The dual roles of RPE65 S-palmitoylation in membrane association and visual cycle function

Sheetal Uppal¹, Tingting Liu^{1,2}, Eugenia Poliakov¹, Susan Gentleman¹, and T. Michael Redmond^{1*}

¹Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, United States

²Present address: Department of Transfusion, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China

*Address correspondence to: redmondd@helix.nih.gov; Tel.: 301-496-0439; Fax: 301-402-1883.

Supplemental Figure Legends

Figure *S1*. **Co-existence of palmitoylated and non-palmitoylated populations of RPE65**. Acyl-RAC analysis of RPE65 showed that a major population of RPE65 did not pull down with thiopropyl-sepharose beads (unbound fraction). The palmitoylation status of this unbound RPE65 was checked by twice sequentially re-incubating unbound fraction (unbound fraction 1 and 2) with fresh beads, followed by immunoblot analysis using anti-RPE65 antibody. This showed that there was no pulldown of this population of RPE65, confirming its lack of palmitoylation.

Figure S2. Amino acid sequence alignment of RPE65 from different species. Sequence alignment shows the position of non-conserved (in blue color) and conserved (in red color) cysteine residues among different species. Note that only in one of three paralogs in teleost fishes and in hagfish RPE65 is C146 not completely conserved. There are 12 cysteine residues in bovine RPE65. Dog RPE65 has 11 cysteine residues, with substitution of the non-conserved cysteine 396 (present in human and bovine RPE65s) to an arginine residue.

Figure *S3*. **Structural view of surface exposed cysteine residues.** Surface view of dog RPE65 structure was visualized and generated using PyMol software. Close inspection of the cysteine residues on the threedimensional structure of RPE65 revealed five cysteines (C112, C169, C195, C278 and C448, as shown in red color; highlighted in circle) that have their thiol groups facing to the solvent. The iron (Fe) atom in the center of the RPE65 structure is represented by orange color.

Figure *S4.* **Identification of cysteine residues involved in RPE65 palmitoylation.** HEK293F cells were transfected with cysteine mutants of RPE65 to determine the residues that undergo palmitoylation. Cell lysate was prepared (as described in Materials and Methods section) and used for ABE and acyl-RAC analysis. (A) ABE result of cysteine 112, 146 and 195 mutants compared to wild type RPE65. (B) Acyl-RAC results for both alanine and serine substituted mutants of cysteine residues other than C112, C146 and C195 showed a protein band in the HAM-treated samples and so did not affect palmitoylation of RPE65. (C) Serine substituted C112, C146 and C195 residues showed reduced or no RPE65 band in the HAM-treated samples, and thus are involved in RPE65 palmitoylation. Samples were treated with 0.5 M hydroxylamine (HAM; indicated as "+") or 0.5 M NaCl (indicated as "-"), respectively. Results were calculated as mean \pm S.D. from three independent experiments. *P<0.005, **P<0.05, unpaired student's t-test.

Figure *S5*. **Mass spectrometric analyses of control and hydroxylamine-treated samples for rhodopsin and CRALBP.** Comparison of relative abundance of NEM- and 4-VP modified peptides in the control and HAM-treated samples for rhodopsin (A) and CRALBP (B). N-ethyl maleimide (NEM) and 4-vinyl pyridine (4-VP) modification represents the non-palmitoylation and palmitoylation of cysteine residues, respectively. We identified the peptide containing 4-VP modifications of cysteines 322 and 323 from the bovine rhodopsin sample. In the case of CRALBP, only NEM-modified peptides were detected, indicating lack of palmitoylation. The square box represents the technical replicates of the sample) and the line represent the comparative behavior of the peptide ion of interest in the – HAM and + HAM samples.

Figure *S6.* **MS-coupled acyl-labeling of bovine microsome RPE using different MS instruments, Synapt G2-Si HDMS, AB Sciex 6600 w/SelexION**. Rhodopsin and CRALBP were used as positive and negative control. NEM- and and 4VP-modified cysteine indicates indicates non-palmitoylation and palmitoylation of cysteine residue, respectively. The ratio of modified peptide shown was relatively high in hydroxylamine-treated samples compared to untreated samples.

