.0 to 70.4	4.1 to 70.5	
	$-6 \le h \le 22,$	$-12 \le h \le 12,$	$-12 \le h \le 12,$	
Index ranges	$-17 \le k \le 13,$	$0 \le k \le 13,$	$0 \le k \le 13$,	
	$-11 \le l \le 21$	$1 \le l \le 18$	$1 \le l \le 18$	
Reflection collected	7,220	7,080	9,446	
Independent reflections	$3,586[R_{\text{int}} = 0.028]$	$2,367[R_{\text{int}} = 0.049]$	$2,335[R_{\text{int}} = 0.040]$	
T_{\max} and T_{\min}	1 and 0.957	0.625 and 0.471	0.389 and 0.320	
Data/restraints/paramets	3,586/0/172	2,367/0/172	2,335/0/172	
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.039$,	$R_1 = 0.029$,	$R_1 = 0.025$,	
Thial K marces [1 > 20(1)]	$wR_2 = 0.108$	$wR_2 = 0.074$	$wR_2 = 0.068$	
R indices (all data)	$R_1 = 0.046$,	$R_1 = 0.034$,	$R_1 = 0.025$,	
K muices (an uata)	$wR_2 = 0.112$	$wR_2 = 0.077$	$wR_2 = 0.068$	
Flack parameter	-0.006(18)	-0.007(14)	0.021(12)	
GOF on F ²	1.105	1.031	1.101	

Polymers **2016**, 8, 48 S3/S16

Table S1. Cont.

Compound	7	8	
Formula	C36H24N6NaO12OsRu	C36H24LiN6O12OsRu	
FW (g mol ⁻¹)	1,046.9	1,030.85	
T(K)	293(2)	293(2)	
Wavelength (Å)	1.54184	1.54184	
Crystal system	Cubic	Cubic	
Space group	P2 ₁ 3	P2 ₁ 3	
a (Å)	15.5139(1)	15.3442(6)	
α (°)	90.0	90.0	
$V(\mathring{ m A}^3)$	3,733.90(4)	3,612.75(8)	
Z	4	4	
$D_{\rm calcd}$ (g/cm ³)	1.862	1.895	
F(000)	2,036	2,004	
μ (mm ⁻¹)	10.346	10.567	
Crystal size (mm³)	$0.08 \times 0.06 \times 0.03$	$0.07 \times 0.03 \times 0.02$	
θ_{range} data collect. (°)	4.0 to 70.4	4.1 to 70.7	
	$-17 \le h \le 17,$	$-18 \le h \le 8,$	
Index ranges	$-8 \le k \le 18,$	$-12 \le k \le 18,$	
	$-13 \le l \le 10$	$-15 \le l \le 18$	
Reflection collected	4,956	2,302	
Independent reflections	$2,323[R_{\text{int}} = 0.046]$	$2,302[R_{\text{int}} = 0.053]$	
$T_{\sf max}$ and $T_{\sf min}$	0.081 and 0.064	0.817 and 0.699	
Data/restraints/paramets.	2,323/0/172	2,302/0/172	
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.035$,	$R_1 = 0.029$,	
Titial K fitalces [1 > 20(1)]	$wR_2 = 0.088$	$wR_2 = 0.074$	
R indices (all data)	$R_1 = 0.042$,	$R_1 = 0.034$,	
K muices (an data)	$wR_2 = 0.091$	$wR_2 = 0.077$	
Flack parameter	-0.03(2) 0.00(2)		
GOF on F ²	1.037	1.057	

Polymers **2016**, *8*, 48 S4/S16

Table S2. Summar	y of thermogravimetric	data in air atmos	phere for compounds 1–8.

