Supporting Information Roads to Rome: Role of Multiple Cassettes in Cyanobactin RiPP Biosynthesis

Wenjia Gu, Debosmita Sardar, Elizabeth Pierce, Eric W. Schmidt*

Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States

Table of contents S2 Supporting Materials and Methods S8 Supporting Schemes Scheme S1. Cloning strategies for pTru-p3p2 derived plasmids **S**8 Scheme S2. Cloning strategies for pTruE-p3p2 derived plasmids S9 **Supporting Tables S10** Table S1. Primers and gBlocks used in this study S10 Table S2. Plasmids used in this study S12 Table S3. Peptides used in this study S13 Table S4. Cyanobactin observed m/z from heterologous expression in E. coli S13 Table S5. TruD heterocyclization of peptides and the observed m/zS14 Table S6. PatA digestion of TruD reactions and the observed m/zS15 Table S7. PatA digestion of heterocyclized peptides and the observed m/zS15 Table S8. PatA digestion of intact precursor peptide and the observed m/zS16 Table S9. PatG or TruG reaction peptides and the observed m/zS16 Table S10. Standard observed m/zS16 Table S11. One sample *t*-test *P*-value for TruG reactions S17 Table S12. One sample *t*-test *P*-value for PatG reactions S17 Supporting Figures **S19** Figure S1. Collagen biosynthesis and cyanobactin biosynthesis comparison S19 Figure S2. *tru* pathway precursor designs S20 Figure S3. Compound 1, 2, 3 production in *E. coli* S21 Figure S4. Single cassette compound 1, 2, 3 production in E. coli on S22 S23 Figure S5. Patellin 2 mutant production in *E. coli* on day five Figure S6. MS traces of TruD time course S24 Figure S7. MS traces of TruD time course of TruE-p23 S25 Figure S8. PatA proteolysis of TruE-p2*p3* S26 Figure S9. PatA proteolysis of the unheterocyclized precursor peptide S27 Figure S10. TruD reaction over TruE-p2p2 after PatA treatment S28 S29 Figure S11. TruD reaction with and without RSI Figure S12. TruG reaction time course S30 S31 Figure S13. PatG reaction time course Figure S14. Alternative biosynthetic pathway routes for a dual cassette precursor peptide S32

References	535
Figure S16. Standard curves used to quantify enzyme reactions S	\$34
Figure S15. SDS-PAGE analysis for precursor peptides S	\$33

Supporting Materials and Methods

Genes and cloning

General method

All primers are listed in **Table S1** and were obtained from DNA synthesis core, University of Utah. gBlocks (**Table S1**) for Gibson cloning are synthesized by IDT. Vector synthetic schemes are shown in **Scheme S1** and **S2**.

Plasmids for heterologous expression of tru pathway derivatives

tru pathway was cloned from pTru-SD1¹ and placed into a pUC19 vector under *lac* promoter control. The AatII digestion site in the pUC19 backbone was removed by PCR (primer pUC-AatII-fwd and pUC-AatII-rev) and a NsiI site was added at the lacZ-alpha start codon (primer pUC-NsiI-fwd and pUC-NsiI-rev) to create pTru-p3p2. It contains the *tru* pathway genes required to make patellins 2 (p2, **2**) and 3 (p3, **3**) in *E. coli* DH10β. The precursor gene has a SalI restriction site before cassette-1, a MluI site between the two cassettes and an AatII site after cassette-2. Alternative cassettes were substituted for the native *truE-p3p2* gene as described in **Scheme S1**. Single cassette substitutions follow route **a** (pTru-p3p3, pTru-p3tk). Double cassette substitutions follow route **b** (pTru-p2p3, pTru-p2tk, pTru-p2p2, pTru-tkp3, pTru-tkp2, pTru-tktk; tk, trunkamide, **1**). Cassette-2 p2 mutant substitutions follow route **c** (pTru-p2-p2L2A, pTru-p2P4A, p2P4A). Single cassette precursor plasmids encoding either patellin 3, 2 or trunkamide sequence follow route **e** (pTru-p3, pTru-p2, pTru-tk). Gibson cloning was done by mixing Gibson master mix (15 μ L),² insert (1 μ L, 200 ng) and backbone (4 μ L, 100 ng) and incubating at 50 °C for 2 h. PCR and ligation conditions followed the vendor's protocols. A total of 13 plasmids (**Table S2**) with different combinations of the precursor genes were synthesized and verified by Sanger sequencing.

Plasmids for production of proteins and peptides

Plasmids for expression of His-tagged proteins TruD, RSI-TruD, PatA, PatG, and TruG were previously described.³⁻⁶ His-tagged TruE substrate derivatives were synthesized as follows in pET28b(+) (**Scheme S2**). Vector for pTruE-p3p2 was published previously.¹ The published vector pTruE-p3Ly1⁷ was used to make pTruE-p2p3, pTruE-p3p3 and pTruE-p23 by the around horn method shown in **Scheme S2** route **b**. Deletion of the second cassette was done following route **a** to make pTruE-p3p2 was made by route **c**.

Substrate synthesis

Synthetic peptides were purchased from Genscript and are listed in Table S3.

Protein expression and purification

RSI-TruD, TruD, PatA, PatG and TruG were purified following the method described previously.^{3–6} The plasmids were transformed into electrocompetent *E. coli* BL21 RosettaTM 2 (DE3) (Millipore Sigma). The cells were plated on LB agar with kanamycin (50 mg/mL), incubated overnight at 30 °C, then inoculated into 2xYT (20 mL) media and grown overnight at 30 °C, 150 rpm. 10 mL of seed culture was used per liter of 2xYT media, and a total of 2 L culture were used for each protein. The cultures were incubated at 30 °C, 150 rpm until OD₆₀₀ reached 0.8. After cooling to 18°C, isopropyl β-D-thiogalactopyranoside (IPTG, 0.1 mM) was added, and the culture was incubated overnight. The cells were harvested by centrifugation, and the pellets were collected and frozen at -80 °C. After thawing, cell pellets were resuspended in the lysis buffer (5 g/mL, 50 mL in total; Tris-Cl (50 mM), NaCl (200 mM), imidazole (10 mM), 5% glycerol, lysozyme (600 µg/mL), pH 7.5) and centrifuged at 21728 g. The supernatant was collected and filtered, then loaded onto the Ni-NTA affinity resin (Qiagen). The resin was rinsed twice with wash buffer (25 mL; NaCl (1 M), imidazole (30 mM), pH 8.0), and elution buffer (12 mL; NaCl (1 M), imidazole (200 mM), pH 8.0) were used in four batches to elute the protein out. The eluents were analyzed by tris-glycine SDS-PAGE and dialyzed at 4 °C in the following buffer: HEPES (25 mM), NaCl (500 mM), 10% glycerol, pH 8.0. The dialysis buffer was changed four times and the proteins were flash-frozen and stored at -80 °C.