Figure *S7*. **Immunoblot analysis of proteins in HEK293F-based heterologous visual cycle system.** HEK293F cells transfected with pVitro2/RPE65+CRALBP and pVitro3/LRAT or LRAT^{C161S} mutant+RDH5 plasmids were analysed by western blotting for RPE65, CRALBP, LRAT, and RDH5. Figure S8. Expression profiles of wild type and C112, C146 and C195 mutant RPE65 protein. HEK293F cells were transfected with pVitro2/RPE65 wild type or cysteine mutants +CRALBP and $\sim 10\mu g$ of total protein were analysed by western blotting for expression analysis. The same samples were then subjected to subcellular fractionation shown in Figure 6D.

Figure *S9.* **Presence of C112 mutant protein in lysosomal fraction.** HEK293F cells transfected with pVitro2/RPE65 wild type or C112 mutants +CRALBP were subjected to lysosomal extraction kit (Sigma) and then the lysosomal fractions were analysed by western blotting for RPE65 and cathepsin D (lysosomal marker protein).

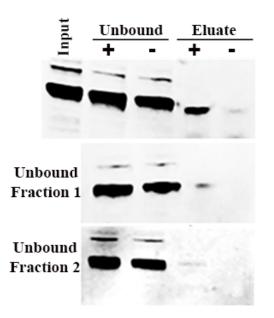

Figure *S10*. Enlarged view of the catalytic core of RPE65 showing rotamer variability of cysteine 195. Structural representation of RPE65 (PDB ID: 4RSC; chain A) in complex with the non-retinoid inhibitor emixustat and palmitate. Iron (Fe) atom in the center is represented in orange color. Residues C146 and C195 are denoted as stick figures on the cartoon to mark the orientation of the thiol group. The thiol group (marked with arrows) of C195 exists in two different conformations Asterisks (*) represent the location of the unresolved loop (residues G196-S201) in the ligand bound RPE65.

Figure *S11*. **Surface view of crystal structure of RPE65.** A, RPE65 structure showing three hydrophobic regions. The region consisting of aa109-125 is generated by the ITASSER server (shown in yellow). B, hydrophobic surface view of RPE65 as predicted by PyMOL server. Red color indicates the hydrophobic surface.

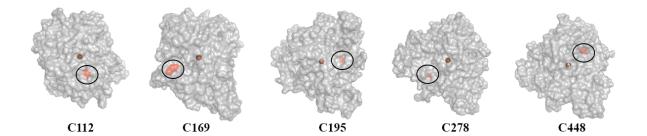
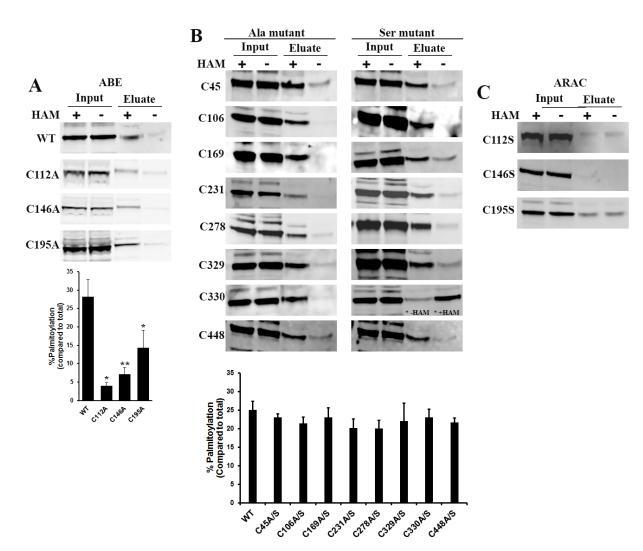
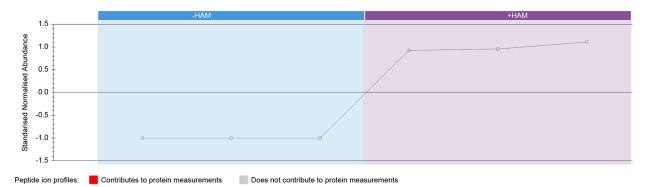
Figure *S12*. Enlarged view of the catalytic core of RPE65 showing the approximate distance of 8 Å between the bound palmitate and C146 thiol atom. The dashed yellow line represent the measured distance between the bound palmitate and C146-thiol atom in the palmitate-bound crystal structure of RPE65 (PDB ID: 4RSC).

