Leishmania donovani 90 kD Heat Shock Protein – Impact of Phosphosites on Parasite Fitness, Infectivity and Casein Kinase Affinity

Supplementary Information

Antje Hombach-Barrigah¹, Katharina Bartsch¹, Despina Smirlis^{2, 4}, Heidi Rosenqvist^{3,6}, Andrea MacDonald¹, Florent Dingli⁵, Damarys Loew⁵, Gerald F. Späth², Najma Rachidi², Martin Wiese³, and Joachim Clos^{1*}

¹Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
²Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
³Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) University of Strathclyde, Glasgow, Scotland, UK
⁴ Hellenic Pasteur Institute, Athens, Greece
⁵ Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, PSL Research University, Paris, France
⁶ current address: Novo Nordisk A/S, Gentofte, Denmark

*) corresponding author:
Joachim Clos, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany phone: +49 40 42818 481
e-mail: <u>clos@bnitm.de</u>

Key words: *Leishmania*, HSP90, casein kinase, protein phosphorylation, signal transduction, infectivity

Mutation	Sequence
T21-I21	AACATCTTCTACTCGAACAAGGAG
T ₂₁ -D ₂₁	AACGACTTCTACTCGAACAAGGAG
T ₂₁ rev	GATGATCAGCGACATCAAC
T ₁₀₀ -I ₁₀₀	GGCATCAAGGCGTTCATGGAGGCG
T ₁₀₀ -D ₁₀₀	GGCGACAAGGCGTTCATGGAGGCG
T ₁₀₀ rev	GGAGCGCGCGATCGTGCC
T ₂₁₁ -A ₂₁₁	ACGGCGGAGAAGGAGGTGACGGACGAGGACGAG
T ₂₁₁ -D ₂₁₁	ACGGACGAGAAGGAGGTGACGGACGAGGACGAG
T ₂₁₆ -A ₂₁₆	ACGACGGAGAAGGAGGTGGCGGACGAGGACGAG
T ₂₁₆ -D ₂₁₆	ACGACGGAGAAGGAGGTGGACGACGAGGACGAG
T ₂₁₁ /T ₂₁₆ -A ₂₁₁ /A ₂₁₆	ACGGCGGAGAAGGAGGTGGCGGACGAGGACGAG
T ₂₁₁ /T ₂₁₆ rev	CTTCTCCACCATCAGCTCG
T ₂₂₃ -A ₂₂₃	GAGGATGCGAAGAAGGCCGCCGAGGAC
T ₂₂₃ -D ₂₂₃	GAGGATGACAAGAAGGCCGCCGAGGAC
T ₂₂₃ rev	CTCGTCCTCGTCCGTCACCTC
S289-A289	CATCGCCAACGACTGGGAGGAC
S ₂₈₉ rev	GCCTTGTAGAAGGCCGCG
S526-A526	TTCGAGGAGGCGGAGGAGGAGGAGCAGCAG
S ₅₂₆ rev	GTGCACGCCCTCCTTCGTCAG
S594-A594	GCGACGCCAGCATGGCGCAGTACATGATG
S595-A595	GCGACTCCGCCATGGCGCAGTACATGATG
S594/S595-A594/A595	GCGACGCCGCCATGGCGCAGTACATGATG
S594/S595-D594/D595	GCGACGGACGACATGGCGCAGTACATGATG
S594/S595rev	GCAGCGCCTGGTTGCGCATG
T ₆₉₃ -A ₆₉₃	CGGCGCCTCCAGCATGGAGCAGGTGGAC
T ₆₉₃ -D ₆₉₃	CGGCGACTCCAGCATGGAGCAGGTGGAC
S694-A694	CGGCACCGCCAGCATGGAGCAGGTGGAC
S ₆₉₄ -D ₆₉₄	CGGCACCGACAGCATGGAGCAGGTGGAC
T693/S694rev	GCGGTGACCTCCGCGGGGGGCCG

Table S1. Primer sequences for the mutations of various HSP90 phosphorylation sites are listed in this table. The modified base triplets are highlighted in the sequence.

	- RAD	+ RAD
HSP90rr		
HSP90wt		
D alta		
P-site		ASP +KAU
T211/T216		n.a.
T ₂₂₃		

Figure S2A: Representative images from the morphological analysis summarised in Fig. 3A. Scanning electron micrographs of *L. donovani*, ectopically expressing HSP90rr, HSP90wt, and P-site mutations of HSP90rr (serine or threonine to alanine or aspartic acid) and exposed to RAD at IC_{50} .

	- RAD	+ RAD
HSP90rr	10 um	остана и страна и стр И страна и с И страна и стр
HSP90wt	v v v v v v v v v v v v v v v v v v v	-10 um
P-site	Ala +RAD	Asp +RAD
P-site S ₅₉₄	Ala +RAD	Asp +RAD

Figure S2B: Representative images from the morphological analysis summarised in Fig. 3B. Anti-tubulin indirect immune micrographs of *L. donovani*, ectopically expressing HSP90rr, HSP90wt, and P-site mutations of HSP90rr (serine or threonine to alanine or aspartic acid) and exposed to RAD at IC₅₀. One image (HSP90wt + RAD) shows DAPI co-costaining.