Supplemental Table 1: FDA-Approved HBV DNA Quantification Assays

Test	Standardized	Amplification	LOQ and LOD	Dynamic Range
	Against	and Detection		of
		Methods		Quantification
Cobas	2 nd WHO	Real-time PCR	LOD = 9.0	20 to 1.7 ×
AmpliPrep/Cobas	standard	Florescent	IU/ml in	10 ⁸ IU/ml (1.3 to
TaqMan HBV test,		detection	plasma and	8.2 log IU/ml),
version 2.0			19.0 IU/ml in	
			serum	
			LLOQ of 20	
			IU/ml	
Abbott Real-Time	1 st WHO	Real-time PCR	LOD =6.4	10 to 1 ×
HBV Assay	standard		IU/ml in	10 ⁹ IU/ml (1.0 to
		Florescent	plasma and	9.0 log IU/ml),
		detection	3.8 IU/ml in	
			serum	
			LLOQ = 10	
			IU/ml,	
Aptima HBV Quant	3 rd WHO	Transcription-	LOD =5.6	10 to 1 ×
Assay	standard	mediated PCR	IU/ml in	10 ⁹ IU/ml (1.0 to
			plasma and	9.0 log IU/ml),
		Florescent	4.3 IU/ml in	
		detection	serum	
			LLOQ =10	
			IU/ml	
Procleix® Ultrio™	1 st WHO	Transcription-		
Assay	standard	mediated PCR		
		Florescent		
		detection		

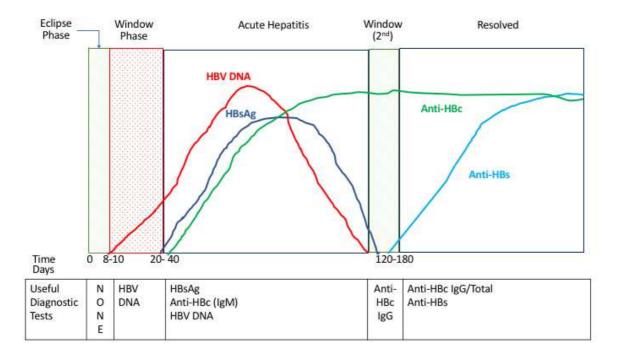
Supplemental Table 2: F	lesting in Different	Clinical Scenarios
Supplemental Table 2. r	esting in Different	Cillical Scenarios

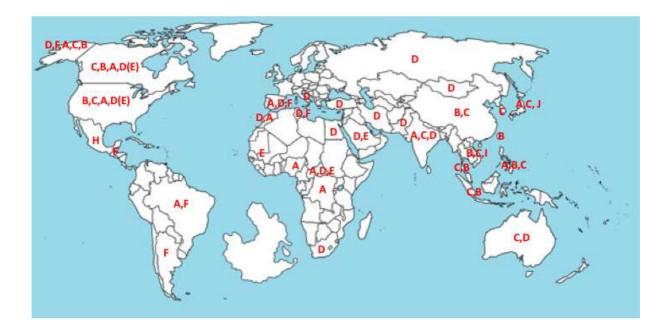
Diagnosis	Monitoring in patients off	Patients on treatment	
	treatment		
Only marker of infection	Useful to define phases of	Defines response to antiviral	
during window phase of	infection (HBV DNA plus ALT	therapy: progressive decline	
acute infection	and HBeAg status)	in HBV DNA viral load	
		expected	
		If failure to achieve ≥1 log	
		decline by week 12 of	
		treatment = nonresponse	
Marker of HBV infection in	Defines thresholds for HBV	Diagnosis of virologic	
persons with chronic HBV	DNA for consideration of	breakthrough: ≥1-log	
infection but HBsAg mutants	antiviral therapy	increase in HBV DNA from	
resulting in falsely-negative	 If HBeAg-positive, HBV 	nadir or ≥100 IU/mL if	
HBsAg	DNA >10,000 IU/mL	previously undetectable	
	needed		
	 If HBeAg-negative, HBV 		
	DNA >200 IU/mL needed		
	If cirrhosis, any level of HBV		
	DNA		
Identifies occult HBV	Useful to differentiate HBV	Identifies risk group for liver-	
infection (HBsAg negative,	flare (increase in ALT and	related complications among	
anti-HBc positive and HBV	HBV DNA) from ALT elevation	those with decompensated	
DNA positive)	unrelated to HBV (increase in	cirrhosis (low versus	
	ALT without significant	undetectable HBV DNA on	
	change in HBV DNA)	treatment)	

Supplemental Figure 1: Diagnostic markers in acute hepatitis B infection

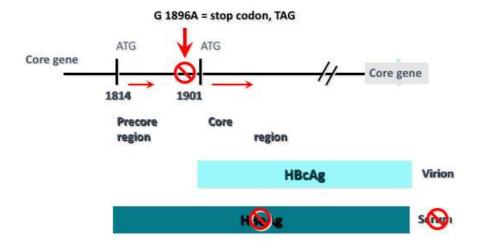
Following exposure, an eclipse phase of ~8 days occurs, followed by the window phase when HBV DNA is detectable but HBsAg not yet present. HBsAg will be detectable ~35 post-exposure, followed by anti-HBc (first IgM, then IgG), with resolution of infection accompanied by decline in HBsAg and rise in anti-HBc. A second window period may occur between loss of HBsAg and detection of anti-HBs (varies with assays used) – and duration of this time, the only marker of infection is anti-HBc. Note, over time the levels of anti-HBs may decline and become undetectable, again leaving anti-HBc as the only marker of prior HBV exposure.

Supplemental Figure 2: Hepatitis B Genotypes

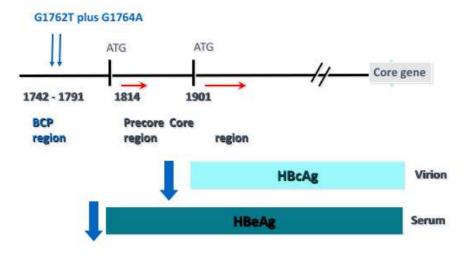

Of the most common genotypes, B and C are predominantly found throughout Asia, Genotype A and D found in parts of Europe, India and Africa and Genotype E is restricted to West Africa. In North America, the most common genotypes as described by the Hepatitis B Research Network are B (39%) and C (33%), followed by A (18%), D (8%), and E (3%), reflecting the largely foreign-born population of Asian and Africans {Congly, 2013 #23558} ⁸⁷. Less commonly found, genotype G is prevalent in parts of Europe and US, genotype H in Central and South America, genotype I in Laos and Vietnam, and the newest, genotype J in the Ryukyu Islands of Japan. Infections with mixed genotypes are also known to occur.


Supplemental Figure 3A/B: Precore and Basal Core Promoter Mutations and HBeAg

The precore mutation (G1896A, codon 28) inhibits translation of the precore protein due to frameshift mutations or premature stop codons (Figure 3A). The BCP (basal core promoter) mutations (nt1742-1849) suppress the production of precore mRNA at the transcriptional level resulting in defective synthesis of HBeAg (Figure 3B).


Supplemental Figure 4: Precore Variants and HBV Genotype Associations

The frequency of the precore variant varies by HBV genotype. The G->A1896 mutant cannot occur in HBV strains containing C at nucleotide 1858 because the change would disrupt the preexiting C-G Watson Crick base pairing and destabilizes the stem loop, which is critical in the replication cycle of the virus.



Precore Variant

Double BCP Variants

