Perturbed Lipidomic Profiles in Rats with Chronic Cerebral Ischemia Are Regulated by Xiao-Xu-Ming Decoction

Zhixin Jia ^a, Cai Tie ^a, Caihong Wang ^a, Caisheng Wu ^a, Jinlan Zhang ^{a,*}

^a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 2 Nanwei Road, Xicheng District, Beijing 100050, China.

* Corresponding author. Phone: +8610-83154880 Fax: +8610-83154880

E-mail address: jessiejzx@163.com (Z. Jia), tiecai@imm.ac.cn (C. Tie), wangch@imm.ac.cn (C.

Wang), wucsh@imm.ac.cn (C. Wu), zhjl@imm.ac.cn (J. Zhang).

S1 Text: The list of lipid standards

Sphingolipids: Sph(d17: 1), Sph(d18: 1), Sph(d17: 1)-1-P, Sph(d18: 1)-1-P, Cer(d18: 1/2: 0), Cer(d18: 1/2: 0)-1-P, Cer(d18: 1/4: 0), Cer(d18: 1/6: 0), Cer(d18: 1/8: 0), Cer(d18: 1/8: 0)-1-P, Cer(d18: 1/10: 0), Cer(d18: 1/12: 0), Cer(d18: 1/12: 0)-1-P, Cer(d18: 1/14: 0), Cer(d18: 1/16: 0), Cer(d18: 1/18: 1), Cer(d17: 1/18: 0), Cer(d18: 1/18: 0), Cer(d18: 1/16: 0)-1-P, Cer(d18: 1/18: 1)-1-P, Cer(d18: 1/20: 0), Cer(d17: 1/24: 1), Cer(d18: 1/22: 0), Cer(d18: 1/24: 1), Cer(d18: 1/24: 0), HexSph(d18: 1), dhSph(d17: 0), dhSph(d18: 0), dhS1P(d17: 1), dhS1P(d18: 1), dhCer(d18: 0/2: 0), GlcCer(d18: 1/8: 0), dhCer(d18: 0/6: 0), dhCer(d18: 0/8: 0), HexCer(d18: 1/12: 0), HexCer(d18: 1/16: 0), Hex-Cer(d18: 1/18: 1), HexCer(d18: 1/18: 0), dhCer(d18: 0/16: 0), Cer(d17: 1/18: 0), dhCer(d18: 0/18: 1), dhCer(d18: 0/18: 0), HexCer(d18: 1/24: 1), Cer(d17: 1/24: 1), dhCer(d18: 0/24: 1), dhCer(d18: 0/24: 0). Other kinds of lipids: PS(16: 0/18: 1), PG(16: 0/18: 1), PC(10: 0), PE(16: 0/18: 1), PC(17: 0/20: 4), LPC(17: 1/0: 0), PS(17: 0/20: 4), PE(17: 0/20: 4), PI(17: 0/20: 4), d5-DG ISTD Mix II, d5-TG ISTD Mix I, SM17: 0, PC (18: 0/18: 0), DG(18: 0/18: 0), PS(12: 0/12: 0), PE(12: 0/12: 0).

All the lipid standards were bought from Avanti (Alabaster, AL, USA).

S2 Text: Quantification of lipids

2.1 Preparation of standard solution

2.1.1 Sphingolipids

a) Preparation of blank matrix

Exact 100 mg bovine serum albumin (BSA) was dissolved in normal saline in 10 mL volumetric flask. The solution was called blank matrix.

b) Preparation of internal standards

1). *For plasma analysis:* Mixed standard solution was prepared at a concentration of 1000 pmol/mL, marked for IS-P. 2). *For brain tissue analysis*: The mixed standards mentioned in 1) can be detected in brain tissue. Then, exogenous compounds should be used as internal standards. Derived fatty acids, which were kindly provided by Professor Cai Tie in our research group, were selected, marked as IS-B with a concentration of 2000 pmol/mL. The names of each standard were listed in Table S6.

c) Preparation of standard solutions

The stock solution was prepared at a concentration of 1000 pmol/mL. The names of standards were listed in Table S6. Proper amount of stock solution was added to make solutions with concentrations of 25, 50, 100, 200, 500, 1000, 2000 and 4000 pmol/mL separately.100 μ L blank matrixes was added into glass tube, and then, mixed standard solution with different concentrations were added, too. 20 μ L internal standards were added into it, then with 1.5 mL methanol and 5 m MTBE. The mixture was vortexed for 15 min, and then 1.5 mL deionized water was added with 10 min centrifugation at a speed of 4500 rpm for phase separation. The upper organic phase was transformed into another glass tube and the lower aqueous phase was extracted again. 2 mL second-exaction-liquid was added into the aqueous phase, vortex for 15 min, then with centrifugation at a speed of 4500 rpm for 10 min. The upper organic phase was combined and dried under nitrogen. 100 μ L methanol (with 0.1% FA, 1 mM ammonium formate) was used to dissolve.

d) Preparation of quality control (QC) samples

The solutions in "Preparation of standard solutions" with the concentration of 100,500, 2000 pmol/mL were the QC samples.

2.1.2 Other kinds of lipids

a) Second-extraction-liquid

322.6mL MTBE, 96.8mL methanol and 80.6 mL water was added into separating funnel. After extraction, the mixture was placed under room temperature for 4 hours. Then the upper layer was the second-extraction-liquid.

b) Preparation of internal standard for extraction

Proper amount of lipids standards (listed in Table S6) were weighted and added into 2 mL volumetric flask and diluted with methanol. 2 mL of this solution was transferred to another 10 mL volumetric flask and diluted with methanol which contained 0.005% BHT. Then this solution was the internal standard for extraction, marked IS-E.

c) Preparation of internal standard for quantification

Proper amount of lipids standards (listed in Table S6) were weighted and added into 5 mL volumetric flask and diluted with chloroform which contained 0.005% BHT. This solution was the internal standard for quantification, marked IS-Q.

d) Preparation of quality control (QC) samples

The mixed lipid standards solution with the concentration of 1 nmol/mL was the QC samples.