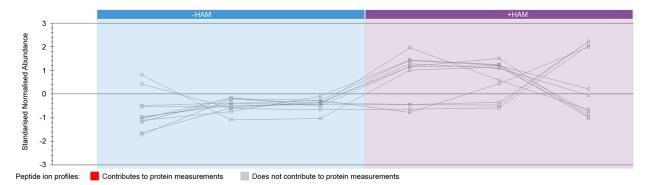
Figure *S13*. Original western blot panels with gel markers for Figures 1A, 1C, 2B, 5A, 5B, 5C, 6, S1, S2, S3, S6A, S6C, S8, and S9. Complete scanned gels for western blots shown. Red dashed line identifies cropped region shown in respective figure.

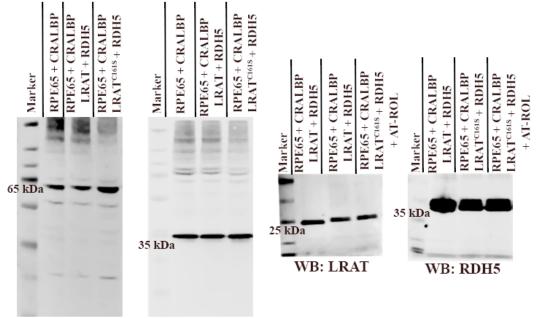
Figure S1

OG	1 1 1 1 1 1	I I Y TNR V R	I	.GGY	KKL	FET	VEEI	LSSPI	LTAH	IVTGI	RIPL	WLTO	SLL	RCGPG	LFEV	GSI	EPFYHL	FDGQI	LLF	IKFD	FKEG	HVTY	HRRI	IRT	DAY	VRAN	ITEKR	IVI	
OG OUSE HICK ALAM EBRFI AMPRY AGFI OVINE UMAN OG	1 1 1 1 1 1 101	I Y TNR V R ATC	D																										
OUSE HICK ALAM EBRFI AMPRY AGFI OVINE UMAN OG	1 1 1 1 1 1	Y TNR V R ATC	D																										10
HICK ALAM EBRFI AMPRY AGFI OVINE UMAN OG	1 1 1 1 1	Y TNR V R ATC	D																										10
ALAM EBRFI AMPRY AGFI OVINE UMAN OG	1 1 1 1	TNR V R AT <mark>C</mark>																											10
ALAM EBRFI AMPRY AGFI OVINE UMAN OG	1 1 1 1	TNR V R AT <mark>C</mark>						7	,		т	R				А								v					10
EBRFI AMPRY AGFI OVINE UMAN OG	1 1 1 101	V R AT <mark>C</mark>				s	π		7 g	`	v						Q			Е	G	I		•	т				10
AMPRY AGFI OVINE UMAN OG	1 1 101	ATC			I		Ā	NE	Ť		-	FIK		L	ъ	А	×		м	-		۰ ٥	FК	vĸ	-	-	г [.]	v	10
AGFI OVINE UMAN OG	1 101			к							S	S		L	-	-	ЕL		м		ISN	-	AC	LK	т	-	N	A	10
OVINE UMAN OG	101				TA			VKT 1					м		~							A					N	A	
UMAN OG					Α	Y	:	TENS	/PTT	10 1	H D	N			С		L		м		IRK		TS	LL	S				9
UMAN OG			106		12									146						169							195		
OG	101	TEFG	TCAFF	DPC	KNI	FSR	FFS	YFRG	VEVT	DNA			SEDY.	YACTE	TNFI			ETIKÇ	2VD1	LCNY	VSVN	IGATZ	HPHI	END	GTV	YNIC	SNCFG	KNF	
	TOT										v					3	C												20
NICE	101															1	C												20
	101							к								3	C 1				I			s					20
HICK	101		ΥΥ					к			v					1	C D			к			7	7					20
	101		F				L	Q 1	r.		v				Y	1		v	~		I	v		н				н	20
EBRFI			Ŷ				-	ĸ		с	v	I	F	v	Ŷ		VD	LI			NI	v		R			м	GA	
			vŸ							C	•	-		v	-	-						•					м	GL	
AMPRY								QK:		_		_	F	-			C _	VAI			ΙI			R	_				
AGFI	101		FΥ					1	LI	т	v	I	SF	s	YV		D	LGI	¢	D	CVI	v		A	I			RM	1
										231												278							
		SIAY	NIVKI	PPL	QAD	KED	PIS	KSEIV	/VQF	PCSI	DRFK	PSY	/HSF	GLTPN	YIVF	VE	PVKIN	LFKFI	SSV	VSLW	GANY	MDCI	ESNE	TMG	WWL	HIAI	KKRK		
UMAN	201																											L	3
