Supplementary information

Redundant and Distinct Roles of Secreted Protein Eap and Cell Wall-Anchored Protein SasG in Biofilm Formation and Pathogenicity of *Staphylococcus aureus*

Running Title: Roles of Eap and SasG in Biofilm and Pathogenesis

Keigo Yonemoto, Akio Chiba, Shinya Sugimoto, Chikara Sato, Mitsuru Saito, Yuki Kinjo, Keishi Marumo, and Yoshimitsu Mizunoe

Supplementary Methods

Purification of recombinant Eap. Recombinant Eap from MR23 was expressed and purified using a *Brevibacillus* expression system as previously described (1). Purified Eap was subjected to SDS-PAGE and quantified by measuring the band intensity using LAS-4000 Image Analyzer (GE Healthcare). Bovine serum albumin was used as a standard. Then, purified Eap was supplemented into biofilm cultures to address whether it promotes biofilm formation.

Atmospheric scanning electron microscopy (ASEM). *S. aureus* MR23 wild-type and $\triangle eap$ strains were grown in BHIG for 37°C for 4 h in ASEM dishes, as previously described (2). Biofilms formed on the dishes were fixed with 1% (v/v) glutaraldehyde/1% (v/v) paraformaldehyde and labeled with positively charged Nanogold reagent (Nanoprobes, Stony Brook, NY). After gold enhancement using GoldEnhance-EM (Nanoprobes) for 10 min at 25°C, biofilms were washed three times with doubly distilled water. Subsequently, biofilms were stained overnight with 2% (w/v) phosphate tungstic acid at 4°C. After washing three times with doubly distilled water, biofilms were immersed in radical scavenger 1% (w/v) ascorbic acid solution and imaged by ASEM (3) using the ClairScope ASEM system (JASM-6200, JEOL, Ltd, Tokyo, Japan). The acceleration voltage of the inverted SEM was 30 kV, and the applied electron dose was less than 0.8 e⁻/Å².

Supplementary Figure Legends

FIG S1 Enzymatic susceptibility of preformed *S. aureus* biofilms. For the experiments, 24-h biofilms formed by WT (A), $\triangle eap$ (B), $\triangle eap \Delta srtA$ (C), $\Delta sasG$ (D), and $\triangle eap \Delta sasG$ (E) strains were treated with the indicated enzymes or left untreated. Biomasses of the residual biofilms were quantified as described in Fig. 1. Means and standard deviations from three independent experiments are shown. **, *P* < 0.01; NS, not significant.

FIG S2 Characterization of SasG in various *S. aureus* strains. Expression levels of SasG were analyzed by immunoblotting for clinical strains of methicillin-resistant (MRSA) and -sensitive *S. aureus* (MSSA) that produce protein-dependent biofilms. Molecular sizes are also indicated at the left of the panels.

FIG S3 Biofilm formation by *S. aureus* RN4220 and its isogenic mutant strains. (A) Biofilms of the indicated RN4220-derived strains were formed and quantified as indicated in Figure 2A. (B) Biofilm formation by RN4220 $\triangle eap \Delta sasG$ -expressing Eap, SasG, and both was also analyzed. The optimal concentrations of anhydrotetracycline (aTc) were added to induce the expression of each protein. (C) SasG in the cell wall fraction and Eap in the ECM fraction from the strains grown under the indicated condition in B were detected by SDS-PAGE with CBB-staining. Red arrows indicate SasG. (D) Biofilm formation of RN4220 $\triangle eap \Delta sasG$ harboring pLC1 or pEap-SasG was analyzed in the presence of 3.13 ng/ml aTc. The indicated concentrations of purified Eap was added to biofilm cultures from the onset of biofilm formation. The means and standard deviations of biofilm biomasses from three independent experiments are shown. *, *P* < 0.05; **, *P* < 0.01; NS, not significant.