2.2 The extraction of lipids

The extraction was carried out by MTBE-MEOH-WATER three phase extract method (1).

100 μ L samples (plasma or brain tissue) was added into glass tube, and then 100 μ L IS-E, 20 μ L internal standards for sphingolipids (IS-P for plasma and IS-B for brain tissue), 1.5 mL methanol and 5 mL MTBE was also added. The mixture was vortexed for 15 min, and then 1.5 mL deionized water was added to lead phase separation. After centrifugation at a speed of 4500 rpm for 10 min, the upper organic phase was transferred into another glass tube. 2 mL second-extraction-liquid was added into the lower aqueous phase was. After vortex for 5 min and centrifugation at a speed of 4500 rpm for 10min, the upper organic phase did under nitrogen, and then redissolved with 20 μ L methanol containing 0.1% FA and 1 mM ammonium formate. This part was for spingolipids analysis. The rest part was dried under nitrogen, and then redissolved with 80 μ L IS-Q. This part was for analysis of other lipids.

2.3 Analysis with HPLC-MS/MS

2.3.1 HPLC coupled with triple quadrupole MS

Chromatographic conditions: Column: Peeke C8SR (150×3.0 mm, 3 μm). Mobile phase: A water (containing 0.1%FA, 1 mM ammonium formate); B methanol (containing 0.1% FA, 1 mM ammonium format). Flow rate: 0.5mL/min. Column temperature: 40 °C .Gradient elution as following: 0-10 min, 80-100% B; 10-18 min, 100% B; 18-18.1min, 100-80% B; 18.1-25 min, 80% B.

Mass spectrometry conditions: Gas Temp: 350°C; Gas Flow: 10 L/min; Nebulizer: 30 psi; Capillary: 4000 V. This method contained 6segments: 0-1.5 min, segment 1, to waste; 1.5-7 min, segment 2, to MS; 7-12 min, segment 3, to MS; 12-14 min, segment 4, to MS; 14-16 min, segment 5, to MS; 16-25 min, segment 6, to MS. The compounds eluted around the boundary point (± 0.5 min) of each segment were included in both segments. So, all compounds could be detected even if the retention time drifted. The details were listed in Table S3.

2.3.2 HPLC coupled with FTICRMS

Chromatographic conditions: Column: Waters Xterra MS C8 (2.1×100mm, 3.5µm). Mobile phase: C, acetonitrile: isopropanol= 5: 2, *ν/ν* (containing 2mM ammonium acetate, 0.1% formic acid); D, 2 mM ammonium acetate, 0.1% formic acid aqueous solution. Gradient elution as following, 0-1 min 10%A, 1-2 min 10-30%A, 2-4 min 30-50%A, 4-8 min 50-70%A, 8-12 min 70-100%A, 12-24 min 100%A, 24-24.5 min 100-10%A, 24.5-30 min 10%A. Flow rate: 0.35mL/min. Column temperature: 40°C.Injection volume: 10µL. Injection temperature: 4°C. Needle washing: 3000 µL methanol.

MS conditions: Ion source: ESI; Detection mode: positive; ion spray voltage: 4.5kV; sheath gas flow rate(N2): 50arb; auxiliary gas flow rate (N2): 20arb; sweep gas flow rate (N2): 3arb; capillary voltage: 35V; capillary temperature: 275°C; Scan mode: FT Full Scan; range: m/z 50-1200 Da; resolution100, 000.

S3 Text: Metabolites identification after oral administration of XXMD

3.1 Sample preparation

Plasma: There were 3 samples in each time point (0.5h, 2.5h and 8h after oral administration) which were combined before protein precipitation. 2 mL mixture was taken into 15 mL centrifuge tube and 10 mL methanol was used to precipitate protein. After vortex for 30 s and centrifugation at a speed of 1721g for 10 min, the supernatant was dried under nitrogen and redissolved in 100

µL methanol. The solution mentioned above was then centrifuged at a speed of 15493 g for 10 min and analyzed.

Brain tissue: 1 mL homogenate of the brain tissue was taken into 15 mL centrifuge tube and 5 mL methanol was used to precipitate protein. The remaining steps were the same as plasma samples.

3.2 HPLC coupled with MS/MS analysis

Chromatographic conditions: Colum: Thermo BDS HYPERSIL C18 column (150×2.1 mm, 3 mm). Mobile phase: aqueous solution, containing 0.1% formic acid (A); acetonitrile (B). Gradient elution as following: 0-5 min, A: 95-95%, B: 5-5%; 5-25 min, A: 95-70%, B: 5-30%; 25-35 min, A: 70-60%, B: 30-40%; 35-45 min, A: 60-20%, B: 40-80%; 45-50 min, A: 20-20%, B: 80-80%; 50-51 min, A: 20-95%, B: 80-5%; 51-60 min, A: 95%-95%, B: 5%-5%. Injection volume: 5 μ L; Column temperature: 30°C; Flow rate: 0.2mL/min.

