
Supplementary Data

Common Symbolization Approach for Pairs
of Magnetoencephalography Time Series

Initially, this procedure entails transcribing pairs of
time series into two distinct symbolic sequences that
share a common codebook (set of symbols). The size
and content of the codebook are data dependent. The un-
supervised Neural Gas (NG) algorithm maintained a rela-
tively low computational load. Given signals Axt and Bxt

from a pair of channels A and B, time-delay vectors
were first reconstructed from each time series. These vec-
tors take the form xt¼fxt, x(tþ s), � � � , x(tþ (m� 1)s)g where m
is the embedding dimension, s denotes the time lag, and
t = 1,2,..,T runs over the time points. Then, the two indi-
vidual sequences of time-delay vectors are collectively
gathered in data matrices:

AX[T · m]¼[Ax1jAx2j . . . jAxT ] & BX[T · m]¼[Bx1jBx2j . . . jBxT ]

Next, the two trajectories were brought to a common recon-
structed space by forming the overall data matrix:

ABX[2T · m]¼ [AXjBX]: (1)

The partition of all tabulated m-dimensional vectors into groups
of homogenous patterns is the most direct way to summarize
the temporal variations in the dynamics of each original time
series and describe them with a common vocabulary.

In our approach, a codebook of k code vectors was
designed by applying the NG algorithm to the data matrix
ABX, which is of size [*2T · m]. The NG algorithm is an ar-
tificial neural network model, which converges efficiently to
a small number of k<<T of codebook vectors fMigi¼ 1:k
using a stochastic gradient descent procedure with a soft-
max adaptation rule that minimizes the average distortion
error (Martinetz et al., 1993).

In the encoding stage, each of the 2T vectors was assigned
to the nearest code vector. By replacing the original vectors
with the assigned code vectors, we could rebuild the two vec-
torial time series with a measurable error. If we denote the
reconstructed (i.e., decoded) version of the vectorial time se-
ries as ABXrec(t), we can estimate the fidelity of the overall
encoding procedure with the following index, which is the
total distortion error divided by the total dispersion of the
original vectors:

nDistortion¼

P2T

t¼ 1

jjABx(t)� ABxrec(t)jj2

P2T

t¼ 1

jjABx(t)��xjj2
, x¼ 1

2T

X2T

t¼ 1

ABx(t)

(2)

The smaller the nDistortion, the better the encoding. This
index gets smaller at higher k values, reaching a plateau
for a relative small value of k. In the present study, we con-
sidered encoding to be acceptable if it was produced with the
smallest k that satisfied the condition that nDistortion should be
less than 5%. Hence, we repeatedly applied the NG algo-
rithm with increasing k and measured the reconstruction

quality. In this way, we defined the optimal k0, which in
turn defined the codebook to use in the subsequent symboliza-
tion scheme. At the vector-quantization stage, each vector of
AX and BX is assigned (according to the nearest prototype
rule) to the most similar among the derived code vectors
fMigj¼ 1:ko. This step completes the mapping of original time
series to two symbolic time series Ast and Bst, t¼ 1, 2, . . . T ,
which in mathematical notation reads as follows:

[Axt,
Bxt] 2 R2

AXt ��!��!VQ
Mj1 2 fMigKo

i¼ 1, Mi 2 Rm

BXt ��!��!VQ
Mj2 2 fMigKo

i¼ 1, Mi 2 Rm

Axt!ASt¼ j1(t), Bxt!BSt ¼ j2(t), j1, j2 2 f1, 2, ::, kog:
(3)

In the derived symbolic time series, the temporal dynam-
ics of a pair of sensors is encoded as transitions among adap-
tively defined (i.e., data-dependent) symbols. We adopted
the Ragwitz criterion for optimizing the embedding dimen-
sion m and the embedding delay s (Ragwitz and Kantz,
2002). Optimality of the embedding refers to a minimal pre-
diction error for future samples of the time series. The Rag-
witz criterion predicts subsequent values in a time series
based on estimates of the probability densities of future val-
ues of the nearest neighbors after embedding. The adopted
method is based on the minimization of mean squared pre-
diction error (Lindner et al., 2011; Ragwitz and Kantz,
2002).

Dominant Coupling Modes Based
on the Phase Lag Index

A complementary index of interdependence between
time series, in the form of the phase lag index (PLI)
(Stam et al., 2007), which is considered to be less suscep-
tive to volume conduction, was also computed. PLI reflects
coupling strength by assessing consistent, nonzero phase
lags between two time series as reflected in the asymmetry
of the distribution of instantaneous phase differences be-
tween two signals (i.e., phase differences that deviate
from 0 mod p). If no phase coupling exists between two
time series, then this distribution is expected to be flat;
therefore, any deviation from this flat distribution indicates
phase synchronization. An index of the asymmetry of the
phase difference distribution can be obtained from a time
series of phase differences DF(tk), k = 1.N according to
the following formula:

PLI¼ j<sign[DF(tk)]> j (4)

PLI values range between 0 and 1. A PLI of zero indicates
either no coupling or coupling with a phase difference cen-
tered around 0 mod p. A PLI of 1 indicates perfect phase
locking at a value of DF different from 0 mod p.