TruE substrates were expressed and purified by the same method as the enzymes except 1 mM of IPTG was added during induction and was analyzed by tris-tricine SDS-PAGE (**Figure S15**).⁸

tru pathway heterologous expression in E. coli

tru pathway plasmids were transformed into chemically competent E. coli DH10 β , and the resulting transformants were streaked onto LB agar containing ampicillin (50 mg/mL). Nine different plasmids were used with the following combinations: p3p2 (p3 sequence in cassette-1 and p2 sequence in cassette-2), p2p3, p2p2, p3p3, tkp2, p2tk, tktk, p3tk, tkp3. Single cassette plasmids (p3, p2 and tk) were expressed as a comparison. Plasmids encoding patellin 2 mutants (pTru-p2-p2L2A, pTru-p2L2A-p2L2A, pTru-p2-p2P4A, pTru-p2P4A-p2P4A) were also expressed. For inoculation, five colonies from the agar plate were picked and incubated to 2xYT media (5 mL) overnight, in a shaker that was set to 30 °C, 150 rpm. Next, the inoculations were combined and cells (50 µL) were added per 5 mL of 2xYT media in a 24-well plate, with addition of sterilized L-cysteine hydrochloride (Amresco, 10 mM). All experiments were performed at least twice, in triplicate technical replicates, with representative results shown. Cultures were incubated at 30 °C with shaking at 150 rpm for 5 days. On day 2, 3, 4, and 5, three independent wells representing each condition were harvested by centrifugation. Cultures without cysteine additives were also harvested as a negative control. For p2 mutants, cells were only harvested on day 5. For single-cassette expression shown in Figure S4, cultures were harvested on days 3 and 4 and performed in triplicate technical replicates in a single experiment. After washing with phosphate-buffered saline (NaCl (137 mM), KCl (2.7 mM), Na₂HPO₄ (10 mM), KH_2PO_4 (1.8 mM)), the cells were extracted with acetone (2.5 mL), centrifuged for 1 h, then the acetone fraction was removed by pipet, dried, and redissolved in methanol (200 µL).

Enzymatic reactions

TruD enzymatic reactions

TruE-p3p2, TruE-p2p3, TruE-p3p3 and TruE-p2p2 were heterocyclized by TruD under the following conditions: substrate (50 μ M), TruD (1 μ M), Tris-Cl (50 mM, pH 7.5), MgCl₂ (5 mM), ATP (1 mM) and dithiothreitol (DTT, 6 mM), 37 °C in a water bath. The reactions were done at least twice, in triplicate technical replicates. During the following time points 30 μ L of sample were taken: 10 s, 1, 3, 5, 10, 20, 40, 60 min. The reactions were quenched for 10 min in an oil bath heated to 110 °C. A portion of the samples (5 μ L) was analyzed by HPLC-MS, while the rest (~25 uL) were passed through P-6 gel resin slurry (100 μ L; Bio-rad) on a 96-well filter plate. The ion-exchange resin was pre-equilibrated with Tris-Cl (50 mM, pH 7.5) and MgCl₂ (5 mM) to remove DTT that inhibits PatA. After desalting, the reaction mixtures were fully digested by PatA at 37 °C in a thermocycler (Bio-rad, C1000 Touch) for 2 h under the following conditions: TruD reaction mixture (25 μ M of the original precursor peptide), PatA (1 μ M), Tris-Cl (50 mM, pH 7.5) and MgCl₂ (5 mM).

PatA enzymatic reactions

For PatA digestion reactions on fully heterocyclized precursor peptides, TruE-p3p2, TruE-p2p3, TruE-p3p3 and TruE-p2p2 were heterocyclized by TruD under the following conditions: substrate (90 μ M), TruD (2 μ M), Tris-Cl (50 mM, pH 7.5), MgCl₂ (5 mM), ATP (1 mM) and DTT (6 mM), 37 °C in a water bath for 6 h, and quenched in a 100 °C heat block for 10 min. Products were verified by HPLC-MS to ensure full heterocyclization on both cassettes. To remove DTT that inhibits PatA reactions, the reaction mixtures were passed through glass pasteur pipettes filled with P-6 gel resin slurry (2 mL; Bio-rad) pre-equilibrated with Tris-Cl (50 mM, pH 7.5) and MgCl₂ (5 mM). PatA reactions were performed in triplicates in a water bath at 37 °C, with substrate (50 μ M), PatA (0.5 μ M), Tris-Cl (pH 7.5, 50 mM) and MgCl₂ (5 mM). The following time points were used: 10 s, 1, 3, 5, 10, 15, 20, 30, 50, 60 min. At each time point, 10 μ L of the reaction mixture was taken and quenched by methanol (10 μ L).

For PatA digestion reactions on unmodified precursor peptides, TruE-p3p2, TruE-p2p3, TruE-p3p3 or TruE-p2p2 were directly added to the reaction mixture: substrate (50 μ M), PatA (0.5 μ M), Tris-Cl (50 mM, pH 7.5) and MgCl₂ (5 mM). When exploring the disulfide bridge effect, reducing agent TCEP was added to the mixture with different concentrations: 0, 50 μ M (1:1 molar ratio to substrate), 100 μ M (2:1) and 200 μ M (4:1).

TruD enzymatic reactions after PatA proteolysis

Unmodified precursor peptides (TruE-p3p2, TruE-p2p3, TruE-p3p3 or TruE-p2p2) were fully proteolyzed in the reaction mixture: substrate (90 μ M), PatA (1 μ M), Tris-Cl (50 mM, pH 7.5) and MgCl₂ (5 mM) for 6 h in a 37 °C water bath and confirmed by HPLC-MS. Then, mixture is added to a TruD reaction mixture: substrate (50 μ M), TruD (2 μ M), Tris-Cl (50 mM, pH 7.5), MgCl₂ (5 mM), ATP (1 mM) and DTT (6 mM), and incubated in a water bath at 37 °C. The following time points were used: 10 s, 20 min, 40 min.

RSI-TruD enzymatic reactions

Synthesized short peptides including p2-RSIII-RSII, p2-RSIII, p3-RSIII and p3-RSIII-RSII (150 μ M) were each fully heterocyclized in a reaction mixture (500 μ L) containing RSI-TruD (2 μ M), Tris-Cl (50 mM, pH 7.5), MgCl₂ (5 mM), ATP (1 mM) and DTT (6 mM) in a water bath for at least 6 h at 37 °C. The reactions were then quenched for 10 min heat inactivation in a 100 °C heat block. The fully heterocyclized peptides were used as standards or substrates for PatG/TruG reactions.

TruD enzymatic reactions with or without RSI

Synthesized short peptides including p2-RSIII-RSII, p2-RSIII, p3-RSIII and p3-RSIII-RSII (50 μ M) were heterocyclized in a reaction mixture containing TruD or RSI-TruD (2 μ M), Tris-Cl (50 mM, pH 7.5), MgCl₂ (5 mM), ATP (1 mM) and DTT (6 mM) in a water bath at 37 °C. Time points were taken at 5, 10, 20, 30 and 40 min.

Standard curves for short peptides

A mixture of the same cassette, heterocyclized or unheterocyclized short peptides (e.g., p3-RSIII and p3*-RSIII mixed together; * represents heterocyclized cassette) were prepared with concentrations of 0.5, 1, 5, 10, and 20 μ M to determine the linear range response on the mass spectrometer. For p3-RSIII-RSII and p3*-RSIII-RSII set, an extra set of concentrations were used: 0.5, 1, 2.5, 5, 7.5 μ M. Different concentrations were prepared and measured in triplicates.

