
Supplementary Information

Methods

1 Single Particles Trajectories analysis

When not stated otherwise, the following analysis was performed using MAT-
LAB version 9.0 (MathWorks).

1.1 Mean Squared Displacement and first moment anal-
ysis

The Mean Squared Displacement (MSD) approach has been used to detect
deviations from classical free diffusive motion of SPTs. Indeed, the MSD at
time lag τ is defined by

MSD(τ) = 〈|X(t+ τ)−X(t)|2〉, (1)

where the average is computed either over realizations or time. This quan-
tity is expected to grow like MSD(τ) = Aτα where A is a coefficient and
α is called the anomalous exponent. An exponent α > 1 is a signature of a
super-diffusive regime while α < 1 indicates a sub-diffusive regime [1]. This
analysis however does not provide any explanation for the mechanisms caus-
ing a specific regime because it is usually computed by averaging over time
(time-averaged MSD) or space (trajectory-averaged MSD) thus disregarding
the possible heterogeneous geometrical organization of STPs.
The motion exhibited by the recorded trajectories analyzed in Fig.2 is nei-
ther time nor space homogeneous. Indeed, the motion in nodes and tubules
are different and trajectories exhibit high-velocity peaks of random duration
(Fig.5d left), separated by random time intervals (Fig.5d right), making the
MSD analysis hard to perform on these data. For that reason, we have chosen
to conduct here an analysis based on the stochastic equation of motion (15)
through which local parameters of motion are extracted from many redun-
dant trajectories. This analysis allows to recover the field of force acting on
the particles at each location from the first order moment of the individual
trajectory displacements (16).
It is also possible to draw the same conclusions about the observed dy-
namics by conducting an MSD analysis on specific subset of trajectories.
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For this analysis we relied on the time averaged MSD (taMSD) at time lag
τ = 1 . . . (Mi − 1) defined, for a trajectory Xi composed of Mi points, as:

taMSDi(τ) =
1

Mi − τ

Mi−τ∑
k=1

(Xi(tk+τ )−Xi(tk))
2 (2)

To recover the anomalous exponent from a taMSD curve, we fitted to the
first 8 points of this curve in the log-log space the function:

log(A) + αlog(t) (3)

using the fit function from MATLAB version 9.0 (MathWorks). Fig.S2b
presents the taMSD curves in log-log space (left) and the corresponding
anomalous exponents α (right) obtained by computing the taMSD on each
trajectory, longer than 20 points (360ms) and visiting at least two recon-
structed network nodes, from the experiment presented in Fig.2 and found a
broad distribution of anomalous exponents (0 ≤ α ≤ 1.5) in agreement the
proposed two-states dynamics. To investigate the type of dynamics inside
the nodes, we determined for each node the ensemble of N sub-trajectories
X1 . . . XN located inside the node and obtained the node MSD by averaging:

taMSD(τ) =
1

N

N∑
i=1

taMSDi(τ) (4)

In Fig.S2c we report for each node of the experiment presented in Fig.2 its
taMSD curve in log-log space (left) and the corresponding distribution of
anomalous exponents (right) observing exponents α < 0.8, indicating a sub-
diffusive behavior. Finally, to investigate the type of dynamics outside nodes,
we synchronized for each nodes, the trajectories on their exit from the node
(as presented in section 1.7 and Fig.S2e) and computed an average MSD
using eq.4. In Fig.S2d we present three examples of nodes for which this
synchronization result in an averaged taMSD characterized by an anomalous
exponent α > 1 indicating in these cases a super-diffusive behavior.

1.2 Models for the instantaneous velocity distribution

1.2.1 Pure Diffusion model

To analyze the velocity histograms presented in Fig.2c,3a and S3, we use a
two-dimensional random walk model:

X(t+ ∆t) = X(t) +
√

2D∆tη, (5)
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where η = [η1, η2] with η1, η2 ∼ N (0, 1) is a white noise. The distribution of
the displacement lengths is given for l > 0 by [2]:

Prdiff

{
||∆X(t)||

∆t
= l

}
=

l

σ2
d

exp

(
−l2

2σ2
d

)
, (6)

where ||.|| is the Euclidean norm and

σd =

√
2D

∆t
. (7)

We use eq. 5, with the parameters presented in Table 1, using the appar-
ent diffusion coefficient D = Dapp defined in section 1.4.2 to generate the
distributions shown in Fig.2c, Fig.3a and S3 (solid lines).