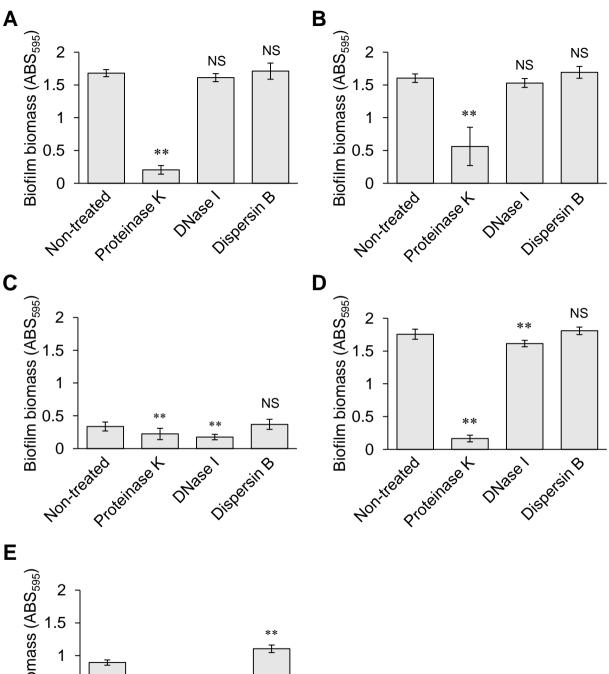
FIG S4 ASEM analysis of biofilms. ASEM images of 4-h biofilms formed by MR23 WT (A) and $\triangle eap \Delta sasG$ (B) strains labeled with positively charged Nanogold and phosphate tungstic acid are shown. Scale bars, 10 µm (×1,000 magnification) and 1 µm (×10,000 magnification).

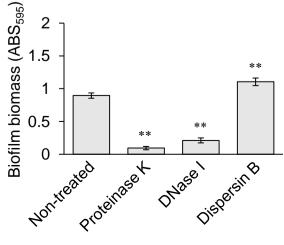
FIG S5 Proliferation of S. aureus in silkworm larvae. Silkworm larvae were sacrificed and

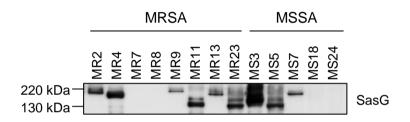
body fluids collected 24 h after injection of the indicated *S. aureus* strains. The body fluids were diluted and spread on mannitol salt agar plates. The plates were incubated at 37°C overnight and the obtained colonies counted. Means and standard deviations from three independent experiments are shown. NS, not significant.

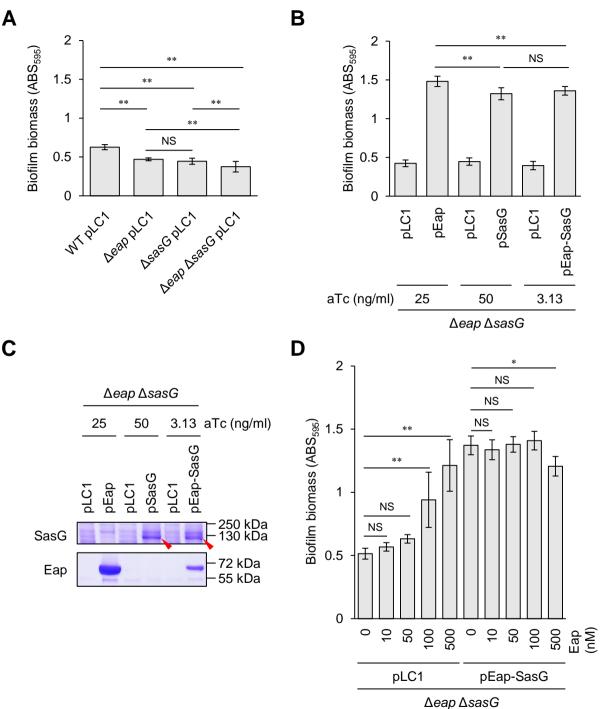
TABLE S1 Bacterial strains and plasmids used in the current study.