PatG and TruG enzymatic reactions

The heterocyclized short peptides (final concentration 50 μ M of each substrate) were added to PatG reaction mixture (Tris-Cl (50 mM) pH 7.5, MgCl₂ (5 mM), and PatG (10 μ M))⁹ or TruG reaction mixture (NaCl (500 mM), bicine (20 mM) pH 8.0, LiCl (1 mM), 5% DMSO and TruG (10 μ M))¹⁰ with different combinations: p2*-RSIII-RSII with p2*-RSIII (representing p2*p2*), p3*-RSIII-RSII with p2*-RSIII (p3*p2*), p2*-RSIII-RSII with p3*-RSIII (p2*p3*), p3*-RSIII-RSII with p3*-RSIII (p3*p3*). Same cassette sets were also used in the following combination for PatG reactions: p2*-RSIII with p3*-RSIII (cassette-2 sets), and p2*-RSIII-RSII with p3*-RSIII (cassette-1 sets). Reactions were performed in triplicate in a water bath at 37 °C. For PatG, six different time points were taken: 10 s, 3, 10, 21, 29, and 53 h. For TruG, the following time points were used: 10 s, 3, 13, 15, 28.25 and 37 h. In each time point, aliquot of the mixtures (10 μ L or 20 μ L) were removed and quenched in equal volume of methanol.

Analysis of reaction products

High-performance liquid chromatography-electrospray ionization MS (HPLC-ESI-MS) was performed using a Micromass Q-TOF Micro Mass Spectrometer (Waters) in positive mode. Solvent A was 0.1% formic acid in Optima LC-MS grade water and solvent B was Optima LC-MS grade acetonitrile. A flow rate of 0.3 mL/min was used in all cases. An internal standard e8 (0.25 μ g/mL) was added to all samples to minimize autosampler injection variations.

For tru pathway heterologous expression

From the 200 μ L of sample dissolved in methanol, 50 microliters were added to the LCMS vial and with the e8 internal standard cyclic peptide (5 μ L, 0.25 μ g/mL). a C18 column (Kinetex® 2.6 μ m C18 100 Å, 50 x 2.1 mm) was used with the following gradient: **1**) 0-1 min, 90% A and 10% B; **2**) 1-11 min, a linear gradient from 10% B to 90% B; **3**) 11-20 min, 90% B; **4**) 20-21 min, a linear gradient from 90% B to 10% B; **5**) 21-25 min, equilibration of the column. The observed *m/z* is shown in **Table S4**.

For enzyme reactions

Standards. A C18 column (Kinetex® 2.6 μ m C18 100 Å, 50 x 2.1 mm) was used. Samples were run in random orders in triplicate: **1**) 0-1 min, 10% B; **2**) 1-15 min, a linear gradient from 10% B to 95% B; **3**) 15-16 min, 95% B; **4**) 16-18 min, a linear gradient from 95% B to 10% B; **5**) 18-20 min, equilibration of the column. The observed *m/z* is shown in **Table S10** and the result is shown in **Figure S16**.

TruD reactions. Samples were diluted to a 1-5 μ M range, which is in the linear response range for the cassette fragments. For TruD reactions, a C4 column (Aries® widepore 4.6 μ m C4 200 Å, 100 x 2.1 mm) was used with the following gradient: **1**) 0-1 min, 10% B; **2**) 1-11 min, a linear gradient from 10% B to 90% B; **3**) 11-11.5 min, 90% B; **4**) 11.5 - 12 min, a linear gradient from 90% B to 10% B; **5**) 18-20 min, equilibration of the column. The observed *m/z* is shown in **Table S5**.

PatA and PatG reactions. A C18 column (Kinetex® 2.6 μ m C18 100 Å, 50 x 2.1 mm) was used. For PatA reactions, the gradient was **1**) 0-1 min, 10% B; **2**) 1-15 min, a linear gradient from 10% B to 95% B; **3**) 15-16 min, 95% B; **4**) 16-18 min, a linear gradient from 95% B to 10% B; **5**) 18-20 min, equilibration of the column. The expected *m/z* for PatA reaction products is shown in **Table S6** – **S8**. For PatG reactions, the gradient is as follows: **1**) 0-2 min, 0.5% B; 2-7 min, a linear gradient from 0.5% B to 70% B; **2**) 7-8.5 min, a linear gradient from 70% B to 100% B; **3**) 8.5 - 9 min, a linear gradient from 100% B to 0.5% B; and **4**) 18-20 min, equilibration of the column. The observed *m/z* is shown in **Table S9**.

The integrated areas of the substrate/intermediate/product peaks were quantified with MassLynx 4.0 Quantification function. The areas were normalized to the internal standard e8 to remove injection variations from the autosampler. For multiple charge ions, the area of the highest response was used. To normalize the ionization differences between each peptide, a standard, a 2-fold and a 4-fold dilution of the standards were run in each batch, and the ratio of the standard peptides was used to eliminate the ionization differences between short peptides. The standard includes 4 μ M of p2-RSIII-RSII, p2-RSIII, p3-RSIII, p3-RSIII, p3*-RSIII-RSII, RSIII, and RSIII-RSII. The data were exported and processed in Microsoft Excel and the figures were plotted with Prism GraphPad 7.0.

For TruD reactions time course by PatA digestions, the amount of core1*-RSIII-RSII (heterocyclized cassette-1) and core2*-RSIII-RSII was compared. Core1*-RSIII-RSII is digestion product of TruE-cassette1*-cassette1*-cassette1*-cassette2*, while core2*-RSIII-RSII comes from TruE-cassette1-

cassette2* and TruE-cassette1*-cassette2*. As a result, the comparison between these two fragments represents the comparison of TruE-cassette1*-cassette2 and TruE-cassette1-cassette2*.

For PatA time course on heterocyclized precursors, masses corresponding to core1*-RSIII-RSII, core2*-RSIII-RSII, core1*-RSIII-RSII-core2*-RSIII-RSII, leader-core1*-RSIII-RSII were extracted. The amount of core1*-RSIII-RSII and core2*-RSIII-RSII was also compared. If PatA follows strict N-to-C directionality, then only core1*-RSIII-RSII-core2*-RSIII-RSII would be detected and the amount of core1*-RSIII-RSII should equal to core2*-RSIII-RSII. If PatA follows strict C-to-N directionality, then only leader-core1*-RSIII-RSII would be detected and before full digestion, the amount of core1*-RSIII-RSII is lower than core2*-RSIII-RSII.

For PatG time course, the production of RSIII-RSII and RSIII was monitored. Since there were no linear proteolysis products and only the cyclic products were observed, the detection of RSIII-RSII and RSIII is sufficient to show the enzyme reaction process. The cyclic products were not quantified due to inconsistent ionization. For analysis, the ratio of RSIII-RSII over RSIII was used. A ratio over 1 indicates more consumption of cassette-1 and a ratio lower than 1 indicates less consumption of cassette-1. For sets with only cassette-1 or cassette-2 pieces, since both cassettes produce the same RSIII-RSII or RSIII piece, the substrate was monitored instead. A ratio over 1 indicates more leftover of cassette-1 thus less favorable of cassette-1 and ratio lower than 1 indicates more use of cassette-1. For TruG time course, amount of the substrate was monitored throughout the sets since the reaction was diluted and the RSIII-RSII and RSIII were hard to detect.

For PatA time points on unheterocyclized precursor peptides set, the samples were run by the MS core in University of Utah, with a C8 column (SunFireTM C18 5 μ m 3.0 x 50 mm) over the UPLC-MS (Agilent 1290 Infinity II LC; Agilent 6540 Accurate-Mass Q-TOF) with a 0.1 mL/min flow rate. The following gradient was used: **1**) 0-0.5 min, 20% B; **2**) 0.5-3 min, a linear gradient from 20% B to 75% B; **3**) 3-3.2 min, 75% to 99% B; **4**) 3.2-4 min, a linear gradient from 99% to 95% B; **5**) 4-4.5 min, 95% to 40% B. The peak areas of extracted ion chromatogram were quantified with MassHunter Quantitative Analysis Software (v B.07.00) and plotted with Prism GraphPad 7.0. To normalize, extracted peak areas were multiplied by normalization factor (e8 standard area from one sample over the average of e8 standard area with all the samples). The expected *m/z* is shown in **Table S8**.