1.2.2 Flow-diffusion switching model

To account for the fast (faster than the acquisition time ∆t = 18ms) intern-
ode dynamics observed in Fig.2c, we use a jump-diffusion model [3] defined
by the following rule

X(t+ ∆t) = X(t) +


J∆t w. p. λ∆t

√
2D∆tη w. p. 1− λ∆t

, (8)

where the statistics of the jumps J is approximated from the observed flow
velocity distribution, presented in the inset histogram of Fig.2g and in Fig.S3
as ||J || ∼ N (µjump, σjump). Although the jump angle should follow the ER
architecture, for the present model, we draw the angles from a uniform distri-
bution in [0, 2π]. This simplification holds true as long as we are considering
only the norm of the jumps. To estimate the distribution of displacement
lengths of process 8, we use Bayes’ law and condition the displacement on
each state of the process:

Prswitch

{
||∆X(t)||

∆t
= l

}
= Pr

{
||∆X(t)||

∆t
= l|Jump

}
Pr{Jump, t}

+Pr

{
||∆X(t)||

∆t
= l|Diff

}
Pr{Diff, t}. (9)

3



By definition the steady-state probability of being in a jump or diffusion
state are:

Pr{Jump} = lim
t→∞

Pr{Jump, t} =
λ∆t

1− λ∆t+ λ∆t
= κ.

Pr{Diff} = 1− Pr{Jump} = 1− κ, (10)

where κ = λ∆t ∈ [0, 1]. Approximating eq. 9 by eq. 10 and replacing the
displacement length distributions by a normal distribution for the jumps and
a Rayleigh distribution (eq. 6) for diffusive displacements, we obtain

Prswitch

{
||∆X(t)||

∆t
= l

}
= κPr

{
||∆X(t)||

∆t
= l|Jump

}
+ (1− κ)Pr

{
||∆X(t)||

∆t
= l|Diff

}
= κ

1

σj
√

2π
exp

(
(l − µjump)2

2σ2
jump

)
+ (1− κ)

l

σ2
d

exp

(
−l2

2σ2
d

)
, (11)

where σd is given by eq. 7. To estimate the switching probability κ in eq.
11, we use a Maximum-Likelihood Estimation (MLE) approach based on the
probability

p(l|κ) = Prswitch

{
||∆X(t)||

∆t
= l

}
, (12)

of observing l given κ. The MLE κ̂ for N observed displacements l1, . . . , lN
is [4]

κ̂ = arg max
κ∈[0,1]

N∑
i=1

ln(p(li|κ)). (13)

We compute κ̂ using the mle function of MATLAB version 9.0 (MathWorks)
applied to the trajectory displacements extracted from the SPTs described
in methods.
To generate the distributions shown in Fig.2c and S3 (dashed lines), we use
eq. 8, with the parameters presented in Table 1, using the diffusion coefficient
in the nodes D = Dnode defined in section 1.4.3.

1.3 Reconstruction of the ER Network from SPTs

Detecting nodes (tubule junctions) boundary and inter-junction stretches
(tubules) is based on the heterogeneity of the time-integrated particle spatial
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density presented in Fig.2d and S3. The algorithmic procedure uses the large
amount of recorded SPTs described in methods and proceeds as follows. We
first construct clusters of points (nodes) defined as regions of aggregation
of short displacements (aggregation regions appear to co-localize with short
displacements as presented in Fig.2c and S3:

1. Define a threshold VL (in µm/s), and discard from the analysis any

point Xi(t) such that ||∆Xi(t)||
∆t

≥ vL (∆Xi(t) is the displacement as
defined in methods).

2. Apply the dbscan [5] clustering algorithm to cluster the remaining
points (implementation from scikit-learn [6] through Python3 pro-
vided by the Anaconda Distribution version 4.3.8 (Anaconda Inc.)).

3. Approximate the boundary of each cluster as an ellipse with semi-axes
a > b using a principal component analysis. Remove ellipses with an
area πab > 4µm2 or an eccentricity a

b
> 4. Merge overlapping ellipses

by fitting a new ellipse to the union of their points.

4. Assign each points discarded in step 1 to the cluster corresponding to
the ellipse in which they fall, if any.

The dbscan algorithm used in step 2 allows to generate clusters based on the
local point density and requires two parameters:

1. The maximum distance R (in µm) below which two points are consid-
ered to be neighbors.

2. The minimum number of points N at a distance ≤ R of a point to start
a cluster.

These two parameters define a minimal density N
R

of points/µm2 inside each
cluster. The values of R and N depend on the morphology of the imaged
ER and the local number of recorded trajectories. For each dataset, these
values were determined empirically such that the computed clusters overlap
with the ER structure formed by the trajectories.
Once nodes are found, we defined tubules by constructing a connectivity
matrix C of size K ×K (K number of detected nodes) where ci,j (1 ≤ i, j ≤
K) contains the number of trajectory displacements starting in node i and
arriving in node j. Specifically, we increment the coefficient ci,j by one for
each data point Xk(tl) (1 ≤ k ≤ Nt, 0 ≤ l < Mk−1) in either of the following
cases:
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1. Xk(tl) is located in node i and Xk(tl+1) in node j

2. Xk(tl) is located in node i, Xk(tl+1) does not belong to any node and
Xk(tl+2) is located in node j (in this case 0 ≤ l < Mk − 2).