Com-d	Molecular formula	FW	Trange, °C	T _{max} , °C	Weight loss, % Obs./Calc.	m/z	Enthalpy, J/g	Residue ¹
1	C36H24N6NaO12RuZn	922.1	240/420	295	73.0/73.4	<u>(</u>	-8,839	RuO2, ZnO, Na2O
2	$C_{36}H_{26}LiN_6O_{13}RuZn$	923.9	180/420	290	75.2/75.4)2 (46)	-12,100	RuO2, ZnO, Li2O
3	$C_{36}CuH_{24}N_6NaO_{12}Ru$	920.2	200/400	270	73.7/73.5	, NO2	-10,930	RuO2, CuO, Na2O
4	C36CuH24LiN6O12Ru	904.2	200/380	275	75.0/74.8	(44),	-12,050	RuO2, CuO, Li2O
5	$C_{36}H_{24}N_6N_aO_{12}Ru_2\\$	957.7	240/440	300	69.0/69.6	$\frac{7}{2}$	-15,920	RuO2, Na2O
6	C36H24LiN6O12Ru2	941.7	240/400	300	70.4/70.2	(18),	-14,770	RuO2, Li2O
7	C36H24N6NaO12OsRu	1,046.9	220/460	300	63.6/63.8	H2O (-13,140	RuO2, OsO2, Na2O
8	C36H24LiN6O12OsRu	1,030.8	230/600	310	64.7/64.1	Д.	-14,590	RuO2, OsO2, Li2O

 $^{^{\}rm 1}$ The residue composition was confirmed by EDX analysis and powder X-ray diffraction.

Table S3. Summary of thermogravimetric data in nitrogen atmosphere for compounds 1–8.

Com-d	Molecular formula	FW	Trange, °C	T _{max} , °C	Weight loss, % Obs.¹/Calc.	z/m	Enthalpy, J/g	Residue ²
		922.1	260/360	330			451	P. 7.0
1	$C_{36}H_{24}N_6NaO_{12}RuZn$		360/430	400	59.0/76.9		451	Ru, ZnO,
			440/550	520			261	Na ₂ O
			200/380	360	58.0/78.6		480	Ru, ZnO,
2	$C_{36}H_{26}LiN_6O_{13}RuZn$	923.9	380/440	400			340	Li ₂ O
			460/580	520		_	340	LI2O
			220/280	250			81	Ru, CuO, Na2O
3	C36CuH24N6NaO12Ru	920.2	300/380	330	61.1/77.0		87	
			400/600	560			226	
			200/200	250	57.6/78.4	8), CO ₂ (44)		Ru, CuO, Li ₂ O
4	C36CuH24LiN6O12Ru	904.2	200/280	250			53	
1	C30Cu1124E11 V0O12ICu	704.2	280/380	320			117	
			540/600	570		0 (18	257	
		957.7	300/400	360	45.5/75.7	 NH3 (15), H2O (18), CO2 (44)	361	Ru, Na ₂ O
5	C36H24N6NaO12Ru2		440/540	510			130	
			560/700	600				
		D12Ru2 941.7	320/420	380	43.9/76.9		420	Ru, Li2O
6	$C_{36}H_{24}LiN_6O_{12}Ru_2$		450/560	520			430	
			560/700	600			109	
			300/420	350		_		
7	C36H24N6NaO12OsRu	1046.9	460/550	520	37.8/69.2		325	Ru, Os, Na ₂ O
			560/740	640	<i></i>		50	
			300/740	040			-	
8 C36I	C36H24LiN6O12OsRu	1030.8	260/400	340	39.7/70.3		295	
			460/580	560			147	Ru, Os, Li ₂ O
			580/720	650				

 $^{^1}$ The difference between observed and calculated mass losses in nitrogen atmosphere due to formation of carbon solid residues as a product of partial oxidation of organic ligands; 2 The residue composition was confirmed by EDX analysis and powder X-ray diffraction.

Polymers **2016**, *8*, 48

Band Gap Calculations

The band gap energies of **1–8** were calculated by Tauc plots of diffuse–reflectance data. According to equation:

$$\alpha h v = A(hv - E_q)^{1/n}$$

where α , ν , A and $E_{\rm g}$ are the absorption coefficient, light frequency, proportionality constant, and band gap, respectively. In the equation, n can take on values of 3, 2, 3/2 or 1/2, corresponding to indirect (forbidden), indirect (allowed), direct (forbidden), and direct (allowed) transitions, respectively. The plots of $(\alpha h \nu)^n$ versus photon energy $h \nu$, so-called Tauc plots, yield the value of the band gap when extrapolated to the baseline. In case of diffuse-reflectance measurements (I = R), the Kubelka-Munk radiative transfer model can be employed to extract α :