Hypothesis testing of TruG and PatG reactions

For TruG and PatG sets, the ratio of initial substrate area was used in each time course to show the consumption of the two cassettes. *P*-value for each time point (**Table S11** and **S12**) was calculated with the one sample *t*-test using the following equation in excel. The two-sided confidence interval was set to 95%, the hypothesized value was set to 1 and the degree of freedom was 2.

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \tag{1}$$

Supporting Schemes

Scheme S1. Cloning strategies for pTru-p3p2 derived plasmids. (a) strategy to change the cassette-2 sequence; (b) strategy to change the cassette-1 and -2 sequence; (c) method to clone patellin2 mutant plasmids in cassette-2; (d) method to clone patellin2 mutant plasmids in both cassettes; (e) method to clone single cassette plasmids.

Scheme S2. Cloning strategies for pTruE-p3p2 derived plasmids. (a) Cloning of pTruE-p3. (b) Cloning of pTruE-p3p3 and pTruE-p2p3, pTruE-p23. (c) Cloning of pTruE-p2p2.

Supporting Tables

Primer name	Sequence	Description	
		For amplifying the backbone of pUC19 and adding an Ns	
pUC-Nsil-fwd	CIAIGACCAIGcatACGCCAAGC	restriction site (ATGCAT) at the lacZ-alpha start codon.	
PLIC Noil roy		For amplifying the backbone of pUC19 and adding an NsiI	
pUC-INSII-rev	GUIIGGUGIAIGUAIGGIUAIAG	restriction site (ATGCAT) at the lacZ-alpha start codon.	
allC Actil fud	CTTTCTTACACCACACCTCCCAC	For amplifying pUC19 and removing an AatII site after lacZ-	
poc-Aam-iwa	GITTCTIAGACGACAGGIGGCAC	alpha	
pUC Aptil rov		For amplifying pUC19 and removing an AatII site after lacZ-	
poe-Aam-iev	UTOCCACCTOTCOTCTAAGAAAC	alpha	
1-pat2-fwd	CGAGGAAGCATTGGGTGGTGTCG	To make Sall-patellin2-MluI to put into tru pathway;	
i putz iwu	ACGCCTCGACCGTGCCGACCT	encoding first part of the cassette-1 with p2 sequence	
1_pat2_rev	AGACGCGTCAACGCCATCATAGCT	To make SalI-patellin2-MluI to put into tru pathway;	
1-patz-10v	GCACAAGGTCGGCACGGTCGA	encoding second part of the cassette-1 with p2 sequence	
1 th find	CGAGGAAGCATTGGGTGGTGTCG	To make SalI-trunkamide-MluI to put into tru pathway;	
1-tk-1wu	ACGCCTCGACCAGCATTGCTCC	encoding first part of the cassette-1 with tk sequence	
1 the ray	AGACGCGTCAACGCCATCATAGCT	To make SalI-trunkamide-MluI to put into tru pathway;	
1-tK-1CV	GCAAAACGGAGCAATGCTGGTC	encoding second part of the cassette-1 with tk sequence	
1-pat3-fwd	CGAGGAAGCATTGGGTGGTGTCG	To make Sall notelling Mint to put into the nothway.	
	ACGCCTCGACCCTGCCGGTGCCG	ancoding first part of the cassatte 1 with p3 sequence	
	AC	encouning inst part of the cassette-1 with p5 sequence	
1-pat3-rev	AGACGCGTCAACGCCATCATAGCT	To make SalI-patellin3-MluI to put into tru pathway;	
1-pat5-100	GCAGAGGGTCGGCACCGGCAG	encoding second part of the cassette-1 with p3 sequence	
	AGCTATGATGGCGTTGACGCGTCT	To make MluL-patellin ² -4atII to put into try pathway:	
2-pat2-fwd	ACCGTGCCGACCTTGTGCTCCTAT	encoding first part of the cassette-2 with p2 sequence	
	GACGAC	encouning mot part of the cassette 2 whill p2 sequence	
	ATGGTCCCGGCGTGGACTTGACGT	To make Mul-natellin ² -4atII to put into try nathway:	
2-pat2-rev	CGGTCGCTAGATTAGTCGTCATAG	encoding second part of the cassette-2 with p2 sequence	
	GAGCACA	encount second part of the cassene 2 with p2 sequence	
	AGCTATGATGGCGTTGACGCGTCT	To make Mul-trunkamide-Aatll to put into tru pathway.	
2-tk-twd	ACCAGCATTGCTCCGTTTTGCTCC	encoding first part of the cassette-2 with the sequence	
	TATGACG		
	ATGGTCCCGGCGTGGACTTGACGT	To make MluI-trunkamide-AatII to put into tru pathway:	
2-tk-rev	CGGTCGCTAGATTAGTCGTCATAG	encoding second part of the cassette-2 with the sequence	
	GAGCAAAACG		
2-pat3-fwd	AGCTATGATGGCGTTGACGCGTCT To make <i>Mlul-patellin3-Aatl1</i> to put into		
2 pais-iwa	ACCCTGCCGGTGCCGACCCTCTGC	encoding first part of the cassette-2 with p3 sequence	

 Table S1. Primers and gBlocks used in this study

	TCCTATG	
2-pat3-rev	ATGGTCCCGGCGTGGACTTGACGT CGGTCGCTAGATTAGTCGTCATAG GAGCAGAGGGT	To make <i>MluI-patellin3-AatII</i> to put into <i>tru</i> pathway; encoding second part of the cassette-2 with p3 sequence
p2-p2L2A gBlock	CCTGCCGGTGCCGACCCTCTGCAG CTATGATGGCGTTGACGCGTCTAC CGTGCCGACCGCCTGCTCCTATGA CGACTAATCTAGCGACCGACGTCA AGTCCACGCCGGGACCATTTCAAT	To make pTru-p2-p2L2A plasmid
p2-p2P4A gBlock	CCTGCCGGTGCCGACCCTCTGCAG CTATGATGGCGTTGACGCGTCTAC CGTGgeeACCTTGTGCTCCTATGAC GACTAATCTAGCGACCGACGTCAA GTCCACGCCGGGACCATTTCAATT TTGCACGGAGCCG	To make pTru-p2-p2P4A plasmid
p2L2A-cassette1- fwd	5'P- tcgacgcctcgACCGTGCCGACCGCCTG Cagctatgatggcgttga	To make <i>Sall- p2L2A-MluI</i> for pTru-p2L2A-p2L2A plasmid; forward primer
p2L2A-cassette1- rev	5'P- CGCGTCAACGCCATCATAGCTGCA GGCGGTCGGCACGGTCGAGGCG	To make <i>SalI-p2L2A-MluI</i> for pTru-p2L2A-p2L2A plasmid; reverse primer
p2P4A-cassette1- fwd	5'P- tcgacgcetcgACCGTGGCCACCTTGTG Cagctatgatggcgttga	To make <i>SalI-p2P4A-MluI</i> fragment for pTru-p2P4A-p2P4A plasmid; forward primer
p2P4A-cassette1-rev	5'P- CGCGTCAACGCCATCATAGCTGCA CAAGGTGGCCACGGTCGAGGCG	To make <i>SalI-p2P4A-MluI</i> fragment for pTru-p2P4A-p2P4A plasmid; reverse primer
pET-p3-fwd	5'-P- AGCTACGATGATTAAGGATCCG	To make pTruE-p3 from pTruE-TruLy1; forward primer
pET-p3-rev	5'-P- GCAGAGGGTAGGAACAGGTAAG	To make pTruE-p3 from pTruE-TruLy1; reverse primer
pET_p23-fwd	5'-P- ACCGTGCCGACCTTGTGCACCTTA CCTGTTCCTACCCTCTGC	To make pTruE-p23 from pTruE-p3; forward primer
pET_p2p3-fwd	5'-P- TCTTACGACGGCGTGGATGCCTCG ACCTTACCTGTTCCTACCCTCTGC	To make pTruE-p2p3 from pTruE-p23; forward primer
pET_p2p3-rev	5'-P-GCACAAGGTCGGCACGGTCG	To make pTruE-p2p3 from pTruE-p23; reverse primer