Finally, we removed from the graph any disconnected node. The differ-
ent parameters used for reconstructing the graphs presented in the main
text and supplementary data are given in Table 2. Graphs from Supple-
mentary Table 1 (Main Text) were constructed using the parameter ranges:
VL = [9, 19]µm/s (following the histogram of instantaneous velocities), R =
[0.08, 0.26]µm, N = [10, 45] points and πab ≤ [4, 8]µm2. Ellipses representing
the nodes of the graphs are shown in Fig.2dfg and S3.

1.4 Recovery of the local dynamics in the ER lumen
from SPTs

1.4.1 Langevin equation and characteristics of motion

To interpret the individual trajectories described in methods, we use the
classical overdamped limit of Langevin’s equation [3, 7], where the velocity
is the sum of a force or a flow (drift) plus a diffusion term. For a diffusion
coefficient D and a field of force F (X), the dynamics is given by

Ẋ(t) =
F (X(t))

γ
+
√

2D ẇ(t), (14)

where ẇ(t) is a vector of independent standard δ-correlated Gaussian white
noises and γ is the viscosity [3, 9]. The source of the driving noise ẇ(t) is
the thermal agitation. To interpret trajectories, we coarse-grain eq. 14 in an
effective stochastic process [10, 11, 12, 14]

Ẋ(t) = b(X(t)) +
√

2Be(X(t)) ẇ(t), (15)

where b(X) is the empirical drift field, Be(X) the diffusion related matrix
and De(X) = 1

2
Be(X)BT

e (X) (T is the transposition) is the effective diffu-
sion tensor. This model is used to construct the empirical estimators for the
first and second order moments for the diffusion and drift from trajectories.
The conditional moments are computed from the trajectory displacements
(see methods) [9],

b(X) = lim
∆t→0

E[∆X(t) |X(t) = X]

∆t
, De(X) = lim

∆t→0

E[∆X(t)T∆X(t) |X(t) = X]

2∆t
.(16)
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Here the notation E[· |X(t) = X] means averaging over all trajectories that
are located at pointX at time t. The coefficients of eq. 15 can be statistically
estimated from a large sample of trajectories in the neighborhood of the point
x at time t. On the recorded SPTs, the expectations in eq. 16 are estimated
with a time step ∆t = 18ms according to the image acquisition time.
To compute the empirical drift and diffusion coefficients, we first partition
the data into square bins B(xk, r) of center xk and side r = 0.2 µm [11].
Starting from the Nt acquired projected trajectories described in methods,
eq. 16 becomes for a drift vector b(x) = (bx(x), by(x))

bx(xk) ≈
1

Nk

Nt∑
i=1

∑
0≤j<Mi−1,X i(tj)∈B(xk,r)

(
xi(tj+1)− xi(tj)

∆t

)

by(xk) ≈
1

Nk

Nt∑
i=1

∑
0≤j<Mi−1,X i(tj)∈B(xk,r)

(
yi(tj+1)− yi(tj)

∆t

)
, (17)

where Nk is the number of displacements starting in bin B (xk, r). Similarly,
the components of the effective diffusion tensor De(xk) are approximated by
the empirical sums

Dxx(xk) ≈
1

Nk

Nt∑
i=1

∑
0≤j<Mi−1,X i(tj)∈B(xk,r)

(xi(tj+1)− xi(tj))2

2∆t

Dyy(xk) ≈
1

Nk

Nt∑
i=1

∑
0≤j<Mi−1,X i(tj)∈B(xk,r)

(yi(tj+1)− yi(tj))2

2∆t
(18)

Dxy(xk) ≈
1

Nk

Nt∑
i=1

∑
0≤j<Mi−1,X i(tj)∈B(xk,r)

(yi(tj+1)− yi(tj))(xi(tj+1)− xi(tj))
2∆t

.

By definition, the moment estimators 17 and 18 are computed by averag-
ing the displacements ∆X(t), each displacement contributing to the bin into
which its initial point X(t) falls. The computation reveals that the diffusion
tensor is isotropic (Fig.2f and Fig.S3). Furthermore there is no need for fur-
ther deconvolution of the SPTs, as the localization noise does not contribute
until second order to the diffusion tensor and drift [13]. To obtain stable
estimations, we only use bins that contain at least 20 displacements. We
use the same grid to compute a density map, providing an estimate of the
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local density of trajectories, by counting the number of displacements falling
into each bin and dividing by the size of the square (0.04µm2). Density and
diffusion maps are presented in Fig.2df, Fig.3bc and Fig.S3a,b.

1.4.2 Estimation of the apparent diffusion coefficient

We define the apparent diffusion coefficient Dapp as the diffusion coefficient
estimated using the entire distribution of displacements. Note that this dis-
tribution also contains large values, that cannot be attributed to diffusion.
We estimated Dapp by averaging the values obtained using eq. 18 on each
bin over the entire map (only for bins containing at least 20 points). The
distribution of diffusion coefficients from individual bins of the diffusion map
from Fig.2f is presented in Fig.S2a, in Fig.3d for the map of Fig.3c and in
Fig.S3a,b for the other datasets.