OG	201							v										L											3
OUSE	201	TV	I		к		N	v																s		v	R	F	3
HICK			IR				MN	v										L						-		v		RLL	
	201		IK					AKV		1							`	-		I			н		м		E HTG		
			_	_		~									_	ç	2	-	-		~								
EBRFI		L	R		K	s	E	KV		SAI				ΜE	F			L	Α	IR					ті		R HPG		3
AMPRY		F	I		LK	VN		MSV						ΜE	F	ς		W		GPR			H			v	RG		3
AGFI	201	NFV	IR	M	1 D		LK	LKV	TS	RI	Ξ			KSE	F	ç	2	W	А	GPR	s		D	IV	ті	v	HSG	EVL	2
									32	<mark>9</mark> 330																	396	5	
OVINE	301	NNKY	RTSPF	NLF	THH	NTY	EDHI	EFLIV	DLC	CWK	GFEF	VYN	LYL	ANLRE	NWEE	VKF	KNARKA	PQPE	/RR	VLP	LNIC	KAD	GKNI	VTL	PNT	TAT/	AILCS	DET	4(
UMAN	301						N	G																					4
OG	301		s				N													s							ΤR		4
	301		-													T	х м			-	т	v	R		н		TR		4
	301	т	А			F				т				A	D	-	QE		A		R	•			Ŷ		TR		4
		-				Ľ				-				-	D	-		-											
	301	I	A	_		_	H		_	_				_			RSEP			_	DH			N	Y		VR	-	40
EBRFI			AM			С	S	IVI		А			W	A			R MI					REE		IS	Y		TMRA		40
AMPRY				I		F		GHIV				I		м		LF						EEEY			GD		T RN		40
AGFI	301	PTT	S	Ι			EDO	GQIV	A		Y			S D	K N	LKN	ICALE				HLE	E EF		RV	ſQH		T RH	G	3
														44	8														
OVINE	401	IWLE	PEVLF	SGP	RQA	FEF	PQII	NYQK	GGK	PYT	YAYG	LGLI	IHFV.	PDRLC	KLNV	КTР	KETWVW	QEPDS	SYPS	SEPI	FVSE	IPDAI	EEDI	GVV	LSV	vvs	-AG	QKP	50
UMAN	401								С																				5
ÖG	401																												5
	401							1	~					ĸ			ΙМ				ç	`							5
			-						-								I M				5	6			-	Ŧ	~	D	
	401	v	I		н			ĸ	-	_	т								_				_		1	I	S	Р	5
	401							КІ		D		v		S				5	r		ç					I	E		5
EBRFI								RM	7N	N				I		R				L	QI			IL	MTI			R	4
AMPRY	401						R	El	NN R	D I	F			KIY			н	I G	2		IAF	۲ ç	2D	L	. TT		P	RT	5
AGFI	400	v				D		KR	N	N				KIY			QML I	нт т	2		IAF	GTE	2	L	VTS		AS	s	4
OVINE	501	AYLT.	ILNAK	DLS	EVA	RAF	VET	NIPV	FFHG	LFK	ks	- 51	33																
	501										-	53																	
OG	501											53																	
					-					_																			
	501		v		I		т				R	53																	
	501			м				v			RA	53																	
ALAM	501	F		м	I		DS			м	Α	53	33																
EBRFI	500	тС			I		1	LT		MY I	P-	53	31																
AMPRY	502	F		т			DV	5	5	мк	E SK	H 53	36																
	500		LDR		L		DR				п-	53																	
IGE I	500	E		. 1			DR				• -	5.	~~																