	5'-P-	
	ACCTTACCTGTTCCTACCCTCTGC	
pE1_p3p3-twd	AGCTACGATGATTAAGGATCCGAA	To make pTruE-p3p3 from pTruE-p3p2; forward primer
	TTC	
pET_p3p3-rev	5'-P-CGAGGCATCCACGCCGTCG	To make pTruE-p3p3 from pTruE-p3p2; reverse primer
terr En 2n 2 Midel Good	gcggcagccatATGAATAAAAAGAATAT	To make <i>truE-p2p2</i> from pTruE-p2p2 with NdeI restriction
truEp2p2-Nde1-Iwd	TCTCCC	site; forward primer
truEn2n2 VhoL roy	cagtcagtctcgagTTA GTC GTC ATA	To make <i>truE-p2p2</i> from pTruE-p2p2 with XhoI restriction
uuep2p2-Xnoi-iev	GGA GCA CA	site; reverse primer
	gtccgaggaagcattgggtggtgtcgacgcctcgacc	
cassette p3_fwd	ctgccggtgccgaccctctgctcctatgacgactaatct	Template to make the single cassette p3 gBlock for pTru-p3
	agcgaccgacgtcaagtccacgccgggaccatt	
	gtccgaggaagcattgggtggtgtgtcgacgcctcgacc	
cassette p2_fwd	gtgccgaccttgtgctcctatgacgactaatctagcgac	Template to make the single cassette p2 gBlock for pTru-p2
	cgacgtcaagtccacgccgggaccatt	
	gtccgaggaagcattgggtggtgtcgacgcctcgAC	
anasatta tk. fiyd	CTCTATTGCTCCCTTCTGCtcctatgacg	Tamplata to make the single accepte the aPlack for nTru th
cassette tk_two	actaatctagcgaccgacgtcaagtccacgccgggac	rempiate to make the single cassette ik gblock for p nu-tk
	catt	
cassette1_fwd	gtccgaggaagcattggg	To make the single cassette gBlock; forward primer
cassette1_rev	AAT GGT CCC GGC GTG G	To make the single cassette gBlock; reverse primer

 Table S2. Plasmids used in this study

Plasmid name	backbone	pathway/precursor/enzyme	cassette-1 encoding	cassette-2 encoding
pTru-p3p2	pUC19	<i>tru</i> pathway	p3 (TLPVPTLC)	p2 (TVPTLC)
pTru-p2p3	pUC19	<i>tru</i> pathway	p2 (TVPTLC)	p3 (TLPVPTLC)
pTru-p3p3	pUC19	<i>tru</i> pathway	p3 (TLPVPTLC)	p3 (TLPVPTLC)
pTru-p2p2	pUC19	<i>tru</i> pathway	p2 (TVPTLC)	p2 (TVPTLC)
pTru-tkp2	pUC19	<i>tru</i> pathway	tk (TSIAPFC)	p2 (TVPTLC)
pTru-p2tk	pUC19	<i>tru</i> pathway	p2 (TVPTLC)	tk (TSIAPFC)
pTru-tktk	pUC19	<i>tru</i> pathway	tk (TSIAPFC)	tk (TSIAPFC)
pTru-p3tk	pUC19	<i>tru</i> pathway	p3 (TLPVPTLC)	tk (TSIAPFC)
pTru-tkp3	pUC19	<i>tru</i> pathway	tk (TSIAPFC)	p3 (TLPVPTLC)
pTru-p3	pUC19	<i>tru</i> pathway	p3 (TLPVPTLC)	N/A
pTru-p2	pUC19	<i>tru</i> pathway	p2 (TVPTLC)	N/A
pTru-tk	pUC19	tru pathway	tk (TSIAPFC)	N/A
pTru-p2-p2L2A	pUC19	<i>tru</i> pathway	p2 (TVPTLC)	p2L2A (TVPTAC)
pTru-p2L2A- p2L2A	pUC19	<i>tru</i> pathway	p2L2A (TVPTAC)	p2L2A (TVPTAC)

pTru-p2-p2P4A	pUC19	<i>tru</i> pathway	p2 (TVPTLC)	p2P4A (TVATLC)
pTru-p2P4A- p2P4A	pUC19	<i>tru</i> pathway	p2P4A (TVATLC)	p2P4A (TVATLC)
pTruE-p3p2	pET28b(+)	precursor	p3 (TLPVPTLC)	p2 (TVPTLC)
pTruE-p3	pET28b(+)	precursor	p3 (TLPVPTLC)	N/A
pTruE-p2p3	pET28b(+)	precursor	p2 (TVPTLC)	p3 (TLPVPTLC)
pTruE-p3p3	pET28b(+)	precursor	p3 (TLPVPTLC)	p3 (TLPVPTLC)
pTruE-p2p2	pET28b(+)	precursor	p2 (TVPTLC)	p2 (TVPTLC)
pTruE-p23	pET28b(+)	precursor	p23 (TVPTLCTLPVPTLC)	N/A
pET28b-his-TruD	pET28b(+)	TruD enzyme	N/A	N/A
pET28b-his-RSI-	pET28b(+)	RSI-TruD enzyme	N/A	N/A
TruD				
pET28b-his-PatA	pET28b(+)	PatA enzyme	N/A	N/A
pET28b-his-PatG	pET28b(+)	PatG enzyme	N/A	N/A
pET28b-his-TruG	pET28b(+)	TruG enzyme	N/A	N/A

Table S3. Peptides used in this study

Peptide name	Peptide sequence	source
TruE-p3p2	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSS	Protein expression and purification
	QLAELSEEALGGVDASTLPVPTLCSYDGVDASTVPTLCSYDD	
TruE-p2p3	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSS	Protein expression and purification
	QLAELSEEALGGVDASTVPTLCSYDGVDASTLPVPTLCSYDD	
TruE-p3p3	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSS	Protein expression and purification
	QLAELSEEALGGVDASTLPVPTLCSYDGVDASTLPVPTLCSY	
	DD	
TruE-p2p2	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSS	Protein expression and purification
	QLAELSEEALGGVDAS TVPTLC SYDGVDAS TVPTLC SYDD	
p2-RSIII-RSII	TVPTLCSYDGVDAS	From Genscript
p3-RSIII-RSII	TLPVPTLCSYDGVDAS	From Genscript
p2-RSIII	TVPTLCSYDD	From Genscript
p3-RSIII	TLPVPTLCSYDD	From Genscript
RSI	acetyl-LAELSEEALG-amide	From Genscript
RSIII-RSII	SYDGVDAS	From Genscript
RSIII	SYDD	From Genscript
e8 standard ¹¹	A synthetic cyclic peptide	From peptide core, University of Utah
p2*-RSIII-RSII	TVPTLC*SYDGVDAS	Fully heterocyclized by RSI-TruD
p3*-RSIII-RSII	TLPVPTLC*SYDGVDAS	Fully heterocyclized by RSI-TruD
p2*-RSIII	TVPTLC*SYDD	Fully heterocyclized by RSI-TruD

p3*-RSIII TLPVPTLC*SYDD Fully heterocyclized b	y RSI-TruD
--	------------

Core sequences in bold. * represents heterocyclization.