1.4.3 Estimation of the diffusion coefficients in the nodes

The diffusion coefficient Dnode inside each node is computed from eq. 16, but
in addition we constrained both ends of the displacement be located inside
the node. For a node delimited by an ellipse E, we get:

Dnode(X(t)) = lim
∆t→0

E[∆X(t)T∆X(t)|X(t) = X ∈ E and X(t+ ∆t) ∈ E]

2∆t
.(19)

We use eq. 19 to estimate the diffusion coefficient Dnode in each node and
report their distributions in Fig.2f (inset) for the main text dataset and
Fig.S3a,b.

1.4.4 Estimation of the internodes displacements

We define the instantaneous velocity (in µm/s) between two successive points
of the same trajectory X(t1) and X(t2) (t2 > t1) as the ratio of the distance
to elapsed time

v(X(t1),X(t2)) =
||X(t2)−X(t1)||

t2 − t1
, (20)

where ||.|| is the Euclidean distance. We define the flow velocity vflow between
two nodes A and B, as the average of the instantaneous velocities for the

8



displacements connecting the two nodes:

vflow(A,B) = E
[
v(X(t1),X(t2))

∣∣∣∣ (X(t1) ∈ A,X(t2) ∈ B) or
(X(t1) ∈ B,X(t2) ∈ A)

]
, (21)

where by construction t2 − t1 ∈ {∆t, 2∆t} (see tubule reconstruction from
section 1.3). We discretize eq. 21 and obtain the estimator:

vflow(A,B) ≈ 1

N

N∑
i=1

v(X i(t1),X i(t2)), (22)

where N is the number of trajectory displacements connecting the nodes
A,B and X i is the ith such displacements. The velocity vflow characterizes
the jump flow between nodes. As shown in Fig.2c, this internode flow is
associated with the thick tail of the velocity distribution. The distributions of
jump velocities between each pair of neighbor nodes for the different datasets
are presented in Fig.2g and Fig.S3a,b.

1.5 Static ER network analysis

1.5.1 Flow directionality and strongly connected components

To determine whether the ensemble of observed displacements between two
neighbor nodes i and j form a uni- or bi-directional flow, we define a uni-
directionality score r as the ratio of the number of observed displacements
between the two nodes with direction i → j divided by the total number of
displacements in both directions:

ri,j =
ci,j

ci,j + cj,i
, (23)

where C is the connectivity matrix of the graph as defined in section 1.3.
Using ri,j, we build a binary version C ′ of C defined as

c′i,j =

{
1 when ri,j ≥ 0.25
0 otherwise

. (24)

C ′ has the property that c′i,j = c′j,i = 1 when 0.25 ≤ ri,j ≤ 0.75 (bi-directional
flow) and c′i,j = 1, c′j,i = 0 when ri,j > 0.75 (uni-directional flow). The ratio
ri,j (and thus c′i,j) is computed only for pairs of nodes connected by at least
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three displacements (ci,j + cj,i ≥ 3). To find the connected components of
the reconstructed network, we use the classical Tarjan Strongly Connected
Components (SCCs) detection algorithm [15] on the binary connectivity ma-
trix C ′ (graphconncomp function from MATLAB version 9.0 (MathWorks)).
SCCs are a partition of the ensemble of nodes such that there exists a path
(taking into account the directionality) from each node of a subset to any
other node of the same subset. The presence in Fig.4b of a SCC ecompassing
almost the entire graph shows that the observed flows have the potential to
move particles through almost the entire network. In addition Fig.4b also
displays the flows directionality on the links as: arrows for uni-directional,
solid (no arrow) for bi-directional and dashed for undecided.

1.5.2 Count of Afferent and Efferent branches

We further characterize the structure of the reconstructed ER graph by com-
puting for each node k the number of afferent and efferent branches connected
to it. An afferent (resp. efferent) branch is a link l → k (i.e. cl,k > 0) (resp.
k → l, ck,l > 0) where l is any other node of the graph. Based on the count of
afferent and efferent nodes, we define the out and in-degree of node k using
the connectivity matrix C as:

outdeg(k) =
N∑
i=1

1ck,i>0 and indeg(k) =
N∑
i=1

1ci,k>0, (25)

where 1a>b =

{
1 if a > b
0 otherwise

, and N is the number of nodes in the graph.

In- and out-degrees are computed only for nodes k such that
N∑
i=1

ci,k > 2 and

N∑
i=1

ck,i > 2 respectively. The distribution of in- and out-degrees are presented

in Fig.4c.