$$f(R) = \frac{(1-R)^2}{2R} = \frac{\alpha}{s}$$

where f(R) is the Kubelka-Munk function and s is the scattering coefficient. Assuming that s is wavelength independent, the f(R) is proportional to α and the Tauc plots can be represented using f(R) in place of α , as follow equation:

$$(f(R)hv)^n = A(hv - E_g)$$

Thus, values of band gaps for coordination polymers **1–8** were determined as extrapolation to energy axis of point of intersection between baseline and linear fraction of $(f(R)hv)^{3/2}$ (where n = 3/2 was used as a coefficient characterized direct forbidden MLCT transition).

Photocatalytic mechanism and energy transfer in Compounds 1-8

The photocatalytic reaction of reductive water decomposition promoted by 1–8 coordination polymers goes through both Dexter and Forster energy transfer mechanisms. Since Forster and Dexter mechanism usually proposed for supramolecular assemblies having weak coupling interaction between chromophores, these mechanisms more suitable describe energy transfer in host-guest coordination polymers. Specifically, the energy transfer by Forster mechanism takes place via dipole—dipole interactions, *i.e.* long-range dipole—dipole energy transfer, in which the transition dipoles of donor and acceptor would couple with an inverse sixth-power dependence on the separation [1]. Furthermore, the energy transfer by Dexter mechanism introduces an electron exchange interaction where the rate of energy transfer depends on the distance between the donor and acceptor units [2].

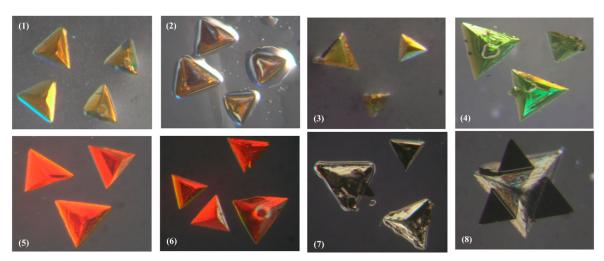
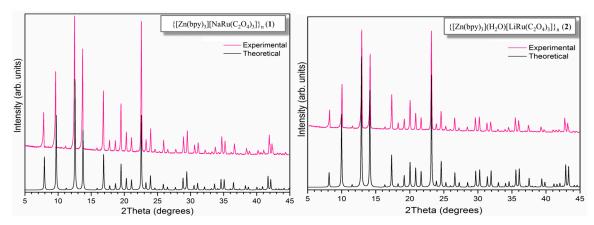
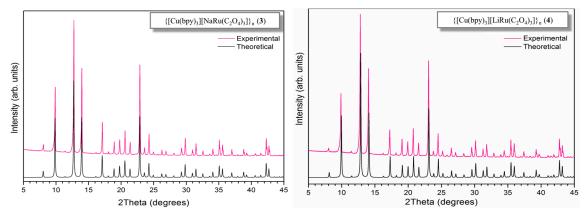




Figure S1. Digital photographs showing the crystal habits of compounds 1-8 grown in gel media.

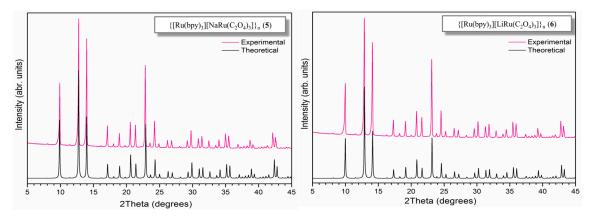

Polymers **2016**, 8, 48 S6/S16

Figure S2. Experimental and theoretical powder X-Ray diffraction patterns for $\{[Zn^{II}(bpy)_3][NaRu(C_2O_4)_3]\}_n$ (1) and $\{[Zn^{II}(bpy)_3](H_2O)[LiRu(C_2O_4)_3]\}_n$ (2), indication the phase purity.