Figure S3


Figure S4


A Rhodopsin: QFRN³¹⁶C_{NEM}MVTTL³²²C_{4-VP}³²³C_{4-VP}GKNPLGDDEASTTVSK

Rhodopsin (palmitoylated p	orotein)	
Peptides	Synapt G2-Si HDMS [⊧]	AB Sciex6600 w/SelexION
K.QFRNCMVTTL ₃₂₂ C ₃₂₃ CG	₃₂₂ C: 4VP	₃₂₂ C: 4VP
KNPLGDDEASTTVSK.T	₃₂₃ C: 4VP	₃₂₃ C: 4VP
CRALBP (non-palmitoylated	d protein)	
Peptides	Synapt G2-Si HDMS ^E	AB Sciex6600 w/SelexION
K.DHGPVFGP ₃₈ CSQLPR.H	38C: NEM	38C: NEM
R. ₁₃₈ CTVEAGYPGVLSTR.D	138 C: NEM	138 C: NEM
RPE65		
Peptides	Synapt G2-Si HDMS [₌]	AB Sciex6600 w/SelexION
R.IVITEFGT ₁₀₆ CAFPDP ₁₁₂ CK.N	106 C: NEM	106 C: NEM
100 112	112C: NEM; 4VP	₁₁₂ C: 4VP
R.GVEVTDNALVNIYPVGEDY	146 C: 4VP	146C: NEM
YA ₁₄₆ CTETNFITK.V		
K.QVDL ₁₆₉ CNYVSVNGATAHP	169 C: NEM	169 C: NEM
HIENDGTVYNIGN ₁₉₅ CFG.K	195 C: NEM	195 C: NEM

Figure S7

WB: RPE65

WB: CRALBP

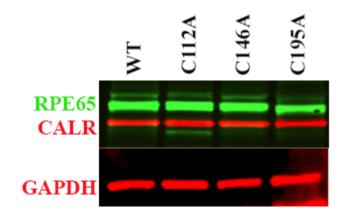
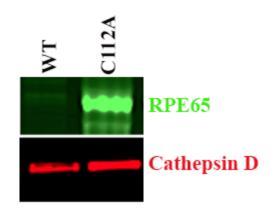