Mass spectrometry conditions: Ion source: ESI; Detection mode: positive; ion spray voltage: 4.0kV; sheath gas flow rate(N2): 40arb; auxiliary gas flow rate (N2) : 10arb; sweep gas flow rate (N2) : 3arb; capillary voltage: 40V; capillary temperature: 250° C. Mass spectra data were recorded by full-scan mass analysis from m/z 100 to 1500 at a resolving power of 50,000 with data-dependent MS² analysis triggered by the two most abundant ions from full-scan mass analysis, followed by MS³ analysis of the most abundant ions of MS². A repeat count of one prior to exclusion was utilized for dynamic exclusion, and the repeat duration was 10 seconds. The time of mass-to-charge value residing on the exclusion list (the list size was set to 50) was 30 s after the data-dependent MS² experiment. Collision-induced dissociation (CID) was conducted

with an isolation width of 1 Da. Xcalibur software (Version 2.0; Thermo Scientific) was used for data acquisition and reduction.

S4 Text: The establishment and optimization of lipids quantification method

4.1 HPLC coupled with triple quadrupole MS

In our previous study, the HPLC coupled with triple quadrupole MS methods for sphingolipids quantification have been established. 43 spingolipids could be detected and quantified via these methods (2). In this study, these methods were optimized on the following two aspects: 1) Analysis time. Each sample should be analyzed for three times in the previous methods which consumed about 1 hour. So, we expected to restrict the analysis time into 30 minutes. 2) Detected compounds. Sphingomyelin (SM) had high abundance in biological samples, which could be detected via the FTICRMS method (3). Thus, this method could get rid of SM and take Sph, Cer, dhCer, Cer-1P, dhCer-1P and glucoceramide into consideration only. As a result, only one analysis cycle was needed. Besides, the former methods only contained compounds with standard substance, except two ion pairs. This time, we add more ion pairs with no standard substance to enrich the method which made the detection for biological samples more comprehensive.

To achieve good separation and profile the chemical components, different columns and elution programs were investigated. Such as, shiseido capcell pak C8 column, capcell pak C1 column, Waters C8 Sunfire column, Agilent CE C8 column, and Peeke C8SR column. Peeke C8SR showed the best separation efficiency. Different mobile phases and elution programs were also tested. Water (containing 0.1% FA, 1 mM ammonium format) and methanol (containing 0.1% FA, 1 mM ammonium format) was chosen for analysis. Finally, an optimized method for sphingolipids was established as described in "2.3.1".

4.2 HPLC coupled with FTICRMS

For the other kinds of lipids, the established HPLC coupled with FTICRMS method in our previous study could detect 44 compounds in one analyze cycle in one hour. These compounds covered diacylglycerol (DG), triacylglycerol (TG), phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (4). The optimization of this method was limiting the analysis time into 30 minutes. The lipid data analyzer (LDA) was used to do the quantification and its library was expanded this time. The chromatography and MS conditions were also optimized. The analysis sequence was improved with the addition of needle washing program after each sample program. So that sample residual on the injection needle and needle blocking were avoided efficiently.

These two methods described above constructed the platform for lipids quantification (Fig. S2).

Chinese name	English name	Latin name	Family	Used
				part
Fang feng	Divaricate saposhnikovia root	Radix Saposhnikoviae	Saposhnikovia divaricata (Turcz.) Schischk.	Root
Huang qin	Baical skullcap root	Radix Scutellariae	Scutellaria baicalensis Georgi.	Root
Shao yao	Debark peony root	Radix Paeoniae Alba	Paeonia lactiflora Pall.	Root
Gan cao	Liquorice root	Radix Glycyrrhizae	Glycyrrhiza uralensis Fisch.	Root
Sheng jiang	Fresh ginger	Rhizoma Zingiberis Recens	Zingiber officinale Rosc.	Root
Fang ji	Mealy fangji root	Radix Stephaniae Tetrandrae	Stephania tetrandra S. Moore.	Root
Ren shen	Ginseng	Radix Ginseng	Panax ginseng C. A. Mey.	Root
Gui zhi	Cassia twig	Ramulus Cinnamomi	Cinnamomum cassia Presl.	Twig
Xing ren	Bitter apricot seed	Semen Armeniacae Amarum	Prunus armeniaca L. var. ansu Maxim.	Seed
Ma huang	Ephedra	Herba Ephedrae	Ephedra sinica Staph.	Stem
Chuan xiong	Sichuan lovage rhizome	Rhizoma Ligustici Chuanxiong	Ligusticum chuanxiong Hort.	Root
Fu zi	Prepared common monk	Radix Aconiti Lateralis Preparata	Aconitum carmichaeli Debx.	Root
	shood branched root			

Table S1 Detailed information of 12 herbs in XXMD

Compounds	Content (%)	Compounds	Content (%)
Ephedrine	0.107	Wogonoside	2.302
Pseudoephedrine	0.297	Baicalein	1.458
Paeoniflorin	0.395	Liquiritingenin	0.438
Prim-O-glucosylcimifugin	1.207	Cinnamic acid	0.571
Cimicifugin	0.408	Ferulic acid	0.511
5-O-methylvisamminoside	0.367	Chrysin	0.355
Baicalin	5.102	Oroxylin A	0.215
Liquiritin	0.220	Wogonin	0.369
Isoliquiritin	0.394	Glycyrrhizic acid	0.600
Oroxylin A-7-O-glucuronide	1.932		

 Table S2
 Content levels of main component in the active fraction of XXMD (5)