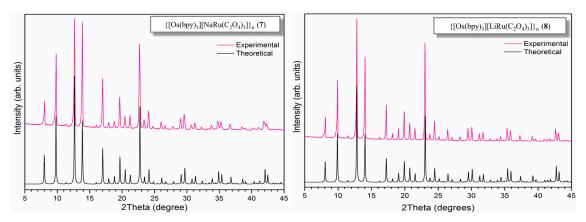


Figure S3. Experimental and theoretical powder X-Ray diffraction patterns for $[Cu^{II}(bpy)_3][NaRu(C_2O_4)_3]_n$ (3) and $[Cu^{II}(bpy)_3][LiRu(C_2O_4)_3]_n$ (4), indication the phase purity.

Figure S4. Experimental and theoretical powder X-Ray diffraction patterns for $[[Ru^{II}(bpy)_3][NaRu(C_2O_4)_3]]_n$ (5) and $[[Ru^{II}(bpy)_3][LiRu(C_2O_4)_3]]_n$ (6), indication the phase purity.

Polymers **2016**, 8, 48 S7/S16

Figure S5. Experimental and theoretical powder X-Ray diffraction patterns for $[Os^{II}(bpy)_3][NaRu(C_2O_4)_3]_n$ (7) and $[Os^{II}(bpy)_3][LiRu(C_2O_4)_3]_n$ (8), indication the phase purity.

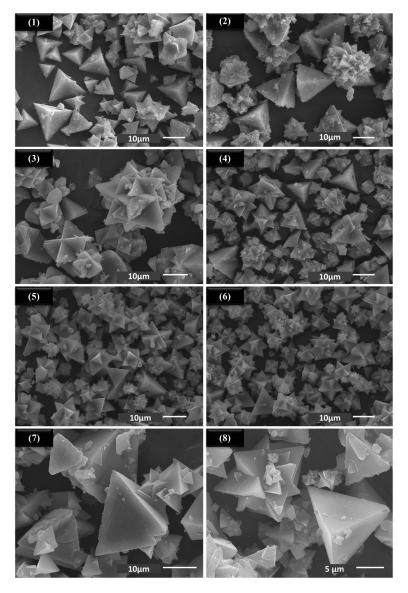
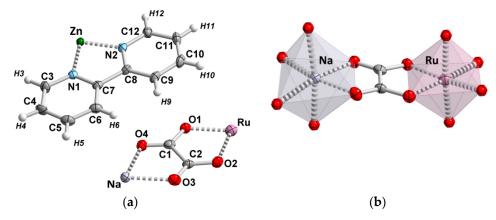
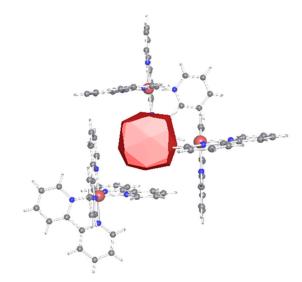
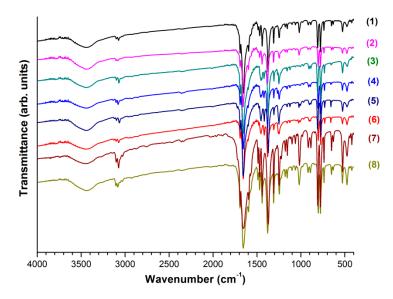
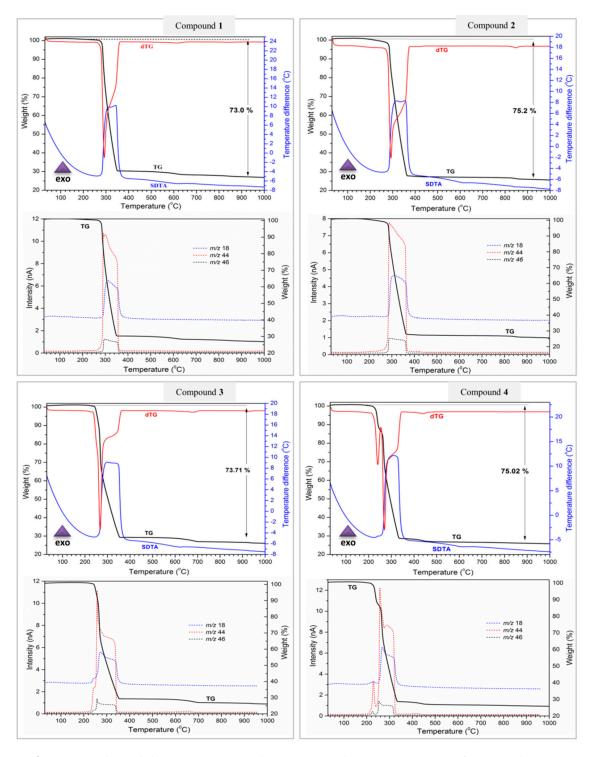