cyanobactin name	Peptide sequence	Observed <i>m/z</i>
trunkamide (1)	c-[<u>TS</u> IAPFC*]	$[M+H]^+ = 838.1$
1 – (single prenylation)	c-[<u>T</u> SIAPFC*] or c-[T <u>S</u> IAPFC*]	$[M+H]^+ = 770.3$
1 – – (non-prenylated product)	c-[TSIAPFC*]	$[M+H]^+ = 702.5$
patellin 2 (2)	c-[<u>T</u> VP <u>T</u> LC*]	$[M+H]^+ = 733.5$
2 -	c-[<u>T</u> VPTLC*] or c-[TVP <u>T</u> LC*]	$[M+H]^+ = 665.4$
2	c-[TVPTLC*]	$[M+H]^+ = 597.3$
patellin 3 (3)	c-[<u>T</u> LPVP <u>T</u> LC*]	$[M+H]^+ = 943.5$
3 -	c-[<u>T</u> LPVPTLC*] or c-[TLPVP <u>T</u> LC*]	$[M+H]^+ = 875.4$
3	c-[TLPVPTLC*]	$[M+H]^+ = 807.2$
p2L2A (4)	c-[<u>T</u> VP <u>T</u> AC*]	$[M+H]^+ = 691.8$
4 -	c-[<u>T</u> VPTAC*] or c-[TVP <u>T</u> AC*]	$[M+H]^+ = 623.5$
4	c-[TVPTAC*]	$[M+H]^+ = 555.6$
p2P4A (5)	c-[<u>T</u> VA <u>T</u> LC*]	$[M+H]^+ = 706.5$
5 -	c-[<u>T</u> VATLC*] or c-[TVA <u>T</u> LC*]	$[M+H]^+ = 638.4$
5	c-[TVATLC*]	$[M+H]^+ = 570.3$

 Table S4. Cyanobactin m/z from heterologous expression in E. coli

*represents heterocyclization; c-[X] represents N-to-C terminal cyclization. Underscore (\underline{X}) represents prenylation.

Table S5. TruD heterocyclization of peptides and the observed m/z

Peptide name	Peptide sequence	Observed <i>m/z</i>
TruE-p3p2	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLAELSEE	[M+8H] ⁸⁺ = 1116.5
(substrate)	ALGGVDASTLPVPTLCSYDGVDASTVPTLCSYDD	
TruE-p3*p2	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLAELSEE	$[M+8H]^{8+} = 1114.5$
and	ALGGVDASTLPVPTLC*SYDGVDASTVPTLCSYDD	
TruE-p3p2*	and	
(intermediates)	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLAELSEE	
	ALGGVDASTLPVPTLCSYDGVDASTVPTLC*SYDD	
TruE-p3*p2*	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLAELSEE	$[M+8H]^{8+} = 1112.0$
(product)	ALGGVDASTLPVPTLC*SYDGVDASTVPTLC*SYDD	
TruE-p2p3	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLAELSEE	$[M+8H]^{8+} = 1116.5$
(substrate)	ALGGVDASTVPTLCSYDGVDASTLPVPTLCSYDD	
TruE-p2*p3	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLAELSEE	$[M+8H]^{8+} = 1114.5$
and	ALGGVDASTVPTLC*SYDGVDASTLPVPTLCSYDD	

TruE-p2p3*	and	
(intermediates)	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLAELSEE	
	ALGGVDASTVPTLCSYDGVDASTLPVPTLC*SYDD	
TruE-p2*p3*	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLAELSEE	$[M+8H]^{8+} = 1112.0$
(product)	ALGGVDASTVPTLC*SYDGVDASTLPVPTLC*SYDD	
TruE-p3p3	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLAELSEE	$[M+8H]^{8+} = 1142.5$
(substrate)	ALGGVDASTLPVPTLCSYDGVDASTLPVPTLCSYDD	
TruE-p3*p3	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLAELSEE	$[M+8H]^{8+} = 1140.5$
and	ALGGVDASTLPVPTLC*SYDGVDASTLPVPTLCSYDD	
TruE-p3p3*	and	
(intermediates)	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLAELSEE	
	ALGGVDASTLPVPTLCSYDGVDASTLPVPTLC*SYDD	
TruE-p3*p3*	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLAELSEE	$[M+8H]^{8+} = 1138.0$
(product)	ALGGVDASTLPVPTLC*SYDGVDASTLPVPTLC*SYDD	
TruE-p2p2	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLAELSEE	$[M+8H]^{8+} = 1090.5$
(substrate)	ALGGVDASTVPTLCSYDGVDASTVPTLCSYDD	
TruE-p2*p2	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLAELSEE	$[M+8H]^{8+} = 1088.5$
and	ALGGVDASTVPTLC*SYDGVDASTVPTLCSYDD	
TruE-p2p2*	and	
(intermediates)	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLAELSEE	
	ALGGVDASTVPTLCSYDGVDASTVPTLC*SYDD	
TruE-p2*p2*	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLAELSEE	$[M+8H]^{8+} = 1085.9$
(product)	ALGGVDASTVPTLC*SYDGVDASTVPTLC*SYDD	
e8 (standard)	A synthetic cyclic peptide	$[M+H]^+ = 883.5$

*represents heterocyclization

Table S6. PatA digestion peptides of TruD reactions and the observed m/z

Peptide name	Peptide sequence	Observed <i>m/z</i>
landar	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLAELS	$[M+7H]^{7+} = 887.9$
leader	EEALGGVDAS	
p2-RSIII-RSII	TVPTLCSYDGVDAS	[M+2H] ²⁺ =714.3
p3-RSIII-RSII	TLPVPTLCSYDGVDAS	$[M+2H]^{2+} = 819.4$
p2-RSIII	TVPTLCSYDD	$[M+H]^+ = 1113.5$
p3-RSIII	TLPVPTLCSYDD	$[M+2H]^{2+}=662.3$
p2*-RSIII-RSII	TVPTLC*SYDGVDAS	[M+2H] ²⁺ =705.3
p3*-RSIII-RSII	TLPVPTLC*SYDGVDAS	$[M+2H]^{2+} = 810.4$
p2*-RSIII	TVPTLC*SYDD	$[M+2H]^{2+}=548.4$
p3*-RSIII	TLPVPTLC*SYDD	$[M+2H]^{2+}=653.3$
e8 standard	A synthetic cyclic peptide	[M+H] ⁺ =883.5