Strains and plasmids	Description	Source or reference
S. aureus strains		
RN4220	NCTC8325-4 derivative, restriction deficient mutant	4
RN4220 Δ <i>eap</i>	The eap gene was deleted from RN4220	This study
RN4220 ΔsasG	The sasG gene was deleted from RN4220	This study
RN4220 $\Delta eap \Delta sasG$	The eap and sasG genes were deleted from RN4220	This study
MR23	A clinical isolate of MRSA from the Jikei hospital	1
MR23 Δeap	The eap gene was deleted from MR23	This study
MR23 $\Delta srtA$	The srtA gene was deleted from MR23	5
MR23 $\Delta eap \Delta srtA$	The eap and srtA genes were deleted from MR23	This study
MR23 ΔsasG	The sasG gene was deleted from MR23	This study
MR23 $\Delta eap \Delta sasG$	The eap and sasG genes were deleted from MR23	This study
MR23 $\Delta eap \Delta fnbA \Delta fnbB$	The eap, fnbA and fnbB genes were deleted from MR23	This study
MR23 $\Delta eap \Delta clfA \Delta clfB$	The eap, clfA and clfB genes were deleted from MR23	This study
MR23 $\Delta eap \Delta spa$	The eap and spa genes were deleted from MR23	This study
MR23 $\Delta eap \Delta isdAB$	The eap and isdAB genes were deleted from MR23	This study
DH5α BLR (DE3)	fhuA2 Δ(argF-lacZ)U169 phoA glnV44 φ 80 Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17 F ⁻ ompT hsdS _B (r _B ⁻ m _B ⁻) gal lac ile dcm Δ(srl-recA)306::Tn10 (tet ^R)(DE3)	Toyobo, Osaka, Japaı Novagen
Plasmids		
pKOR1	<i>E. coli-S. aureus</i> shuttle vector plasmid for knockout of genes by allelic exchange, Amp ^R , Cm ^R	6
pSrtA-ko	pKOR1-derivative plasmid for knockout of the MR23 srtA gene, Amp ^R , Cm ^R	5
pEap-ko	pKOR1-derivative plasmid for knockout of the MR23 eap gene, Amp ^R , Cm ^R	This study
pSasG-ko	pKOR1-derivative plasmid for knockout of the MR23 sasG gene, Amp ^R , Cm ^R	This study
pFnbA-ko	pKOR1-derivative plasmid for knockout of the MR23 <i>fnbA</i> gene, Amp ^R , Cm ^R	This study
pFnbB-ko	pKOR1-derivative plasmid for knockout of the MR23 <i>fnbB</i> gene, Amp ^R , Cm ^R	This study
pClfA-ko	pKOR1-derivative plasmid for knockout of the MR23 <i>clfA</i> gene, Amp ^R , Cm ^R	This study
pClfB-ko	pKOR1-derivative plasmid for knock out of the MR23 <i>clfB</i> gene, Amp ^R , Cm ^R	This study
pSpa-ko	pKOR1-derivative plasmid for knock out of the MR23 spa gene, Amp ^R , Cm ^R	This study
plsdAB-ko	pKOR1-derivative plasmid for knock out of the MR23 <i>isdAB</i> gene, Amp ^R , Cm ^R	This study
pLC1	<i>E. coli-S. aureus</i> shuttle vector plasmid with <i>tetO/xyl</i> promoter, Amp ^R , Cm ^R	7
pEap	pLC1-derivative plasmid for expression of Eap, Amp ^R , Cm ^R	This study
pSrtA	pLC1-derivative plasmid for expression of Sortase A, Amp ^R , Cm ^R	This study
pSasG ^{wT}	pLC1-derivative plasmid for expression of SasG ^{WT} , Amp ^R , Cm ^R	This study
pSasG ^{∆L}	pLC1-derivative plasmid for expression of SasG ^{ΔL} , Amp ^R , Cm ^R	This study
pEap-SasG ^{₩T}	pLC1-derivative plasmid for co-expression of Eap and SasG ^{WT} , Amp ^R , Cm ^R	This study