1.5.3 Fraction of entering and exiting displacements in nodes

To study the passing dynamics of trajectories through nodes we define a
retention score for the nodes defined as the ratio of the number of exiting
displacements to the total number of entering and exiting displacements for
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a node k:

φk =

∑N
i=1 ck,i∑N

i=1 ci,k +
∑N

i=1 ck,i
, (26)

where C is the connectivity matrix of the graph and N the number of nodes.
We have ϕ ∈ [0, 1] such that ϕk → 0 indicates that the node retains tra-
jectories, ϕk → 1 indicates that trajectories originate from this node and
ϕk ≈ 0.5 indicates that trajectories pass through the node. ϕk was com-

puted only for nodes k such that
N∑
i=1

ck,i + ci,k > 2. The distribution of φ for

the reconstructed ER network is shown in Fig.4d.

1.6 Transient ER network analysis

At steady-state, we identified the uni- and bi-directional flows inside tubules
(Fig.4b), we now investigate how the direction of these flows evolve with time.
To this end, we determine the distribution of durations of uni-directionality
periods of the flow between two nodes as presented in Fig.5a. The analysis
is performed on each pair or neighbouring (directly linked by trajectories)
nodes, linked by at least 20 displacements registering one of the two possible
directionalities (either node A → B or B → A). The following algorithm
groups the successive displacement events as a function of their directionality
and determine the duration of these groups:

1. Collect the next displacement event observed at time tfirst, identify its
direction say A→ B and form a new group containing this event.

2. Accumulate in the group created in step.1 the following jump events
with direction A→ B and stop when there are no more event or after
encountering two events with direction B → A (in this case the event
or the two successive B → A events when it occurs, are not collected).
The last event considered in the group occurs at time tend and always
has the same direction as the group (see Fig.5a).

3. Compute the duration of the group as τ = tend − tfirst.

4. Return to step 1.
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We discarded groups formed by less than 3 displacements with the same di-
rection. The distribution of the uni-directional flow durations τ is presented
in Fig.5b.
To interpret the mean of this distribution, we recall that this statistics is
partly contaminated by the fraction of activated particles located in nodes
and the track lengths. Indeed, only photo-activated particles appear in the
statistics. To recover the uni-directional duration of the fluxes from the em-
pirical distribution, we use a model taking into account these two character-
istics. The probability that the flux between nodes A and B lasts a duration
τUni = t is computed by conditioning on having k events (k particles flowing
in the same direction) during that time

Pr{τUni = t} =
∞∑
k=1

Pr{τ1 + . . .+ τk = t|k}PrUni{k}, (27)

where the probability that k event occurs in the same direction is by sym-
metry,

PrUni{k} =
1

2k
(28)

and τk is the arrival time of the kth event after the first one. We consider
that the distributions of arrival times are Poissonian with same rate λ, inde-
pendent of the initial node A or B. We conclude that

Pr{τ1 + . . .+ τk = t|k} = λ
(λt)k−1

(k − 1)!
exp(−λt). (29)

Computing the sum from eq. 27, we obtain for at least 2 events

Pr{τUni = t} =
λ

2
(exp

(
−λt

2

)
− exp(−λt)). (30)

Eq. 30 is the probability density function when all particles are labeled and
its average is 3

2λ
. When a particle is activated with probability p, which

represents the steady-state fraction of labeled particles, the statistics of uni-
directional flow is still given by formula 30 but with a rate λ̃. Using Bayes’
law, the probability of observing a displacement event is

Pr{τUni = t} = Pr{τUni = t, activated}Pr{activated}
+Pr{τUni = t, notactivated}Pr{notactivated}, (31)
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where Pr{activated} = p is the fraction of activated molecules. The second
term is zero because we cannot see displacement events from non-activated
molecules. Thus the mean unidirectional flow duration becomes

〈τ〉 = pτ̄ , (32)

where the rates are related by λ = pλ̃. Considering a fraction p = 1% of
activated molecules, we predict that the mean undirectional time should be
around 〈τ〉 = 38ms instead of the observed τ̄ = 3.89s.

1.7 Instantaneous velocities along individual trajecto-
ries

To obtain statistics of the velocity fluctuations of trajectories (recorded at
different times over a period of seconds) and possibly located either in tubules
or nodes, we introduced a ’synchronization’ procedure: the velocity fluctu-
ations of individual trajectories were monitored starting from the last time
point where the particle was in a given node prior to its exit. The velocity
fluctuations following the node exit was plotted as a function of time elapsed
since the synchronization event (a universal time scale for all trajectories re-
gardless when they were detected). In details, the synchronisation event is
defined for a trajectory Xi, its last recorded point inside some node A,

t∗i = max
0≤j<Mi−1

{X i(tj) ∈ A and X i(tj+1) /∈ A}. (33)

Considering the nA trajectories going through node A, the ensemble of last
points inside A is

XA = {X i(t
∗
i )|i = 1..nA}. (34)

We now divide displacements along individual trajectories into two subsets
based on the starting node A and appearing at a time τ > 0 after exit:
XA,node(τ) containing displacements inside nodes and XA,tubule(τ) containing
displacements connecting two nodes:

XA,node(τ) = {Xi(t
∗
i + τ) | Xi(t

∗
i ) ∈ XA and Xi(t

∗
i + τ −∆t) ∈ N and Xi(t

∗
i + τ) ∈ N}

XA,tubule(τ) = {Xi(t
∗
i + τ) | Xi(t

∗
i ) ∈ XA and Xi(t

∗
i + τ −∆t) ∈ N1 and Xi(t

∗
i + τ) ∈ N2},
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where N,N1, N2 ∈ N the ensemble of nodes and N1 6= N2 (N1 or N2 can be
not a node). We computed the average velocities vInter(τ) (resp. vIntra(τ))
at time τ ≥ ∆t for each subset:

vIntra(τ) =
1

nA,intra(τ)

∑
X i(t∗i +τ)∈XA,node(τ)

v(X i(t
∗
i + τ −∆t),X i(t

∗
i + τ)) (35)

and

vInter(τ) =
1

nA,inter(τ)

∑
X i(t∗i +τ)∈XA,tubule(τ)

v(X i(t
∗
i + τ −∆t),X i(t

∗
i + τ)),(36)

where nA,intra(τ) (resp. nA,inter(τ)) is the number of displacements from
synchronized trajectories that fall inside (resp. between two nodes) at time τ
and v(., .) is the instantaneous velocity (eq. 20). The synchronization process
and the intra and inter node velocities along synchronized trajectories are
presented schematically in Fig.S2e. In this figure, schematic trajectories
synchronized on their exit of a node A are presented on the left panel and
their associated instantaneous velocity as a function of the time since exit τ
from A are presented on the right panel. Fig.5c presents the average (line)
and standard deviation (shade) of the instantaneous velocity for vintra (black)
and vinter (red) for a selected node A of the main-text network for τ ≤ 0.2s.

1.8 Instantaneous velocity peaks duration and inter-
peaks period

To further analyze the fluctuations of the instantaneous velocities along indi-
vidual trajectories we proceed as in section 1.7 and synchronize the trajecto-
ries leaving a given node A. We then estimated the time spent by individual
trajectories in a high velocity regime (above a threshold vhigh = 19µm/s)

as the number of successive time steps τ = j∆t (j = 0 . . .) for which

v(Xi(t
∗
i + τ + j∆t), Xi(t

∗
i + τ + (j + 1)∆t) > vhigh, (37)

where Xi is a synchronized trajectory and v(., .) is the instantaneous velocity
(eq. 20). The distribution of the high velocity regime durations is shown
in Fig.5d and the distribution of periods between two high velocity regimes
in Fig.5e, computed for trajectories synchronized for each node of the ER-
network. Note that we considered only trajectories that visited at least three
different network nodes.

14



1.9 Dynamics of tubular junctions

1.9.1 Extraction of junctions from SIM images

We extracted the features of tubular junctions from a SIM images stack (50
images) through a procedure similar to [16]: first, the contrast of the entire
image stack was manually modified to make the ER network more apparent.
Then each image was skeletonized, junctions were extracted from the skeleton
[17] (AnalyzeSkeleton plugin, ImageJ) and only junctions covering more than
3 pixels were kept. For each image of the stack, a new grayscale image was
generated where only the pixels belonging to selected junctions appear white
and afterward a Gaussian blur with σ = 1px was applied to produce a single-
particle like image. On this stack of grayscale images, we applied a particle
detection and tracking algorithm [8] to follow junctions through successive
images (Spot Detection and Tracking plugins, Icy). This procedure produces
an ensemble of N trajectories X1 . . . XN such that Xi = Xi(t0) . . . Xi(tMi

)
and ∆t = ti − ti−1 = 90ms. From this ensemble, we keep only trajectories
possessing at least 40 points. These trajectories are displayed in Fig.S4ab
overlaid on top of the average stack image.

1.9.2 Mean Squared Displacement (MSD) analysis

We first characterize the type of diffusive motion exhibited by trajectories
using a Mean Squared Displacement (MSD) analysis. For an ensemble of T
trajectories the MSD at time tk is defined as:

MSD(tk) =
1

T

T∑
i=1

||Xi(tk)−Xi(t0))||2 ≈ A(tk − t0)α (38)

where ||.|| is the Euclidean distance, A is a coefficient and α > 0 is the
anomalous exponent characterizing the type of diffusive motion. To estimate
α, we fit the first 20 points of the MSD curve to the line y(tk) = log(A) +
αlog(tk− t0) in the log-log space using a MATLAB version 9.0 (MathWorks)
script. Fig.S4c shows the distribution of α obtained applying this procedure
to 100 independent samples of T = 20 randomly selected trajectories from
the ensemble of trajectories possessing at least 40 points and keeping only
the fits for which the coefficient of determination R2 > 0.75. We found
that α = 0.60 ± 0.24 suggesting a sub-diffusive behavior or diffusion in the
presence of confinement forces [19].
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1.9.3 Confined motion of tubular junctions