Segments	2				
Compound Name	Precursor Ion	Product Ion	Dwell	Fragmentor	Collision Energy
HexSph 18:1	462.1	282.2	60	130	21
dhSph 18:0-1P	382.1	284.2	60	80	20
Sph 18:1-1P	380.3	264.1	60	70	15
Sph 17:1-1P	366.1	250	60	70	15
dhSph 18:0	302.1	284.2	60	120	5
Sph 18:1	300.3	282.3	60	90	5
Sph 17:1	286.1	268.1	60	100	7
Segments	3				
Segments Compound Name	3 Precursor Ion	Product Ion	Dwell	Fragmentor	Collision Energy
Segments Compound Name HexCer 16:1	3 Precursor Ion 698.2	Product Ion 264.2	Dwell 45	Fragmentor 140	Collision Energy 36
Segments Compound Name HexCer 16:1 HexCer 14:0	3 Precursor Ion 698.2 672.2	Product Ion 264.2 264.1	Dwell 45 45	Fragmentor 140 150	Collision Energy 36 36
Segments Compound Name HexCer 16:1 HexCer 14:0 HexCer 14:1	3 Precursor Ion 698.2 672.2 670.2	Product Ion 264.2 264.1 264.1	Dwell 45 45 45	Fragmentor 140 150 150	Collision Energy 36 36 36
Segments Compound Name HexCer 16:1 HexCer 14:0 HexCer 14:1 HexCer 12:0	3 Precursor Ion 698.2 672.2 670.2 644.2	Product Ion 264.2 264.1 264.1 264.1	Dwell 45 45 45 45	Fragmentor 140 150 150 150	Collision Energy 36 36 36 36 36
Segments Compound Name HexCer 16:1 HexCer 14:0 HexCer 14:1 HexCer 12:0 HexCer 12:1	3 Precursor Ion 698.2 672.2 670.2 644.2 642.2	Product Ion 264.2 264.1 264.1 264.1 264.1	Dwell 45 45 45 45 45	Fragmentor 140 150 150 150 150	Collision Energy 36 36 36 36 36 36
Segments Compound Name HexCer 16:1 HexCer 14:0 HexCer 14:1 HexCer 12:0 HexCer 12:1 HexCer 8:0	3 Precursor Ion 698.2 672.2 670.2 644.2 642.2 588.2	Product Ion 264.2 264.1 264.1 264.1 264.1 264.2	Dwell 45 45 45 45 45 45	Fragmentor 140 150 150 150 150 150 100	Collision Energy 36 36 36 36 36 36 36 36
Segments Compound Name HexCer 16:1 HexCer 14:0 HexCer 14:1 HexCer 12:0 HexCer 12:1 HexCer 8:0	3 Precursor Ion 698.2 672.2 670.2 644.2 644.2 642.2 588.2 506.1	Product Ion 264.2 264.1 264.1 264.1 264.1 264.2 264.2	Dwell 45 45 45 45 45 45 45	Fragmentor 140 150 150 150 150 100 80	Collision Energy 36 36 36 36 36 36 36 36 25

Table S3 Segments and ion pairs

Cer 10:0	454.2	264.1	45	140	15
dhCer 8:0	428.2	266.2	45	150	25
Segments	4				
Compound Name	Precursor Ion	Product Ion	Dwell	Fragmentor	Collision Energy
HexCer 22:1	782.3	264.2	15	155	39
HexCer 20:0	756.3	264.2	15	155	39
HexCer 20:1	754.3	264.2	15	150	39
HexCer 18:0	728.2	264.2	15	150	39
HexCer 18:1	726.1	264.2	15	160	36
HexCer 16:0	700.2	264.2	15	140	36
HexCer 16:1	698.2	264.2	15	140	36
HexCer 14:0	672.2	264.1	15	150	36
HexCer 14:1	670.2	264.1	15	150	36
Cer 16:0-1P	618.1	264.1	15	110	30
Cer 16:1-1P	616.1	264.1	15	110	30
dhCer 20:0	596.3	266.2	15	145	30
Cer 14:0-1P	590.2	264.1	15	105	25
Cer 14:1-1P	588.2	264.1	15	105	25
dhCer 18:0	568.2	266.2	15	140	25
Cer 18:0	566.4	264.2	15	150	25

dhCer 18:1	566.2	266.2	15	140	30
Cer 18:1	564.4	264.1	15	130	20
Cer 12:0-1P	562.1	264.1	15	100	26
Cer 12:1-1P	560.1	264.1	15	100	26
Cer (17:1) 18:0	552.4	250.1	15	130	30
dhCer 16:0	540.2	266.2	15	160	30
Cer 16:0	538.4	264.2	15	140	20
Cer 14:0	510.4	264.1	15	120	20
Cer 12:0	482.4	264.1	15	140	20
Segments	5				

Compound Name	Precursor Ion	Product Ion	Dwell	Fragmentor	Collision Energy
HexCer 24:0	812.2	264.1	11	160	36
HexCer 24:1	810.2	264.1	11	160	36
HexCer 22:0	784.3	264.2	11	160	39
HexCer 22:1	782.3	264.2	11	155	39
HexCer 20:0	756.3	264.2	11	155	39
HexCer 20:1	754.3	264.2	11	150	39
Cer 22:1-1P	700.2	264.1	11	125	35
Cer 26:1	676.5	264.1	11	140	35
dhCer 20:1-1P	674.2	266.2	11	120	25