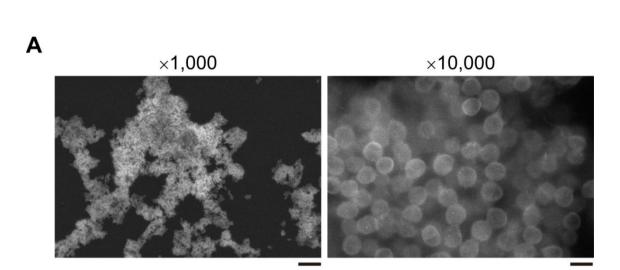

pCold I	Cold shock promoter, His₀-tag gene, ColE1 <i>ori</i> , Ap ^R	Takara
pCold-SasG	pCold I-derivative plasmid for expression of SasG(51-954)	This study

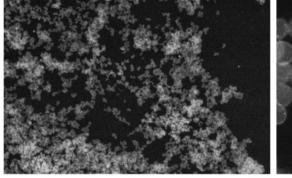

Amp^R, ampicillin-resistant; Cm^R, chloramphenicol-resistant; tet^R, tetracycline-resistant .

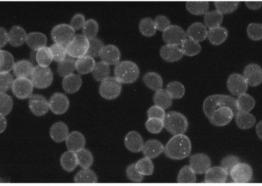

TABLE S2 Oligonucleotide primers used in the current study.