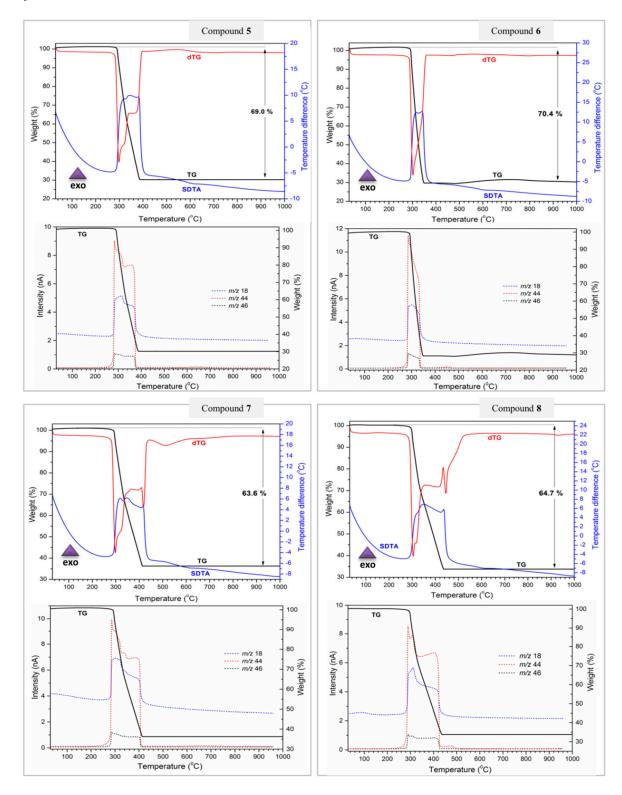
Figure S6. SEM images of compounds 1–8.

Polymers **2016**, 8, 48 S8/S16

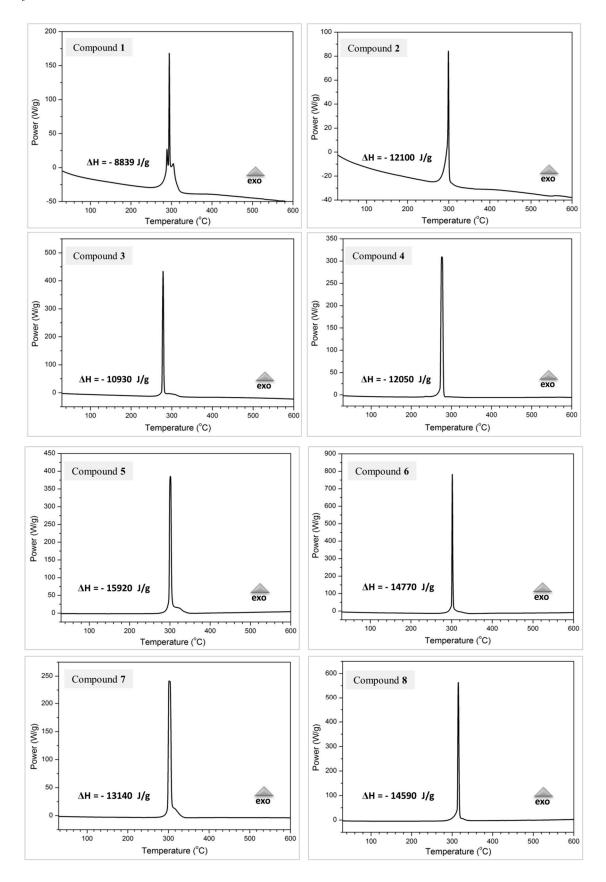
Figure S7. (a) View of the asymmetric unit of **1** with corresponding atom labeling scheme drawn with ellipsoids at the 50% probability level. (b) The bridging mode of oxalate ligand, Ru(III) and Na(I) coordination environment in compound **1**.