Cer 20:0-1P	674.2	264.1	11	120	35
Cer 20:1-1P	672.2	264.1	11	120	35
dhCer 24:0	652.3	266.2	11	180	30
Cer 24:0	650.4	264.1	11	140	30
dhCer 24:1	650.3	266.2	11	150	35
Cer 24:1	648.3	264.1	11	140	30
dhCer 18:0-1P	648.2	266.2	11	120	25
dhCer 18:1-1P	646.2	266.2	11	120	25
Cer 18:0-1P	646.2	264.1	11	120	35
Cer 18:1-1P	644.2	264.1	11	120	35
Cer (17:1) 24:1	634.5	250.1	11	140	10
dhCer 22:0	624.3	266.1	11	140	30
Cer 22:0	622.3	264.1	11	140	25
dhCer 16:0-1P	620.2	266.2	11	115	25
dhCer 16:1-1P	618.2	266.2	11	110	25
Cer 16:0-1P	618.1	264.1	11	110	30
Cer 16:1-1P	616.1	264.1	11	110	30
dhCer 20:0	596.3	266.2	11	145	30
Cer 20:0	594.4	264.1	11	140	25
Cer 14:0-1P	590.2	264.1	11	105	25

dhCer 18:0	568.2	266.2	11	140	25
Cer 18:0	566.4	264.2	11	150	25
dhCer 18:1	566.2	266.2	11	140	30
Cer (17:1) 18:0	552.4	250.1	11	130	30
Segments	6				

Compound Name	Precursor Ion	Product Ion	Dwell	Fragmentor	Collision Energy
dhCer 28:0-1P	788.3	266.2	15	135	36
Cer 28:0-1P	786.4	264.1	15	135	35
dhCer 28:1-1P	786.3	266.2	15	145	35
Cer 28:1-1P	784.4	264.1	15	125	35
dhCer 26:0-1P	760.2	266.2	15	125	35
Cer 26:0-1P	758.4	264.1	15	125	35
dhCer 26:1-1P	758.2	266.2	15	125	35
Cer 26:1-1P	756.1	264.1	15	125	35
dhCer 24:0-1P	732.2	266.2	15	125	25
Cer 24:0-1P	730.3	264.1	15	125	35
dhCer 24:1-1P	730.2	266.2	15	125	25
Cer 24:1-1P	728.2	264.1	15	125	35
dhCer 22:0-1P	704.2	266.2	15	125	25
Cer 22:0-1P	702.3	264.1	15	130	35

dhCer 22:1-1P	702.2	266.2	15	125	25
Cer 22:1-1P	700.3	264.1	15	130	32
Cer 26:0	678.5	264.1	15	140	35
Cer 26:1	676.5	264.1	15	140	35
dhCer 20:0-1P	676.2	266.2	15	120	25
dhCer 20:1-1P	674.2	266.2	15	120	25
dhCer 24:0	652.3	266.2	15	180	30
Cer 24:0	650.4	264.1	15	140	30
dhCer 24:1	650.3	266.2	15	150	35
dhCer 18:0-1P	648.2	266.2	15	120	25
dhCer 18:1-1P	646.2	266.2	15	120	25
dhCer 16:0-1P	620.2	266.2	15	115	25

No	o. RT (min)	M+H	Error	Proposed formula	MS ⁿ	Name	Parent structure	Metabolism	No.
1	23.9	293.1018	-0.165	C15H17O6	MS ² [293]: 275(100), 233(64); MS ³ [233]: 233(100)	Cimifugin-methyl	H1	- Methyl	M1
2	25.07	293.1018	-0.165	C15H17O6	MS ² [293]: 275(100), 221(48); MS ³ [275]: 257(65), 221(100)	Cimifugin-methyl	H1	- Methyl	M2
3 ^a	20.03	307.1174	-0.215	C16H19O6	MS ² [307]: 289(83), 235(100); MS ³ [235]: 207(100)	Cimifugin	H1	-	H1
4	16.08	321.0964	-0.48	C16H17O7	MS ² [321]: 303(92), 273(22), 249(100); MS ³ [249]: 231(55), 221(100)	Cimifugin+O-2H	H1	+O-2H	M3
5	17.48	323.1128	0.27	C ₁₆ H ₁₉ O ₇	MS ² [323]: 247(100); MS ³ [247]: 232(100)	Cimifugin+O	H1	+0	M4

Table S4 Metabolites after oral administration

6	17.46	469.1698	-0.693	C22H29O11	MS ² [469]: 307(100);	Cimifugin+glucosyl	H1	+Glu	M5
7	17.61	483.149	-0.703	$C_{22}H_{27}O_{12}$	MS ³ [307]: 289(88), 235(100) MS ² [483]: 307(100); MS ³ [307]: 289(85), 235(100)	Cimifugin+glucuronidation	HI	+GluA	M6
8	33.5	257.0809	0.064	C ₁₅ H ₁₃ O ₄	MS ² [257]: 239(97), 211(34), 147(100), 137(83); MS ³ [147]: 119(100)	Liquiritigenin	H2	-	H2
9	24.43	419.1339	0.241	C21H23O9	MS ² [419]: 257(100); MS ³ [257]: 239(100), 147(99)	Liquiritigenin+glucosyl	H2	+Glu	M9
10	19.23	433.1128	-0.224	$C_{21}H_{21}O_{10}$	MS ² [433]: 257(100); MS ³ [257]: 239(100), 147(99), 137(87)	Liquiritigenin+glucuronidation	H2	+GluA	M10
11	25.35	433.1128	-0.224	C21H21O10	MS ² [433]: 257(100); MS ³ [257]: 239(88), 147(89), 137(100)	Liquiritigenin+glucuronidation	H2	+GluA	M11
12	27.41	431.0983	0.848	C ₂₁ H ₁₉ O ₁₀	MS ² [431]: 255(100); MS ³ [255]: 255(100), 237(90), 153(55)	Chrysin+glucuronidation	НЗ	+GluA	M12
13	19.9	549.1598	-0.468	C26H29O13	MS ² [549]: 531(100), 411(81);	Chrysin+arabinose+	Н3	+Ara	M13