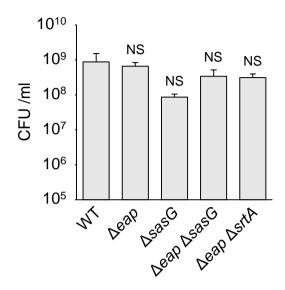

Primers	Sequences (5' to 3')	Descriptions
attB1- <i>eap</i> -F	ggggacaagtttgtacaaaaaagcaggctataaaagttcatgatgttgaccc	Disruption of <i>eap</i> in MR23
<i>eap</i> -R	gaattacacaaaaaaggagagataattttctttaattttataataaggcatctcac	Disruption of <i>eap</i> in MR23
eap-F	gtgagatgccttattataaaattaaagaaaattatctctccttttttgtgtaattc	Disruption of <i>eap</i> in MR23
attB2- <i>eap</i> -R	ggggaccactttgtacaagaaagctgggttcagtaagtgcaccaactaataataaat	Disruption of <i>eap</i> in MR23
attB1- <i>srtA</i> -F	ggggacaagtttgtacaaaaaagcaggctttaataatcttattttcactcgttatctta	Disruption of <i>srtA</i> in MR23
<i>srtA</i> -R	attcatccattagcgtaatagaacgttaaggctccttttataca	Disruption of <i>srtA</i> in MR23
s <i>rtA</i> -F	tgtataaaaggagccttaacgttctattacgctaatggatgaat	Disruption of <i>srtA</i> in MR23
attB2- <i>srtA</i> -R	ggggaccactttgtacaagaaagctgggttaaccatctattaaatttaaaacctacatt	Disruption of <i>srtA</i> in MR23
attB1-sasG-F	ggggacaagtttgtacaaaaaagcaggctagtattagcatatttagatgtatttaaaaa	Disruption of sasG in MR23
sasG-R	aatcaactattatttaaattatgaattattttgcatactcctttttcca	Disruption of sasG in MR23
sasG-F	tggaaaaaggagtatgcaaaataattcataatttaaataatagttgatt	Disruption of sasG in MR23
attB2-sasG-R	ggggaccactttgtacaagaaagctgggtcatcattgataattttaaagatgat	Disruption of sasG in MR23
attB1- <i>fnbA</i> -F	ggggacaagtttgtacaaaaaagcaggctcgtttcaggtatcatcttcattttattc	Disruption of <i>fnbA</i> in MR23
fnbA-R	gaaataaacccgtcaatttttgtttaatataatatctccctttaaatgcaaaattca	Disruption of <i>fnbA</i> in MR23
fnbA-F	tgaattttgcatttaaagggagatattatattaaacaaaaattgacgggtttatttc	Disruption of <i>fnbA</i> in MR23
attB2- <i>fnbA</i> -R	ggggaccactttgtacaagaaagctgggtcaataaatgcaattctatattgttcgg	Disruption of <i>fnbA</i> in MR23
attB1- <i>fnbB</i> -F	ggggacaagtttgtacaaaaaagcaggctcaaagcataattaaacaaaaattgacg	Disruption of <i>fnbB</i> in MR23
<i>fnbB</i> -R	aaataaacctgtcaattttggattgatataatattctcccttaaatgcaaaattca	Disruption of <i>fnbB</i> in MR23
fnbB-F	tgaattttgcatttaagggagaatattatatcaatccaaaattgacaggtttattt	Disruption of <i>fnbB</i> in MR23
attB2- <i>fnbB</i> -R	ggggaccactttgtacaagaaagctgggtgataaattgacgcgcagaactaat	Disruption of <i>fnbB</i> in MR23
attB1- <i>clfA</i> -F	ggggacaagtttgtacaaaaaagcaggctttgatattcatcatcaaaataaa	Disruption of <i>clfA</i> in MR23
<i>clfA</i> -R	atcatatgattaatttaatatcattattactttattccctctttttaaaaag	Disruption of <i>clfA</i> in MR23
<i>clfA</i> -F	ctttttaaaaagagggaataaagtaataatgatattaaattaatcatatgat	Disruption of <i>clfA</i> in MR23
attB2- <i>clfA</i> -R	ggggaccactttgtacaagaaagctgggttatttttttctcttcactaaaaaat	Disruption of <i>clfA</i> in MR23
attB1- <i>clfB</i> -F	ggggacaagtttgtacaaaaaagcaggcttgactgtcaaattttgatgcata	Disruption of <i>clfB</i> in MR23
<i>clfB</i> -R	taatctagaaattgaaatggagtaatatttagactcggatagcgactcag	Disruption of <i>clfB</i> in MR23
<i>clfB</i> -F	ctgagtcgctatccgagtctaaatattactccatttcaatttctagatta	Disruption of <i>clfB</i> in MR23
attB2- <i>clfB</i> -R	ggggaccactttgtacaagaaagctgggtatgaattttatgaaatcaaacagttttt	Disruption of <i>clfB</i> in MR23
attB1- <i>isdAB</i> -F	ggggacaagtttgtacaaaaaagcaggctacagttatttgaacatacaatttacc	Disruption of <i>isdAB</i> in MR23
<i>isdAB</i> -R	aatttaataattaaatataaagacgatttagttgttttcctcctaaggata	Disruption of <i>isdAB</i> in MR23
isdAB-F	tatccttaggaggaaaacaactaaatcgtctttatatttaattattaaatt	Disruption of <i>isdAB</i> in MR23
attB2- <i>isdAB</i> -R	ggggaccactttgtacaagaaagctgggtgaagtaatcgatgaggatcaaT	Disruption of <i>isdAB</i> in MR23
attB1- <i>spa</i> -F	ggggacaagtttgtacaaaaaagcaggctgaacgctcaactgaagatgaaag	Disruption of spa in MR23
spa-R	gatatctatcgttgtgtattgtttgtttaatataacgaattatgtattgcaatac	Disruption of <i>spa</i> in MR23
spa-F	gtattgcaatacataattcgttatattaaacaaacaatacacaacgatagata	Disruption of spa in MR23
attB2-spa-R	ggggaccactttgtacaagaaagctgggtcattacttgtggcagctaacac	Disruption of spa in MR23
pLC1-F	ctgcagccaagctagcttggc	Linearization of pLC1 vector
pLC1-R	cccgggagatctgatatcaagcttatttta	Linearization of pLC1 vector