Subject-specific functional connectivity networks were
then computed using identical procedures as in the case of
symbolic mutual information, followed by topological



filtering using orthogonal minimal spanning tree (OMST).
Then, we estimated the graph diffusion distance matrix for
every pair of individual functional brain networks and, in
the context of multidimensional scaling, we projected the de-
rived pairwise distances in a common three-dimensional
space. As shown in Supplementary Figure S1, the spatial sep-
aration of the four groups of participants is unequivocal.

Reliability of OMST Network Metrics

To ensure that gender-related effects did not contribute to
the age- and/or diagnostic group-differences, we computed
network metrics for gender-matched subgroups. As shown
in Supplementary Figure S2, average network metrics were
very similar between split-half subgroups ( p > 0.15 in all
cases). Men/women ratios and average age (–1SD) were as
follows: 15/15 (32.3 – 7.12 years) for the first and 14/16
(33.8 – 8.37 years) for the second healthy adult subgroup;

9/6 (32.6 – 9.67 years) and 8/7 (32.1 – 10.12 years) for the
two mild traumatic brain injury (mTBI) subgroups; 6/8
(10.32 – 2.5 years) and 6/7 (10.69 – 2.8 years) for the two
typically developing child subgroups; and finally, 6/7
(11.35 – 2.68 years) and 5/7 (10.88 – 2.3 years) for the
reading-disabled child subgroups.

OMST-Based Differences Between Age-
and Gender-Matched Healthy Adults and mTBI Patients

Although the two child groups were matched on gender
ratio, there was a higher percentage of women among
healthy adults (62%) compared to the mTBI group (43%).
To ensure that gender did not contribute to group discrimina-
tion, the analysis was repeated on a subgroup of healthy
adults consisting of 22 men and 22 women and a subgroup
of adults with a history of mTBI consisting of 14 men and
14 women. As shown in Supplementary Figure S3, the

SUPPLEMENTARY FIG. S1. Group differences revealed through OMST based on PLI. (A) Dissimilarity matrix of
subject-specific FCGs (N = 132) based on the GDD metric. (B) MDS was applied to the dissimilarity matrix of GDD values,
which were rescaled and projected to a common three-dimensional space. Stress indicates the% loss of information due to the
dimensionality reduction process via the MDS algorithm. FCGs, functional connectivity graphs; GDD, graph diffusion dis-
tance; HA, healthy adults; HC, typically developing (healthy) children; MDS, multidimensional scaling; mTBI, mild trau-
matic brain injury patients; OMST, orthogonal minimal spanning tree; PLI, phase lag index; RD, reading-disabled children.

SUPPLEMENTARY FIG. S2. Split-half, group-averaged network metrics of the topologically filtered PLI-based FCGs.
Blue and purple bars indicate two randomly formed, gender-matched subgroups. D, diameter; Ecc, eccentricity; GE, global
efficiency; HA, healthy adults; HC, typically developing (healthy) children; mTBI, mild traumatic brain injury patients; R,
radius; RD, reading-disabled children.



capacity of OMST to derive functional connectivity graphs
that clearly differentiate healthy adults from adults with a
history of mTBI was maintained (as well as the superiority
of this method over conventional minimal spanning trees).

Classification Results Based on Relative Power

Relative power spectrum was calculated based on the
power spectral density (PSD) for each artifact-free magneto-
encephalography epoch, as the Fourier transform of the auto-
correlation function. PSD was then normalized to range from
0 to 1. We followed a feature selection strategy using Multi-

Cluster/Class Feature Selection (MCFS) for both pairwise
and multi-group classification analysis (Cai et al., 2010).

Leave-one-out cross-validation (LOOCV) scheme was
employed separately for k-nearest neighbor and support vec-
tor machine with RBF kernel classifier. At every round of
LOOCV, the MCFS was applied to the N-1 subjects and
the prediction of the model was validated on the N subject.

Finally, we selected the features with the maximum represen-
tation among the N rounds of the LOOCV. We searched over a
range of features from 1 up to 100 to get the maximum accuracy.

Pairwise and multigroup classification results are pre-
sented in Supplementary Table S1.

SUPPLEMENTARY FIG. S3. Topological filtering of GDD values using orthogonal (upper panel) and conventional
Minimal Spanning Tree (lower panel) for gender-matched healthy adult (HA) vs. mTBI subgroups. (A, C) Dissimilarity ma-
trices of subject-specific FCGs (N = 72) based on the GDD metric using OMST and MST, respectively. Corresponding MDS
results are displayed (B, D). Stress indicates the% loss of information due to the dimensionality reduction process via the
MDS algorithm. R1, R2, and R3 indicate the three prespecified dimensions used to plot participant cases through MDS.
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