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Here we describe the Levenberg-Marquardt algorithm used for solving the blockwise curve-

fitting problem in SUPER T1 mapping. The cost function to minimize is 

∑ ∑  ∑ |y𝑙𝑚𝑛 − 𝐖𝑙𝐒𝑚�̅� (𝐀�̅� − 𝐁�̅� exp (−
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Following our previous work in T2* mapping (1,2), we rewrite the cost function by change of 

variables 

∑ ∑  ∑|y𝑙𝑚𝑛 − 𝐖𝑙𝐒𝑚�̅�(𝐀�̅� − 𝐁�̅� exp(𝐙�̅�𝑡𝑙))|2
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 (S2) 

where 𝐙�̅� = −1/𝐓𝟏�̅�. Such a formulation provided an easier way to calculate the gradient. 

Notice that y𝑙𝑚𝑛, 𝐀�̅�, and 𝐁�̅� are all complex-valued, thus a complex-valued gradient should be 

derived for optimization of the cost function. Alternatively, one can derive a separate gradient for 

the real and imaginary part of the variables (3). This transforms the cost function to 

∑ ∑  ∑ |y𝑙𝑚𝑛 − 𝐖𝑙𝐒𝑚�̅� ((𝐀�̅�
R + 𝜄𝐀�̅�

I ) − (𝐁�̅�
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I ) exp ((𝐙�̅�
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 (S3) 

where 𝐀�̅�
R , 𝐁�̅�

R, and 𝐙�̅�
R are the real part of the variable and 𝐀�̅�

I , 𝐁�̅�
I , and 𝐙�̅�

I  are the imaginary part 

of the variable. The separation of real and imaginary parts is aimed to facilitate separate 

bounding of each part in the optimization to avoid local minima. These boundaries include 

restricting 𝐙�̅�
R ∈ [−0.01 ms-1, −0.0002 ms-1], so that 𝐓𝟏�̅� ∈ [100 ms, 5000 ms], and 𝐙�̅�

I = 0, 

since there should not be any phase variation in T1 relaxation signal. Furthermore, a non-zero 

significant phase term in the exponential term may cancel the modulation frequency from shift 



undersampling and promote ill-conditioning and local minima. In this work, these boundaries 

were enforced by introducing regularization terms to the cost function S3: 

∑ ∑  ∑ (|y𝑙𝑚𝑛 − 𝐖𝑙𝐒𝑚�̅� ((𝐀�̅�
R + 𝜄𝐀�̅�

I ) − (𝐁�̅�
R + 𝜄𝐁�̅�
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I ‖
2
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(S4) 

where 𝜆1, 𝜆2, and 𝜆3 are weights of each regularization, LB and HB are the lower and higher 

bound for 𝐙�̅�
R, respectively, and Ψ(𝐙�̅�

R, 𝜆1, 𝜆2,LB,HB) is a piecewise-defined, first-order 

differential function: 

Ψ(𝐙�̅�
R, 𝜆1, 𝜆2,LB,HB) = {

𝜆1(𝐙�̅�
R − LB)

2
; if 𝐙�̅�

R < LB

0; if  LB ≤ 𝐙�̅�
R ≤ HB

𝜆2(𝐙�̅�
R − HB)

2
; if 𝐙�̅�

R>HB

 

 

(S5) 

Function S5 penalizes any 𝐙�̅�
R that is lower than LB or higher than HB with a quadratic cost 

function. Notice these regularization terms are zero-valued when 𝐙�̅�
R and 𝐙�̅�

I  stay within the 

bound. Thus, these regularization terms do not introduce any bias to the solution, since the 

physiological range is specified to ensure the solution belongs to this range. In our experience, 

we found that when 𝜆1, 𝜆2, and 𝜆3 are sufficiently large, the variables always converge to the 

solution. In our implementation, we used 𝜆1 = 2 × 105, 𝜆2 = 5 × 109, and 𝜆3 = 107. 

The cost function S4 is minimized with the Levenberg-Marquardt algorithm. A pseudocode for 

the algorithm can be found in (4). The initialization for the three parameters, A, B, and T1 were 

1, 2, and 1000 in our implementation and yielded satisfactory performance. The maximal number 

of iterations was 300, and the algorithm was stopped when reaching the maximal number of 



iterations or the norm of the gradient divided by the residual of the cost function was less than 

1.0 × 10−6. 
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