Supporting Information

Here we describe the Levenberg-Marquardt algorithm used for solving the blockwise curve-

fitting problem in SUPER T1 mapping. The cost function to minimize is
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Following our previous work in T2* mapping (1,2), we rewrite the cost function by change of
variables
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where Z;; = —1/T1;. Such a formulation provided an easier way to calculate the gradient.
Notice that y;,,., A7, and Bj; are all complex-valued, thus a complex-valued gradient should be
derived for optimization of the cost function. Alternatively, one can derive a separate gradient for

the real and imaginary part of the variables (3). This transforms the cost function to
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where AR BR and ZX are the real part of the variable and A%, BL, and Z; are the imaginary part
of the variable. The separation of real and imaginary parts is aimed to facilitate separate
bounding of each part in the optimization to avoid local minima. These boundaries include
restricting Z& € [-0.01 ms™!, —0.0002 ms™!], so that T1; € [100 ms, 5000 ms], and ZL = 0,
since there should not be any phase variation in T1 relaxation signal. Furthermore, a non-zero

significant phase term in the exponential term may cancel the modulation frequency from shift



undersampling and promote ill-conditioning and local minima. In this work, these boundaries

were enforced by introducing regularization terms to the cost function S3:
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where 1;, 4,, and A5 are weights of each regularization, LB and HB are the lower and higher
bound for ZR, respectively, and lIJ(Z,‘%, A AZ,LB,HB) is a piecewise-defined, first-order

differential function:

L (zR-1LB):;  ifZR <LB
W(ZR, 1,2, LBHB) = 0; if LB < ZR <HB 5
A,(ZR —HB)*;  ifZR>HB

Function S5 penalizes any ZR that is lower than LB or higher than HB with a quadratic cost
function. Notice these regularization terms are zero-valued when ZR and Z!. stay within the
bound. Thus, these regularization terms do not introduce any bias to the solution, since the
physiological range is specified to ensure the solution belongs to this range. In our experience,
we found that when A, 4,, and A5 are sufficiently large, the variables always converge to the

solution. In our implementation, we used A; = 2 X 10%,1, = 5 x 10%,and 15 = 107.

The cost function S4 is minimized with the Levenberg-Marquardt algorithm. A pseudocode for
the algorithm can be found in (4). The initialization for the three parameters, A, B, and T1 were
1, 2, and 1000 in our implementation and yielded satisfactory performance. The maximal number

of iterations was 300, and the algorithm was stopped when reaching the maximal number of



iterations or the norm of the gradient divided by the residual of the cost function was less than

1.0 x 107,
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