Figure S9

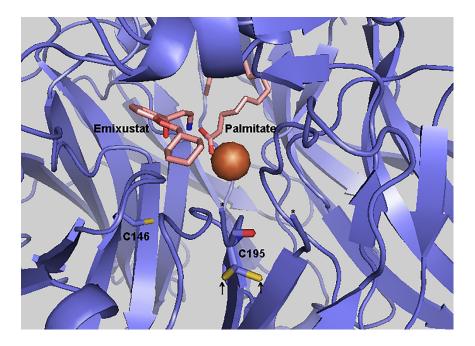


Figure S11

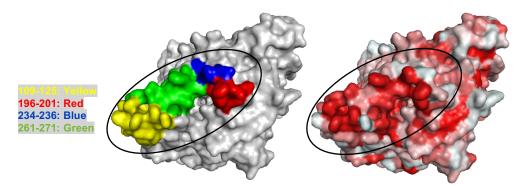
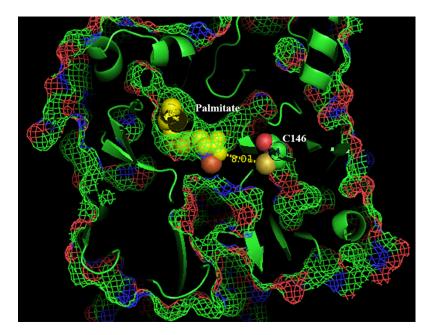
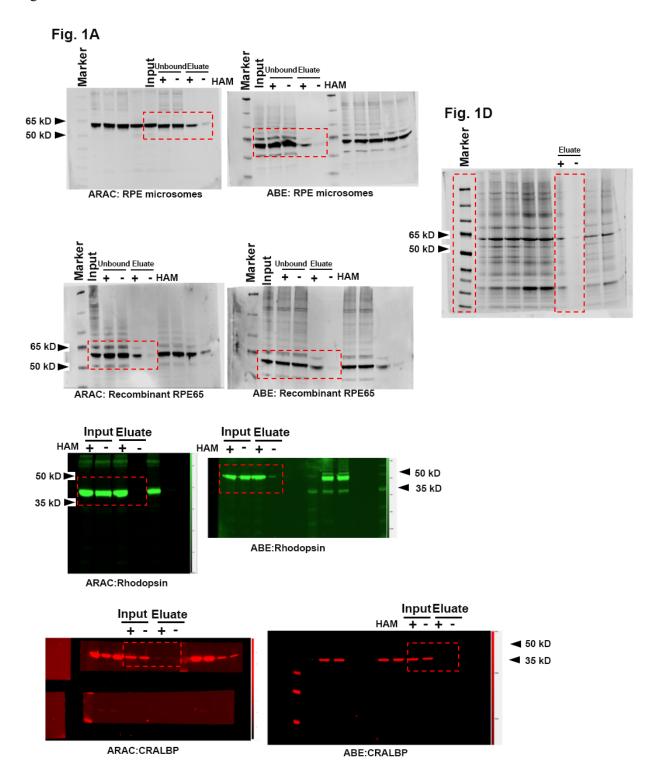
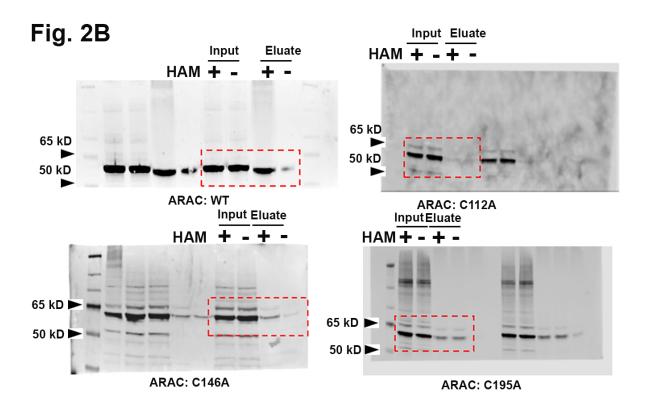
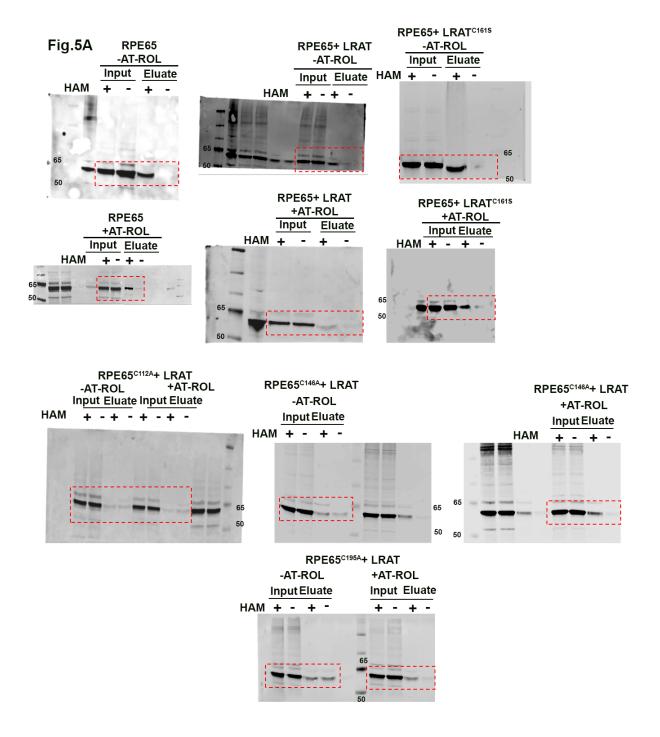
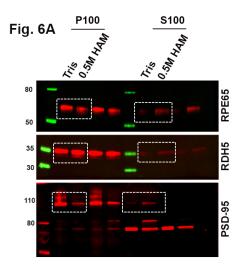
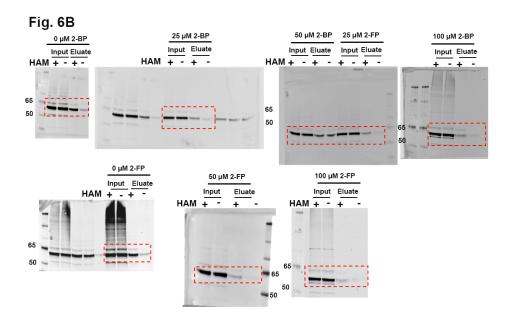
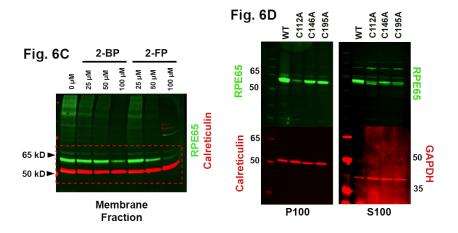
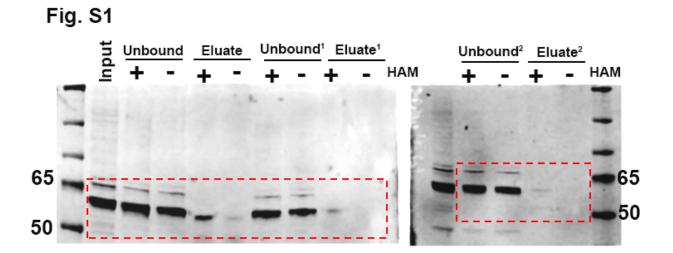