Figure S8. Voronoi-Dirichlet polyhedra representing volume of cubic bpy-cage ocupied by water molecule in **2**.

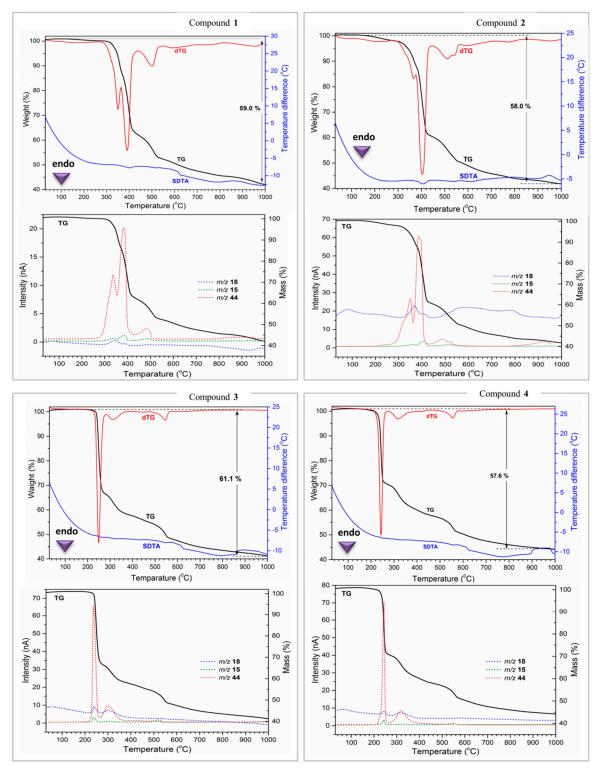




Figure S9. IR spectra of compounds 1–8.

Polymers **2016**, *8*, 48


Figure S10. Thermal decomposition (TG, dTG, SDTA) and mass spectrometry of evacuated vapors curves of compounds **1–4** in air atmosphere.

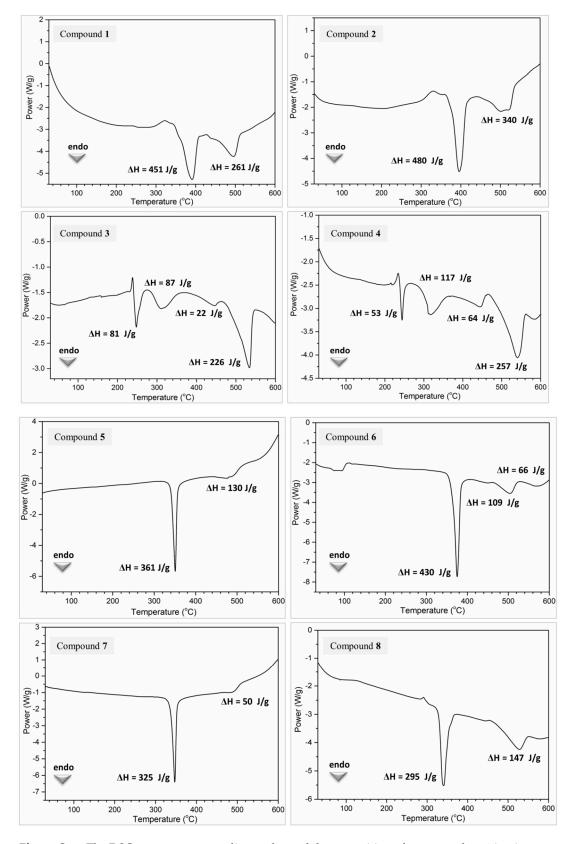
Polymers **2016**, 8, 48 S10/S16


Figure S11. Thermal decomposition (TG, dTG, SDTA) and mass spectrometry of evacuated vapors curves of compounds 5–8 in air atmosphere.

Polymers **2016**, *8*, 48 S11/S16


Figure S12. The DSC curves corresponding to thermal decomposition of compounds **1–8** in air atmosphere.