					MS ³ [531]: 513(100), 411(44)	glucosyl		+Glu	
14	26.8	447.0918	-0.388	$C_{21}H_{19}O_{11}$	MS ² [447]: 271(100);	Baicalein+glucuronidation	H4	+GluA	M14
15	28.03	447.0918	-0.388	C21H19O11	MS ³ [271]: 271(100), 253(22)	Baicalein+glucuronidation	H4	+GluA	M15
					MS ² [447]: 411(100), 271(60);				
					MS ³ [271]: 271(50), 253(100), 169(20)				
16	21.75	609.1434	-1.612	C27H29O16	MS ² [609]: 447(100);	Baicalein+glucosyl+	H4	+Glu	M16
					MS ³ [447]: 271(100)	glucuronidation		+GluA	
17	21.68	623.1234	-0.876	C ₂₇ H ₂₇ O ₁₇	MS ² [623]: 447(100);	Baicalein+2 glucuronidation	H4	+2 GluA	M17
					MS ³ [447]: 271(100)				
18	28.43	461.1079	0.062	C22H21O11	MS ² [461]: 285(100);	Wogonin+glucuronidation	Н5	+GluA	M18
					MS ³ [285]: 270(100)				
19	22.17	637.1395	-0.427	C28H29O17	MS ² [637]: 285(100);	Wogonin+2 glucuronidation	Н5	+2 GluA	M19
					MS ³ [285]: 270(100)				
20 ^a	25.52	291.1231	0.399	$C_{16}H_{19}O_5$	MS ² [291]: 219(100)	5-O-methylvisamminol	H6	- Glu	M20
21	33.7	277.1074	0.35	$C_{15}H_{17}O_5$	MS ² [277]: 259(100);	Hamaudol	H7	-	H7
					MS ³ [259]: 217(100), 205(95)				

22	26.86	439.1602	0.326	C21H27O10	MS ² [439]: 277(100);	Hamaudol+glucosyl	H7	+Glu	M21
23	27.25	461.1079	0.062	$C_{22}H_{21}O_{11}$	MS ³ [277]: 259(100), 205(55)	Oroxyloside	H8	-	H8
					MS ² [461]: 285(100);				
					MS ³ [285]: 270(100)				
24	38.71	315.0864	0.085	C17H15O6	MS ² [315]: 300(100), 282(62), 199(9); MS ³ [300]: 285(79), 282(100)	5,7-Dimethoxy-4',6-dihydroxy flavone	H9	-	H9
25	28.66	491.1186	0.197	$C_{23}H_{23}O_{12}$	MS ² [491]: 315(100);	5,7-Dimethoxy-4',6-dihydroxy	H9	+GluA	M22
					MS ³ [315]: 300(100), 285(18), 169(0.15)	flavone + Glucuronidation			
26	47.31	471.3479	1.013	C30H47O4	MS ² [471]: 453(60), 435(26), 425(100); MS ³ [425]: 407(100)	Enoxolone	H10	-	H10
27	24.69	507.1138	0.582	C ₂₃ H ₂₃ O ₁₃	MS ² [507]: 331(100);	Jaceosidin+glucuronidation	H11	- Glu	M7
					MS ³ [331]: 316(100), 183(9), 169(51)			+GluA	
28	25.09	477.102	-0.753	C22H21O12	MS ² [477]: 301(100); MS ³ [301]: 286(100)	Hispidulin+glucuronidation	H12	+GluA	M8

^{*a*} Metabolites detected in both the brain tissue and plasm

Plasma				Brain tissue				
Model vs		Model vs		Model vs		Model vs		
Sham operation	on	Model+XXM	D	Sham operation	Sham operation			
38		73		52		100		
Name	tendency	Name	tendency	Name	tendency	Name	tendency	
dhCer24: 0	↑	Cer16: 0-1P	↑	Cer24: 1	↑	Cer18: 0-1P	1	
HexCer8: 0	↑	Cer24: 0	\downarrow	LPC 16:0	\downarrow	Cer18: 1	↑	
Sph18: 1	↑	DG 34: 2	\downarrow	LPC 18: 2	\downarrow	Cer22: 0-1P	\downarrow	
LPC 14: 0	\downarrow	DG 44: 12	\downarrow	LPC 18: 3	\downarrow	Cer22: 1-1P	\downarrow	
LPC 16: 1	\downarrow	LPC 16:0	\downarrow	LPC 22: 6	↓	Cer24: 0-1P	\downarrow	
LPC 18: 3	↓	LPC 16: 1	\downarrow	LPE 16:0	↓	Cer24: 1	↑	
LPC 18O: 0	↑	LPC 18:0	\downarrow	LPE 18: 1	↓	Cer24: 1-1P	\downarrow	
LPC 20: 3	↓	LPC 18: 1	\downarrow	LPE 20: 3	↓	Cer26: 0-1P	\downarrow	
LPC 20: 5	↓	LPC 18: 2	\downarrow	LPE 20: 4	↓	dhCer16: 0-1P	\downarrow	
LPC 22: 5	↓	LPC 18: 3	\downarrow	LPE 20O: 0	↓	dhCer18: 0-1P	\downarrow	
LPE 18: 1	\downarrow	LPC 20:0	\downarrow	PC 32: 0	\downarrow	dhCer24: 0-1P	\downarrow	
PC 32: 0	↓	LPC 20: 4	\downarrow	PC 34: 0	↓	dhCer24: 1-1P	↓	
PC 34: 3	↓	LPC 20: 5	↓	PC 36: 0	↓	dhCer24: 1	↑	
PC 36: 1	↓	LPC 22: 6	↓	PC 36: 5	↓	dhCer26: 1-1P	↓	
PC 36: 3	↓	LPE 16:0	↓	PC 38: 6	↓	Sph18: 1-1P	↓	
PC 38: 5	↓	LPE 18: 1	↑	PC 40: 4	↓	Sph18: 1	↓	
PC 38: 6	↓	PC 36: 5	↓	PC 40: 6	↓	DG 38: 4	↓	
PC 38: 8	↓	PC 38: 2	↓	PC 40: 8	↓	DG 40: 10	↓	
PC 40: 10	↓	PC 40: 8	↓	PE 22: 0	↓	DG 42: 10	↓	
PC 40: 7	↓	PE 22: 0	↑	PE 35: 1	↓	DG 44: 10	↓	
PE 22: 0	↓	PE 39: 6	↑	PE 35: 2	↓	DG 44: 11	↓	
PE 35: 1	↓	PE 40: 4	↑	PE 36O: 3	↓	LPC 22: 6	↑	
PE 35: 2	Ļ	PE 40: 6	↑	PE 36P: 1	Ļ	LPE 16:0	↑	
PE 36: 2	↓	PE 41: 5	↑	PE 38: 4	↓	LPE 18: 1	↑	
PE 36: 4	↓	PI 34: 2	↑	PE 38: 6	↓	LPE 20: 3	↑	
PE 38: 1	Ļ	PI 34P: 3	↑	PE 38O: 3	Ļ	LPE 20: 4	↑	
PE 39: 5	Ļ	PI 36: 5	↑	PE 39: 0	Ļ	LPE 22: 1	↑	
PE 40: 6	\downarrow	PI 40: 6	↑	PE 39: 5	\downarrow	PC 34: 2	\downarrow	
PE 40O: 4	Ļ	PI 40: 7	↑	PE 40: 6	Ļ	PC 34: 4	Ļ	