The distribution of instantaneous velocities (Fig.S4d) suggests to model junc-
tion’s dynamics as a diffusion process confined by active forces generated by a
parabolic potential well. The corresponding equation of motion is expressed
as an Ornstein-Ulhenbeck stochastic process

Ẋ = κ(X − µ) +
√

2Dẇ, (39)

where µ is the center of the potential well, κ in 1/s the spring coefficient,
D in µm2/s the diffusion coefficient and ẇ(t) is a vector of independent
standard δ-correlated Gaussian white noises. We estimate for each recorded
trajectory Xi the three parameters: µ̂i, κ̂i and D̂i. The center of the well µi
is approximated by the center of mass of the trajectory:

µ̂i =
1

Mi

Mi−1∑
j=0

Xi(tj). (40)

The parameters κ̂i and D̂i are estimated using the maximum-likelihood esti-
mators [18]. For a trajectory Xi(t0) . . . Xi(tn) we compute for each dimension
Xi(t) = (x1

i (t), x
2
i (t)), d = 1, 2

β̂d1 =

n−1
n∑
k=1

xdi (tk)x
d
i (tk−1)− n−2

n∑
k=1

xdi (tk)
n∑
k=1

xdi (tk−1)

n−1
n∑
i=1

xdi (tk−1)2 − n−2(
n∑
i=1

xdi (tk−1))2

+
4

n
, (41)

β̂d2 =

n−1
n∑
k=1

(xdi (tk)− β̂d1xdi (tk−1))

1− β̂d1
, (42)

β̂d3 = n−1

n∑
k=1

(xdi (tk)− β̂d1xdi (tk−1)− β̂d2(1− β̂d1))2, (43)

from which we obtain the estimators:

κ̂di =
log(β̂d1)

∆t
and D̂d

i =
κ̂β̂d3

1− (β̂d1)2
(44)

where ∆t = tk − tk−1 is the time-step and the term 4
n

in β̂d1 is a correction
for the low number of points. In practice, we obtain a symmetric tensor and
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force field computed as the averages:

κ̂i =
κ̂1
i + κ̂2

i

2
and D̂i =

D̂1
i + D̂2

i

2
. (45)

We apply this estimation only on trajectories possessing at least 40 points.
Fig.S4e shows the distribution of the estimated spring constants κ̂ and Fig.S4f
the distribution of the estimated diffusion coefficients D̂.

1.9.4 Estimating the area of confinement of tubular junctions

In this section, we define and compute the area of confinement of each junc-
tion based on the statistics of the trajectories. For each trajectory Xi we
compute the 95% confidence ellipse ei = (ci, ai, bi, ϕi) of center ci, largest
(resp. smallest) semi-axis ai (resp. bi) and angle (with x-axis) ϕi, of the
spatial spreading of its points, considering this distribution as normal. We
obtained the ellipse as follows [20]: first, we collected all points Xi(t) of the
trajectory into a 2 × n matrix Oi, then applied a Singular Value Decompo-
sition algorithm to the covariance matrix of Oi: U iΣi(V i)∗ = cov(Oi) and
finally recovered the ellipse as:

ci =
1

Mi

Mi−1∑
j=0

Xi(tj), ai =
√

5.991σi1,1, bi =
√

5.991σi2,2, ϕi = arctan(
ui2,1
ui1,1

),(46)

where σi1,1 and σi2,2 are the two eigenvalue of the matrix cov(Oi). We define
the confinement area Ai for a trajectory Xi as the area of the estimated
ellipse: Ai = πaibi. The distribution of observed confinement areas is pre-
sented in Fig.S4g.
We now compare this distribution, with the expected distribution for a par-
ticle moving in a potential well. To this end for each trajectory Xi, we sim-
ulated eq. 39 with the estimated parameters µ̂i, κ̂i, D̂i using Euler’s scheme
to obtain a trajectory Yi:

Yi(tk) = Yi(tk−1) + κ̂i(Yi(tk−1)− µi)δt+

√
2D̂iδtη, (47)

where δt = 0.0001s is the simulation time-step, η = [η1, η2] with η1, η2 ∼
N (0, 1) is a white noise and Yi(t0) = µi. To prevent the choice of the first
point to influence the statistics, we run the simulation for 45000 time steps
before recording the trajectory. We then sub-sampled Yi by keeping one
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every 900 points to match the experimental acquisition time ∆t = 0.09s and
computed the confinement area of Yi using the same procedure as forXi. This
procedure was only applied to junctions for which κ̂i > 0. The distribution of
confinement areas obtained from simulated trajectories is shown in Fig.S4g.