Polymers **2016**, 8, 48 S12/S16


Figure S13. Thermal decomposition (TG, dTG, SDTA) and mass spectrometry of evacuated vapors curves of compounds **1–4** in nitrogen atmosphere.

Polymers **2016**, 8, 48 S13/S16

Figure S14. Thermal decomposition (TG, dTG, SDTA) and mass spectrometry of evacuated vapors curves of compounds 5–8 in nitrogen atmosphere.

Polymers **2016**, *8*, 48 S14/S16

Figure S15. The DSC curves corresponding to thermal decomposition of compounds **1–8** in nitrogen atmosphere.

Polymers **2016**, *8*, 48 S15/S16

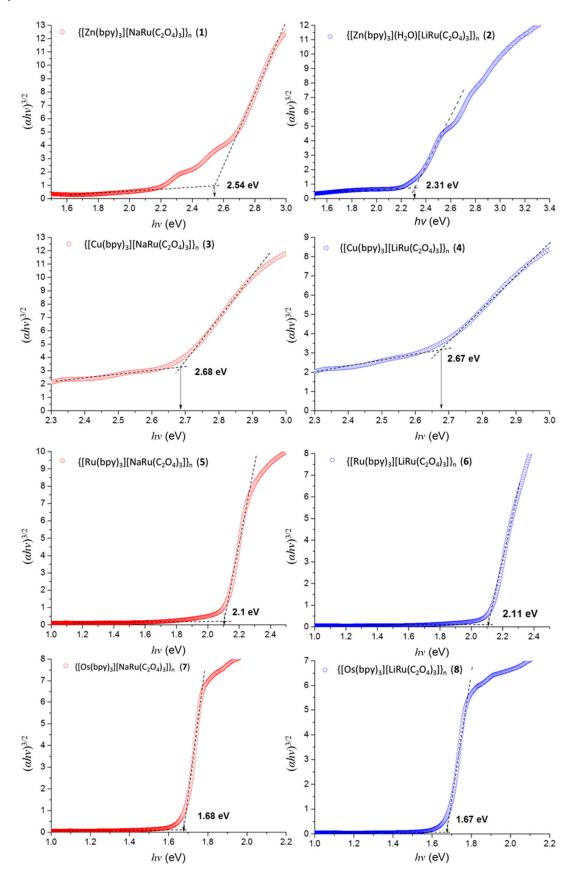
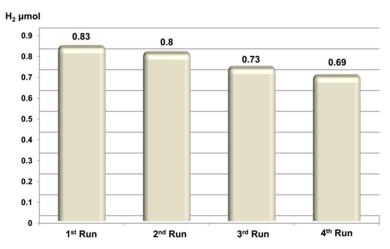
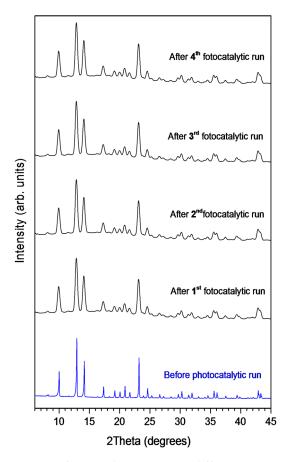




Figure S16. Tauc plots of Kubelka-Munk-transformed diffuse-reflectance spectra of compounds 1–8.

Polymers **2016**, 8, 48 S16/S16

Figure S17. Catalytic activity of $\{[Ru^{II}(bpy)_3][LiRu(C_2O_4)_3]\}_n$ (6) in H₂ evolution during water photosplitting reaction for four consecutive runs.

Figure S18. Comparison of powder X-Ray diffraction patterns of compound $\{[Ru^{II}(bpy)_3][LiRu(C_2O_4)_3]\}_n$ (6) before and after each repeated photocatalytic runs (four consecutive cycles).

Reference

- 1. Főrster, T. 10th Spiers Memorial Lecture: Transfer mechanisms of electronic excitation. *Discuss. Faraday Soc.* **1959**, *27*, 7–17.
- 2. Dexter, D.L. A Theory of Sensitized Luminescence in Solids. J. Chem. Phys. 1953, 21, 836–850.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).