Table S5 Potential	biomarker and	their change	tendency

PE 41: 5	\downarrow	PS 36P: 1	↑	PE 40: 7	\downarrow	PC 36: 3	\downarrow
SM 24d: 1	\downarrow	SM 22: 0	\downarrow	PE 40O: 5	\downarrow	PC 36O: 2	\downarrow
SM 24d: 4	\downarrow	SM 24: 1	\downarrow	PE 41: 5	\downarrow	PC 36P: 3	\downarrow
SM 26: 1	\downarrow	SM 24d: 1	\downarrow	PE 42P: 2	\downarrow	PC 38: 1	\downarrow
TG 56: 5	\downarrow	SM 26: 1	\downarrow	PI 40: 7	↓	PC 38O: 1	\downarrow
TG 56: 6	\downarrow	SM 26d: 1	\downarrow	PS 38: 6	\downarrow	PC 40: 5	\downarrow
TG 56: 7	\downarrow	TG 34P: 1	\downarrow	TG 50: 2	1	PE 22: 0	1
TG 56: 8	\downarrow	TG 52: 1	\downarrow	TG 50: 3	↑	PE 31: 0	Î
TG 58: 8	\downarrow	TG 52: 2	\downarrow	TG 52: 4	↑	PE 34P: 1	1
		TG 52: 3	\downarrow	TG 52: 5	1	PE 35: 1	1
		TG 52: 4	\downarrow	TG 54: 3	↑	PE 36: 0	1
		TG 52P: 0	\downarrow	TG 54: 4	1	PE 36O: 3	1
		TG 52P: 1	\downarrow	TG 54: 5	1	PE 36P: 1	1
		TG 54: 0	\downarrow	TG 54: 7	1	PE 38: 4	1
		TG 54: 1	\downarrow	TG 56: 4	1	PE 38: 6	1
		TG 54: 2	\downarrow	TG 56: 5	1	PE 38O: 3	1
		TG 54: 3	\downarrow	TG 56: 6	1	PE 38P: 4	1
		TG 54: 4	\downarrow	TG 56: 7	1	PE 39: 5	1
		TG 54: 5	\downarrow	TG 58: 2	1	PE 39: 6	1
		TG 54: 6	\downarrow	TG 58: 9	1	PE 40: 4	1
		TG 54P: 1	\downarrow	TG 58P: 11	1	PE 40: 6	1
		TG 56: 0	\downarrow	TG 60: 12	1	PE 40: 7	1
		TG 56: 1	\downarrow	TG 60: 2	1	PE 40P: 2	1
		TG 56: 2	\downarrow			PE 41: 5	Î
		TG 56: 3	\downarrow			PE 42P: 2	Î
		TG 56: 4	\downarrow			PI 38P: 5	Î
		TG 56: 5	\downarrow			PI 40: 7	Î
		TG 56: 6	\downarrow			PS 40: 6	1
		TG 56: 7	\downarrow			SM 16:0	\downarrow
		TG 56: 8	\downarrow			SM 16: 1	\downarrow
		TG 58: 0	\downarrow			SM 18: 1	\downarrow
		TG 58: 2	\downarrow			SM 18d: 1	\downarrow
		TG 58: 3	\downarrow			SM 24:0	\downarrow
		TG 58: 4	\downarrow			SM 24: 1	\downarrow
		TG 58: 5	\downarrow			SM 24d: 1	\downarrow

TG 58: 6	\downarrow	TG 46: 0 ↓	,
TG 60: 2	\downarrow	TG 48: 0 ↓	,
TG 60: 3	\downarrow	TG 48: 2 ↓	,
TG 60: 4	\downarrow	TG 50: 1 ↓	,