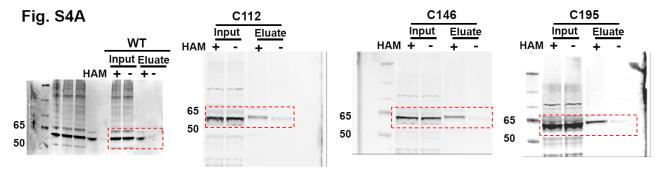
Figure S12

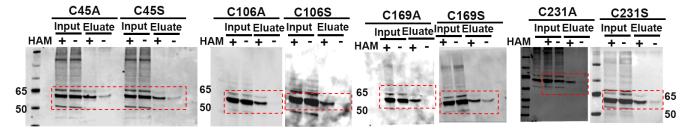






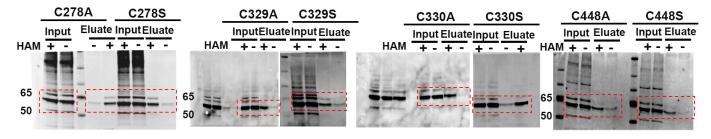

Figure S13

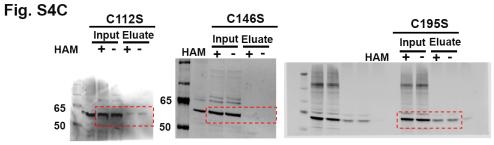












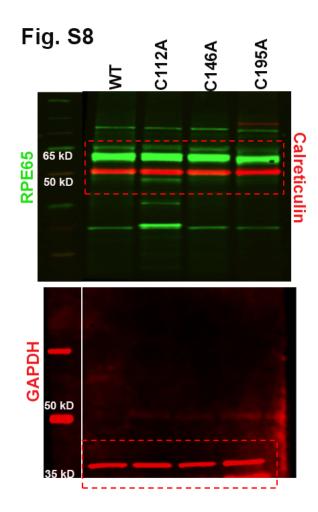


Fig.S9 65 kD 50 kD