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S1). Regression model for the discrete part.  

In addition to the regression model (2) which regresses the mean of the non-zero RA on 

covariates, we can also model the discrete part of the distribution in relation to the covariates by 

allowing the parameters {𝑝1, 𝑝2, … , 𝑝1,2…,𝐾+1} depend on the covariates thru the following 

regression equations: 

𝑙𝑜𝑔𝑖𝑡(𝑝1) = (1, 𝑥𝑇)𝛼1 

𝑙𝑜𝑔𝑖𝑡(𝑝2) = (1, 𝑥𝑇)𝛼2 

…. 

𝑙𝑜𝑔𝑖𝑡(𝑝1,2…,𝐾+1) = (1, 𝑥𝑇)𝛼1,2…,𝐾+1, 

where 𝑥 denotes the covariate vector (subject index is suppressed). The parameters 𝛼1, 𝛼2,…, 

𝛼1,2…,𝐾+1 are all (𝑄 + 1)-dimensional parameter vectors including intercepts. The complete log-

likelihood function denoted by ℓ𝑐, can be written as following: 

ℓ𝑐 = ∑log(𝑝𝑘1,…,𝑘𝐿
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where expit(𝑥) =
exp⁡(𝑥)

1+exp⁡(𝑥)
 and 𝑖 is subject index. It is straightforward to see that the parameters 

𝛼1, 𝛼2,…, 𝛼1,2…,𝐾+1 can be treated as nuisance parameters if the target of inference is 𝛽. 
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S2). Comparison across different regularization approaches. In this comparison, 300 subjects 

were generated with 400 taxa and 6 covariates were generated. Under the ZILN model, there are 

2394 regression coefficients in model. We set 1588 coefficients to 0, and thus the model size (ie, 

the number of non-zero coefficients) is 1204. All the non-zero coefficients were set to have the 

same value in the range from 0.3 to 1. The standard deviation 𝜎 is set to be 1 and thus the 

regression coefficients are standardized effect sizes. We also set 𝜌𝑋 = 0.5, 𝜌 = 0.5 and data 

sparsity level was set to be 0.54. The regression coefficient vector 𝛽 has a smaller length and is 

less sparse than the main setting presented in the paper. We did this set of simulation prior to the 

main simulation. The results (see figures below) showed that all the regularization approaches 

have good recall rates (>0.9) which means that they are all very powerful for picking up true 

non-zero coefficients. However, the LASSO approaches including elastic net and adaptive 

LASSO had worse precision rates because they tend to pick up more false positives (ie, zero 

coefficients in this case). MCP and SCAD had better precision rates than LASSO approaches. 

MCP was a little bit better than SCAD and had the highest F1 scores. 
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S3). Robustness to distribution misspecification. We assessed the performance of our 

approach when the distribution is mis-specified. We add a perturbation to the residual so that the 

distribution is mis-specified: 𝑈𝑖 = 𝑋𝑖𝛽 + (1 − 𝛾)𝜀𝑖 + 𝛾𝜎(𝛿𝑖 − 1) where 0 ≤ 𝛾 ≤ 1, 𝑖 is subject 

index and 𝛿𝑖 is a random vector with each element following the chi-square distribution with 

degrees of freedom of 1. The two random vectors 𝜀𝑖 and 𝛿𝑖 are independent. Notice that 𝛾 = 0 

corresponds to the correctly specified distribution, 𝛾 = 1 corresponds to a completely mis-

specified distribution, and 0 < 𝛾 < 1 corresponds to a partially mis-specified distribution. We 

studied four cases: 𝛾 = 0, 0.3, 0.65, 1 and plotted the performance measures in the following 

figure. In these simulations, we set 𝜌𝑋 = 0.85, SNR=4.5 and the non-zero elements of the 𝛽 

vector were generated from a uniform distribution over the interval [−7,−4) ∪ (4, 7]. Other 

settings are the same as described at the beginning of Section 3.2. It showed that the recall rate is 

very robust to the mis-specification. Precision and F1 dropped a little bit when 𝛾 departs from 0, 

but they remained stable thereafter. 

   

S4). Sensitivity analysis for choosing different reference taxon. To study the performance of 

our approach with respect to different reference taxon, we randomly selected two reference taxa 

and conducted two set of simulation. In the simulations, we set 𝜌𝑋 = 0.85, 𝛾 = 0, SNR=4.5 and 

the non-zero elements of the 𝛽 vector were generated from a uniform distribution over the 

interval [−7,−4) ∪ (4, 7]. Other settings are the same as described at the beginning of Section 

3.2. The results (see table below) showed that the impact of the reference taxon is minimally 

different compared with the case where the true reference taxon (ie, the reference taxon used in 

the data generation) is used. Recall rate is fairly stable across all cases. Precision and F1 had less 

than 8% drop for the randomly selected reference taxon, but they stayed stable across the two 

cases with randomly selected reference taxon.   

 True reference taxon  Randomly selected taxon 1 Randomly selected taxon 2 

Recall 0.965 0.948 0.938 

Precision 0.834 0.781 0.772 

F1 0.89 0.853 0.819 
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S5). Proof of 𝟏(𝒀𝒌>𝟎) = 𝒁𝒌 for 𝒌 = 𝟏,… ,𝑲 + 𝟏.  

Proof: by the definition in the first paragraph of Section 2.2, we have the observed RA vector 

𝑌 = (
𝑌1
∗𝑍1
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𝐾+1
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)

𝑇

, (𝑆5 − 1) 

where 𝑌𝑘
∗ is the true RA of the 𝑘th taxon and 𝑍𝑘 = 1/0 to indicate the observed 𝑘th taxon being 

positive/zero. By the definition of 𝑍𝑘, we know that 𝑍𝑘 = 1 implies 𝑌𝑘 > 0. Next, we prove that 

𝑌𝑘 > 0 implies ⁡𝑍𝑘 = 1. From equation (𝑆5 − 1), the observed RA for the 𝑘th taxon is 𝑌𝑘 =
𝑌𝑘
∗𝑍𝑘

∑ 𝑌𝑗
∗𝑍𝑗

𝐾+1
𝑗=1

, 𝑘 = 1,… , 𝐾 + 1. We can further write this equality as: 

𝑌𝑘 = {

0, ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑍𝑘 = 0⁡
𝑌𝑘
∗

∑ 𝑌𝑗
∗𝑍𝑗

𝑘−1
𝑗=1 + 𝑌𝑘

∗ + ∑ 𝑌𝑗
∗𝑍𝑗

𝐾+1
𝑗=𝑘+1

, ⁡𝑍𝑘 = 1 ,⁡⁡⁡⁡𝑘 = 1, … , 𝐾 + 1 

From the above equality, it is straightforward to see that 𝑌𝑘 > 0 implies ⁡𝑍𝑘 = 1. Taken together, 

we have 1(𝑌𝑘>0) = ⁡𝑍𝑘, 𝑘 = 1,… , 𝐾 + 1, where 1(.) is an indicator function.  

 