pEap-F	atcagatctcccggggcttggtataaacaaaaccaaaca	Construction of	Eap-	expressing plasmid
pEap-R	ctagcttggctgcagatcattaattgtaattttgcttgcattata	Construction of Eap-expressing plasmid		
pSrtA-F	atcagatctcccgggtgtataaaaggagccttaacgtatga	Construction of SrtA-expressing plasmid		
pSrtA-R	ctagcttggctgcagttatttgacttctgtagctacaaagatttt	Construction of SrtA-expressing plasmid		
pSasG ^{₩⊤} -F	atcagatctcccgggtggaaaaaggagtatgcaaatg	Construction of SasG ^{WT} -expressing plasmid		
pSasG ^{w⊤} -R	ctagcttggctgcagttaattctttcttctacgagccaata	Construction of	Sase	S ^{WT} -expressing plasmid
pSasG ^{∆L} -F	taactgcagccaagctagcttggc	Construction of SasG ^{ΔL} -expressing plasmid		
pSasG ^{∆L} -R	gcttggctgcagttattctgctcgttttttctcttgat	Construction of SasG ^{ΔL} -expressing plasmid		
pEap-SasG ^{w⊤} -F1	ctgcagccaagctagcttggc	Construction	of	Eap-SasG ^{WT} -co-expressing
		plasmid		
pEap-SasG ^{w⊤} -R1	atcattaattgtaattttgcttgcattatagaacacaa	Construction	of	Eap-SasG ^{WT} -co-expressing
		plasmid		
pEap-SasG ^{w⊤} -F2	attacaattaatgattggaaaaaggagtatgcaaatg	Construction	of	Eap-SasG ^{WT} -co-expressing
		plasmid		
pEap-SasG ^{w⊤} -R2	ctagcttggctgcagttaattctttcttctacgagccaata	Construction	of	Eap-SasG ^{WT} -co-expressing
		plasmid		
pCold-SasG-F	gaaggtaggcatatggctgaaaacaatattgagaatccaactacattaaaagataatgtcc	Construction	of	SasG(51-954)-expressing
		plasmid		
pCold-SasG-R	agagattacctatctttattctgctcgttttttctcttgattagctactgattctttagc	Construction	of	SasG(51-954)-expressing
		plasmid		
SasG-s1	agtattagcatatttagatgtatttaaaaa	For DNA sequencing of sasG in MR23		
SasG-s2	tagttgaatctaccccaattacaattcaag	For DNA sequencing of sasG in MR23		
SasG-s3	tatgcggacaattcaactaatacatcagat	For DNA sequencing of sasG in MR23		
SasG-s4	ccaaaattacaacctggtgaagagcgagtg	For DNA sequencing of sasG in MR23		
SasG-s5	gtaaattcactgtaagtaaagtggaaaata	For DNA sequencing of sasG in MR23		
SasG-s6	tcgaaagaagaaatcacaaaagatccgatt	For DNA sequencing of sasG in MR23		
SasG-s7	accaaaagaagagattacaaaagatccgat	For DNA seque	ncing	of sasG in MR23






С



×1,000

Supplementary References

- Sugimoto S, Iwamoto T, Takada K, Okuda K, Tajima A, Iwase T, Mizunoe Y. 2013. Staphylococcus epidermidis Esp Degrades Specific Proteins Associated with Staphylococcus aureus Biofilm Formation and Host-Pathogen Interaction. J Bacteriol 195:1645–1655.
- Sugimoto S, Okuda K, Miyakawa R, Sato M, Arita-Morioka K, Chiba A, Yamanaka K, Ogura T, Mizunoe Y, Sato C. 2016. Imaging of bacterial multicellular behaviour in biofilms in liquid by atmospheric scanning electron microscopy. Sci Rep 6:25889.
- Nishiyama H, Suga M, Ogura T, Maruyama Y, Koizumi M, Mio K, Kitamura S, Sato C. 2010. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J Struct Biol 172:191– 202.
- Kreiswirth BN, Löfdahl S, Betley MJ, O'Reilly M, Schlievert PM, Bergdoll MS, Novick RP. 1983. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305:709–12.
- 5. Chiba A, Sugimoto S, Sato F, Hori S, Mizunoe Y. 2015. A refined technique for extraction of extracellular matrices from bacterial biofilms and its applicability. Microb Biotechnol 8:392–403.
- 6. Bae T, Schneewind O. 2006. Allelic replacement in *Staphylococcus aureus* with inducible counter-selection. Plasmid 55:58–63.
- Cui L, Neoh H, Iwamoto A, Hiramatsu K. 2012. Coordinated phenotype switching with large-scale chromosome flip-flop inversion observed in bacteria. Proc Natl Acad Sci 109:E1647–E1656.