*represents heterocyclization

Peptide name	Peptide sequence	Observed <i>m/z</i>	
landar	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLA	$[M+7H]^{7+} = 887.9$	
leader	ELSEEALGGVDAS		
p2*-RSIII-RSII	TVPTLC*SYDGVDAS	[M+2H] ²⁺ =705.3	
p3*-RSIII-RSII	TLPVPTLC*SYDGVDAS	$[M+2H]^{2+} = 810.4$	
p2*-RSIII	TVPTLC*SYDD	$[M+2H]^{2+} = 548.4$	
p3*-RSIII	TLPVPTLC*SYDD	$[M+2H]^{2+} = 653.3$	
p3*-RSIII-RSII-p2*-RSIII	TLPVPTLC*SYDGVDASTVPTLC*SYDD	$[M+3H]^{3+} = 899.4$	
p2*-RSIII-RSII-p3*-RSIII	TVPTLC*SYDGVDASTLPVPTLC*SYDD	$[M+3H]^{3+} = 899.4$	
p3*-RSIII-RSII-p3*-RSIII	TLPVPTLC*SYDGVDASTLPVPTLC*SYDD	$[M+3H]^{3+} = 969.4$	
p2*-RSIII-RSII-p2*-RSIII	TVPTLC*SYDGVDASTVPTLC*SYDD	$[M+3H]^{3+} = 830.0$	
leader-RSII-p3*-RSIII-RSII	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLA	$[M+8H]^{7+} = 976.8$	
	ELSEEALGGVDASTLPVPTLC*SYDGVDAS		
leader-RSII-p2*-RSIII-RSII	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQLA	$[M+8H]^{8+} = 951.8$	
	ELSEEALGGVDASTVPTLC*SYDGVDAS		
e8 standard	A synthetic cyclic peptide	$[M+H]^+ = 883.5$	

Table S7. PatA digestion peptides of heterocyclized peptides and the observed m/z

*represents heterocyclization

Table S8. Pa	tA digestion	peptides of intact pr	recursor peptide and the of	served m/z
	a sugestion	pepties of measure		

Peptide name	Peptide sequence	Observed <i>m/z</i>
p2-RSIII-RSII	TVPTLCSYDGVDAS	$[M+2H]^{2+} = 714.3$
p3-RSIII-RSII	TLPVPTLCSYDGVDAS	$[M+2H]^{2+} = 819.4$
p2-RSIII	TVPTLCSYDD	$[M+H]^+ = 1113.5$
p3-RSIII	TLPVPTLCSYDD	$[M+2H]^{2+} = 662.3$
p3-RSIII-RSII-p2-RSIII	TLPVPTLCSYDGVDASTVPTLCSYDD	[M+3H] ³⁺ =911.4
p2-RSIII-RSII-p3-RSIII	TVPTLCSYDGVDASTLPVPTLCSYDD	[M+3H] ³⁺ =911.4
p3-RSIII-RSII-p3-RSIII	TLPVPTLCSYDGVDASTLPVPTLCSYDD	$[M+3H]^{3+}=981.5$
p2-RSIII-RSII-p2-RSIII	TVPTLCSYDGVDASTVPTLCSYDD	$[M+3H]^{3+}=841.4$
leader	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQL	$[M+7H]^{7+} = 887.9$
	AELSEEALGGVDAS	
leader-RSII-p3-RSIII-RSII	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQL	$[M+8H]^{7+} = 979.1$
	AELSEEALGGVDASTLPVPTLCSYDGVDAS	
leader-RSII-p2-RSIII-RSII	GSSHHHHHHSSGLVPRGSHMNKKNILPQLGQPVIRLTAGQLSSQL	$[M+8H]^{8+} = 952.8$
	AELSEEALGGVDASTVPTLCSYDGVDAS	
e8 standard	A synthetic cyclic peptide	$[M+H]^+ = 883.5$

Peptide name	Peptide sequence	Observed <i>m/z</i>
p2*-RSIII-RSII	TVPTLC*SYDGVDAS	[M+2H] ²⁺ =705.3
p3*-RSIII-RSII	TLPVPTLC*SYDGVDAS	$[M+2H]^{2+} = 810.4$
p2*-RSIII	TVPTLC*SYDD	$[M+2H]^{2+} = 548.4$
p3*-RSIII	TLPVPTLC*SYDD	$[M+2H]^{2+} = 653.3$
RSIII-RSII	SYDGVDAS	$[M+H]^+ = 813.5$
RSIII	SYDD	[M+H] ⁺ = 499.2
3	c-[TLPVPTLC*]	[M+H] ⁺ =807.5
2	c-[TVPTLC*]	[M+H] ⁺ =597.5
e8 standard	A synthetic cyclic peptide	$[M+H]^+ = 883.5$

Table S9. PatG or TruG reaction peptides and the observed m/z

-- represents non-prenylated product; *represents heterocyclization; c-[X] represents head-to-tail cyclization.

Table S10. Standard observed m/z

Peptide name	Peptide sequence	Observed <i>m/z</i>
p2*-RSIII-RSII	TVPTLC*SYDGVDAS	$[M+2H]^{2+}=705.3$
p3*-RSIII-RSII	TLPVPTLC*SYDGVDAS	$[M+2H]^{2+} = 810.4$
p2*-RSIII	TVPTLC*SYDD	$[M+2H]^{2+} = 548.4$
p3*-RSIII	TLPVPTLC*SYDD	$[M+2H]^{2+} = 653.3$
p2-RSIII-RSII	TVPTLCSYDGVDAS	$[M+2H]^{2+} = 714.3$
p3-RSIII-RSII	TLPVPTLCSYDGVDAS	$[M+2H]^{2+} = 819.4$
p2-RSIII	TVPTLCSYDD	$[M+H]^+ = 1113.5$
p3-RSIII	TLPVPTLCSYDD	$[M+2H]^{2+} = 662.3$
e8 standard	A synthetic cyclic peptide	$[M+H]^+ = 883.5$

Table S11. One sample *t*-test *P*-value for TruG reactions

time (h)	0	3	13	15	28.25	37
p3p2	0.3471	0.4650	0.2787	0.0620	0.0333	0.0051
p2p3	0.0031	0.0066	0.0005	0.0001	0.0025	0.0006
թ2թ2	0.0089	0.0101	0.0058	0.0200	0.0024	0.0003
p3p3	0.3225	0.0154	0.0248	0.0129	0.0094	0.1823

Significant *P*-values (<0.05) are marked as red.

time (h)	0	3	10	21	29	53
թ3թ2	N/A	0.4767	0.1922	0.5765	0.0582	0.2654
թ2p3	N/A	0.0003	0.0067	0.0277	0.0016	0.1112
թ2թ2	N/A	0.2442	0.4613	0.4815	0.1678	0.1837
թ3p3	N/A	0.0076	0.0407	0.0088	0.0207	0.1463
cassette-1	0.2036	0.0739	0.4288	0.6504	N/A	0.5755
cassette-2	0.0666	0.4235	0.2627	0.2846	0.4786	N/A

 Table S12. One sample t-test P-value for PatG reactions

Significant *P*-values (<0.05) are marked as red.

Supporting Figures

Figure S2. *tru* pathway precursor designs. **A)** Heterologous expression design of *tru* pathway in *E. coli*. **B)** Precursor peptides for *in vitro* enzyme assays.

Substrate in nature (TruE1): p3p2:TLPVPTLCTVPTLC- p3p3:TLPVPTLCTLPVPTLC p2p2:TVPTLCTVPTLC p2p3:TVPTLCTLPVPTLC				COLL			
p3p3:TLPVPTLCTLPVPTLC p2p2:TVPTLCTVPTLC p2p3:TVPTLCTLPVPTLC	Substrate in	nature (TruE1): p3	p2:	TLPVPTLC		 TVPTL	C
p2p2:TVPTLCTVPTLC- p2p3:TVPTLCTLPVPTLC-		p3	p3:	TLPVPTLC		 -TLPVPTL	C
p2p3:TVPTLCTLPVPTLC-		p2	p2:	TVPTLC	:	 	D
		p2	p3:	TVPTLC		 -TLPVPTL	C

Figure S3. Compound 1, 2, 3 production in *E. coli.* (A) patellin 2 (2), single prenylated patellin 2 (2–) and non-prenylated patellin 2 (2– –). Production on B) day two, C) day three, D) day four and E) day five. Compound yields for different plasmids were quantified by extracted MS area and normalized with internal standard. p2 represents cassette encoding patellin 2, p3 for cassette encoding patellin 3, tk for cassette encoding trunkamide. – – represents no prenylation and – represents single prenylation.