- TG 60: 5 ↓ TG 62: 2 ↓
- TG 62: 3 ↓
- TG 62: 4 ↓
- TG 62: 7 ↓

TG 50: 2 \downarrow TG 50: 3 \downarrow TG 52: 0 \downarrow TG 52: 1 \downarrow TG 52: 2 ↓ TG 52: 3 \downarrow TG 52: 4 ↓ TG 52: 5 ↓ TG 52: 6 \downarrow TG 52P: 0 ↓ TG 54: 0 \downarrow TG 54: 1 \downarrow TG 54: 2 \downarrow TG 54: 3 \downarrow TG 54: 4 \downarrow TG 54: 5 \downarrow TG 54: 6 \downarrow TG 54: 7 \downarrow TG 56: 1 \downarrow TG 56: 2 \downarrow TG 56: 4 \downarrow TG 56: 5 \downarrow TG 56: 6 \downarrow TG 56: 7 \downarrow TG 56: 8 \downarrow TG 58: 1 \downarrow TG 58: 2 \downarrow TG 58: 6 ↓ TG 58: 9 \downarrow TG 58P: 11 \downarrow TG 60: 12 \downarrow

TG 60: 2 ↓

QQQ method							FT			
	Standards		IS-P	IS-B		Standards (QC)	IS-E	IS-Q		
HexSph 18: 1	Cer 10: 0	dhCer 18: 0	Sph 17: 1	Derivatized C6	FA	PC(18: 0/18: 0)	PS(16: 0/18: 1)	d5-TG ISTD Mix I		
dhSph 17: 1	HexCer 12: 0	Cer 16: 0-1P	Sph 17: 1-1P	Derivatized	FA	DG(18:	PG(16: 0/18: 1)	d5-DG ISTD Mix II		
Sph 18: 1	Cer 12: 0	Cer 18: 1-1P	dhCer 8: 0	Derivatized	FA	PS(12: 0/12: 0)	PC(10: 0)	PC(17: 0/20:		
dhSph 18:0	Cer 14: 0	Cer 20: 0	Cer 8: 0-1P	Derivatized C28	FA	PE(12: 0/12: 0)	PE(16: 0/18: 1)	PE(17: 0/20: 4)		
dhSph 17: 0-1P	HexCer 16: 0	HexCer 24: 1	Cer (17: 1) 18:	0				PS(17: 0/20: 4)		
Sph 18: 1-1P	Cer 12: 0-1P	Cer 22: 0	Cer (17: 1) 24:	1				PI(17: 0/20: 4)		
dhSph 18: 0-1P	HexCer 18: 1	Cer 24: 1						LPC(17: 1/0: 0)		
Cer 4: 0	Cer 16: 0	dhCer 24: 1								
Cer 2: 0-1P	HexCer 18: 0	Cer 24: 0								
Cer 6: 0	Cer 18: 1	Cer 26: 1								
HexCer 8: 0	dhCer 16: 0	dhCer 24: 0								
dhCer 6: 0	dhCer 18: 1	Cer 26: 0								
Cer 8: 0	Cer 18: 0									

Figure S1. The identified compounds and their structures of XXMD by our previous work

(6).

A 50 chemical components (red indication,1-50) of XXMD was discovered and identified based on the 14 templated compounds (green target recognition, **R1-R14**). These results showed that this technology has the advantage of rapidly identifying components of Chinese prescription. Notably, the unrelated peak is the compounds whose structures exhibited significant difference from the 14 templated compounds (such as orange indication, **N1-4**). (6)

Figure S2. The strategy for lipids analysis

Figure S3. Light microscopic photographs of pathological section. The first column represented the sham operation group. The second column represented the model group. And the third column represented the model+XXMD group. The first row showed the pictures of Nissle's staining of hippocampal CA1 area which were magnified 200 times. Pictures in the second row were the Nissle's staining of cortex which was magnified 200 times. The third row showed pictures of white matter's KB staining which were magnified 100 times. The forth row were magnified 4 times of the third row.

Figure S4. Bar graphs of compounds' concentration detected in plasma. (* stands for comparison with sham operation group, # stands for comparison with model group. Single symbol means P<0.05 while double means P<0.01).

Figure S5. Bar graphs of compounds' concentration detected in brain tissue. (* stands for comparison with sham operation group, # stands for comparison with model group. Single symbol means P<0.05 while double means P<0.01)

Figure S6. Structure framework of metabolites of XXMD after oral administration to rats

References

1. Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A. & Schwudke, D. 2008. Lipid extraction by methyl- tert- butyl ether for high- throughput lipidomics. *J Lipid Res.* **49**: 1137-1146.

2. Qu, F., Wu, C. S., Hou, J. F., Jin, Y. & Zhang, J. L. 2012. Sphingolipids as new biomarkers for assessment of delayed-type hypersensitivity and response to triptolide. *PLoS One*. **7**: e52454.

3. Fauland, A. *et al.* A comprehensive method for lipid profiling by liquid chromatography-ion cyclotron resonance mass spectrometry. *J Lipid Res.* **52**: 2314-2322.

4. Qu, F. *et al.* 2014. Lipidomic profiling of plasma in patients with chronic hepatitis C infection. *Anal Bioanal Chem.* **405**: 555-564.

5. Wang, C. H., Jia, Z. X., Wang, Z., *et al.* 2016. Pharmacokinetics of 21 active components in focal cerebral ischemic rats after oral administration of the active fraction of Xiao-xu-ming decoction. *J Pharm Biomed Anal.* **122**: 110-117.

6. Wang, C. H., Wu, C. S., Qin, H. L., et al. 2014. Rapid discovery and identification of 68 compounds in the active fraction from Xiao-Xu-Ming decoction (XXMD) by HPLC-HRMS and MTSF technique. *Chin Chem Lett.* **25**: 1648-1652.