2 Characterization of ER tubule contractions

2.1 Extraction of tubule contraction statistics

Fast SIM images of ER in live cells, acquired and reconstructed as described
in methods, were rendered using the Edges look-up-table of the Fiji soft-
ware, with contrast settings to visualise one-pixel wide boundaries of the
tubules. Contraction sites were identified as such if the tubule edges bended
to merge more than once at the same position. In Fig.5g we report the dis-
tributions of three observable characteristics of contraction events extracted
from SIM images. The duration of a contraction event (Fig.5g left) is com-
puted as the difference between the last and first frames for which the event
is detected; The time interval between successive contractions (Fig.5g mid-
dle) is computed for each individual tubule and pair of successive contraction
events as the difference between the first frame of the second contraction and
the last frame of the first contraction; Finally the length of a contraction
(Fig.5g right) is computed by counting the number of pixels along the tubule
axis involved in the contraction.

2.2 Elementary model of tubule contraction

The relation between the ER constrictions inside the tubules and the flow
is suggested rather than correlative. To increase the evidences of this corre-
lation, we propose an elementary computation to link the contractions and
flow. Considering an incompressible ER luminal fluid, the conservation of
the mass is

∂ρ

∂t
= div(vρ), (48)

where ρ is the fluid density and v the velocity at position x. When a con-
striction occurs, we suppose that it leads to a decreased volume Vc, that
generates a local flow. This flow can be obtained by integrating eq. 48 inside
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the tubule and we get:

dV

dt
= S2v2 − S1v1, (49)

where S2, S1 are the cross-sections at the right and left of the constriction
associated with a constant velocity v1 (resp. v2) on the surface (note that
we assume that there is no flow through the lateral surface of the tubule).
When S2 = S1, we obtain since v2 = −v1 (by symmetry), so that the initial
flow is given during the constriction phase by

v =
1

2S1

dV

dt
. (50)

Thus a constriction occurring in a cylinder of constant section πr2 along a
segment of size L = 300 nm during 15ms, leads to a velocity V = 0.3/0.03 =
10µm/s. To recover the velocity at the junction, we need now to model
how this change in the tubule shape contributes to the velocity of ejection
vexpelled.

A possible model is that the flow enters the node through a smaller section
than the radius of the tubule. Suppose that the size is r = 0.5rtub, then using
the mass conservation with this ratio of surfaces, we obtain a velocity at the
entrance of a junction of

ventrance =
S1

Sentrance
v, (51)

leading to a factor 4. Thus we obtain a velocity that could reach ventrance =
40µm/s, compatible with the maximum velocity we find for the ejection of
trajectories (Fig.2).
If the cross-section in the node at the two opposite tubules from the one
where the flow is generated are identical to the one receiving the flow, we
finally get the relation

vexpelled =
ventrance

2
≈ 20µm/s. (52)

Fig.5h illustrates the consequence of a constriction: a local constriction gen-
erates a flow v in both directions. The flow leads to an acceleration at
the entrance of a tubule, if the entrance has a small surface. Due to the
flow conservation, the velocity of the expelled trajectory is of the order
20µm/s. Considering a pinch length of L = 100nm we obtain v ≈ 3µm/s,
ventrance = 13µm/s, vexpelled = 7µm/s while for L = 400nm we obtain

v ≈ 13µm/s, ventrance ≈ 53µm/s and vexpelled = 27µm/s.
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2.3 Simultaneous contractions statistics

Under the assumption that contractions are spatio-temporally independent
events, the probability of a contraction follows a Poissonian distribution of
rate λ such that

P{one contraction in [t, t+ ∆t]} = λ∆t (53)

Thus the probability of n contractions during that time interval is a rare
event which probability is given by

P{n contractions in [t, t+ ∆t]} =(P{one contraction in [t, t+ ∆t]})n

=(λ∆t)n.

Considering λ = 1/fcontraction where fcontraction = 1.5Hz as given in Fig.5f
during a time step of ∆t = 100ms (the acquisition time of SIM images), then
P{one contraction in [t, t + ∆t]} = 0.15 and P{two contractions in [t, t +
∆t]} = 0.0225 and thus can be neglected compared to one contraction.
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3 Tables

Pure Diffusion Model Flow-Diffusion Model

Dataset 1

(Main text)
Dapp = 1.13 µm2/s

Dnode = 0.19 µm2/s

µj = 22.9 µm/s

σj = 6.92 µm/s

κ = 0.33

Dataset 2

(Fig.S3a)
Dapp = 1.02 µm2/s

Dnode = 0.35 µm2/s

µj = 23.19 µm/s

σj = 3.85 µm/s

κ = 0.31

Dataset 3

(Fig.S3b)
Dapp = 4.10 µm2/s

Dnode = 0.57 µm2/s

µj = 45.01 µm/s

σj = 12.75 µm/s

κ = 0.41

Table 1: Estimated motion parameters of the pure diffusion and flow-diffusion
models for the datasets presented in the main text and supplementary figures.

Datasets
Symbol Description Main text Fig.S3a Fig.S3b
VL Max. inst. vel. (µm/s) 9.5 10 19
R Max. neighbor distance (µm) 0.1 0.12 0.18
N Min. num. points in cluster 25 35 30

Table 2: Parameters used for fitting the network on the presented datasets.
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