Figure S4. Compound production in *E. coli* with single cassette *tru* pathway variants on day three (top) or

Figure S5. Patellin 2 mutant production in *E. coli* on day five. Compound yields for different plasmids were quantified by extracted MS area and normalized with internal standard. p2 represents cassette encoding patellin 2 (TVPTLC), p2L2A for mutant TVPTAC and p2P4A for mutant TVATLC. – represents no prenylation and – represents single prenylation.

Figure S6. MS traces of TruD time course. Time points were taken at 10 s, 1, 5, 10, 20, 30, 40 and 60 min. Substrate (heterocycle # 0), single heterocyclized product (heterocycle # 1) and double heterocyclized product (heterocycle # 2) are marked and aligned: **A)** TruE-p2p2; **B)** TruE-p3p2; **C)** TruE-p2p3; **D)** TruE-p3p3.

Figure S7. MS traces of TruD time course of TruE-p23. **A)** Schematic steps of TruD over TruE-p23 precursor peptide. Two possible routes **a** and **b** are presented. **B)** Time points were taken at 10 s, 5, 10 and 60 min. Substrate, single heterocyclized product and double heterocyclized product are marked and aligned.

Figure S8. PatA proteolysis of TruE-p2*p3*. The proteolysis steps above show the major route **a** and minor route **b**. Lower graph shows MS trace of the proteolysis fragments. Fragment-leader-1* was also observed besides fragment-1*+2*.

Figure S9. PatA proteolysis of the intact precursor peptide. **A)** Proteolysis steps. **B)** TruE-p3p2; **C)** TruE-p2p3; **D)** TruE-p3p3. The production of core1-RSIII-RSII and core2-RSIII-RSII was inhibited by intra disulfide bridge between cassette-1 and cassette-2. Area was normalized with normalization factor (internal standard area from one sample over the average of e8 standard area with all the samples).

Figure S10. TruD reaction time course after PatA treatment. Digested TruE-p2p2 was heterocyclized during time course and almost reach completion after 40 min.

Figure S11. TruD reaction with and without RSI. Different combinations (p3p2, p2p3, p2p2, p3p3, cassette-1 and cassette-2) were used. The ratio of heterocyclized and unheterocyclized fragments is compared, which shows the conversion from substrate to product (ionization difference was not normalized). Without RSI, the heterocyclization event was usually slower.

Figure S12. TruG reaction time course. Time points were taken at 0, 3, 13, 15, 28.25 and 37 h. Extracted peak area is normalized to internal standards and to four different synthetic peptides to correct for ionization differences.

Figure S13. PatG reaction time course. Time points were taken at 3, 10, 21, 29 and 53 h. For **A)-D**), a ratio of the RSIII-RSII over RSIII is used, and a ratio over 1 indicates more production of cassette-1 product; for **E)-F**), a ratio of the substrate is used, and a ratio over 1 indicates less cassette-1 product. The ratio of 1 is marked with a red dashed line. Bars with a significance level <0.05 are marked with *. On the right shows the reaction fragment peak area, which were normalized to standards and corrected for ionization differences.

Figure S14. Alternative biosynthetic pathway routes for a dual cassette precursor peptide. **A)** Routes also observed in this study. **B)** Routes not measured in this experimental design but should occur under the postulated biosynthetic model.

Figure S15. SDS-PAGE analysis of precursor peptides. M represents 10-200 kD broad range marker (NEB P7704). **A)** Tris-tricine SDS-PAGE analysis of TruE-p2p2. Elution 1 (E1), elution 2 (E2) and elution 3 (E3) are shown. **B)** Tris-glycine SDS-PAGE analysis of (1) TruE-p3p2, (2)TruE-p3p3, (3) TruE-p2p3, (4) TruE-p23 and (5) TruE-p3.

Figure S16. Standard curves used to quantify enzyme reactions. **A)** Heterocyclization of the standard peptides by RSI-TruD. **B)-E)** Standard curves of heterocyclized/unheterocyclized standard peptides and linear regression model fit by Prism GraphPad 7.0.

References

- Tianero, M. D.; Pierce, E.; Raghuraman, S.; Sardar, D.; McIntosh, J. A.; Heemstra, J. R.; Schonrock, Z.; Covington, B. C.; Maschek, J. A.; Cox, J. E.; et al. Metabolic Model for Diversity-Generating Biosynthesis. *Proc. Natl. Acad. Sci. U. S. A.* 2016, *113*, 1772–1777.
- Collins, B.; Copley, H.; Emmrich, P.; Handley, W.; Hohmann, A.; Knott, E.; Masset, P.; Reeve, B.; Sanderson, T. BBF RFC 57 : Assembly of BioBricks by the Gibson Method Relation to other BBF RFCs https://openwetware.org/wiki/The_BioBricks_Foundation:RFC#BBF_RFC_57:_A ssembly of BioBricks by the Gibson Method.
- (3) Mcintosh, J. A.; Donia, M. S.; Schmidt, E. W. Insights into Heterocyclization from Two Highly Similar Enzymes. *J. Am. Chem. Soc.* **2010**, *132*, 4089–4091.
- (4) Sardar, D.; Hao, Y.; Lin, Z.; Morita, M.; Nair, S. K.; Schmidt, E. W. Enzymatic Nand C-Protection in Cyanobactin RiPP Natural Products. J. Am. Chem. Soc. 2017, 139, 2884–2887.
- (5) Sardar, D.; Lin, Z.; Schmidt, E. W. Modularity of RiPP Enzymes Enables Designed Synthesis of Decorated Peptides. *Chem. Biol.* **2015**, *22* (7), 907–916.
- (6) Lee, J.; Mcintosh, J.; Hathaway, B. J.; Schmidt, E. W. Using Marine Natural Products to Discover a Protease That Catalyzes Peptide Macrocyclization of Diverse Substrates. J. Am. Chem. Soc. 2009, 131, 2122–2124.
- Sardar, D.; Pierce, E.; McIntosh, J. A.; Schmidt, E. W. Recognition Sequences and Substrate Evolution in Cyanobactin Biosynthesis. *ACS Synth. Biol.* 2015, *4*, 167– 176.
- (8) Schägger, H. Tricine–SDS-PAGE. *Nat. Protoc.* **2006**, *1* (1), 16–22.
- McIntosh, J. A.; Robertson, C. R.; Agarwal, V.; Nair, S. K.; Bulaj, G. W.; Schmidt,
 E. W. Circular Logic: Nonribosomal Peptide-like Macrocyclization with a Ribosomal Peptide Catalyst. J. Am. Chem. Soc. 2010, 132, 15499–15501.
- (10) Oueis, E.; Stevenson, H.; Jaspars, M.; Westwood, N. J.; Naismith, J. H. Bypassing the Proline/Thiazoline Requirement of the Macrocyclase PatG. *Chem. Commun.* 2017, 53 (D), 12274–12277.
- Tianero, M. D.; Pierce, E.; Raghuraman, S.; Sardar, D.; McIntosh, J. A.; Heemstra, J. R.; Schonrock, Z.; Covington, B. C.; Maschek, J. A.; Cox, J. E.; et al. Metabolic Model for Diversity-Generating Biosynthesis. *Proc. Natl. Acad. Sci. U. S. A.* 2016, *113*, 1772–1777.