I'm sorry that I can't make it clear. The given and family names for the authors are highlighted in blue and yellow, respectively, as shown below, and the middle name is not highlighted.

<mark>Kien</mark> Van <mark>Vu,</mark> ⊌

Chan-Young Jeong,

Thuy Thi Nguyen,

Trang Thi Huyen Dinh,

Hojoung Lee,

Suk-Whan Hong.

I would appreciate it if the name of the funding organization in the Acknowledgements remains unchanged.

Lines	Number of seeds per one silique	Number of siliques per one plant
$Col-0$	50.2 ± 2.1	108.6 ± 12.3
$gfat1-I$	51.5 ± 1.7	106.2 ± 9.5
GFATI OE	50.0 ± 1.6	104.7 ± 11.6
GFAT1 RNAi	29.8 ± 2.2	29.5 ± 4.9

Table S2. Number of siliques per plant and seeds per silique in wild-type, gfat1-1, AtGFAT1 overexpression and RNAi lines

The values are mean \pm SD (n = 50 for seeds per one silique; n = 10 for siliques per one plant)

Supplementary Figure S1. Multiple alignment of amino acid sequences of L-glutamine D-fructose-6-phosphate amidotransferase (GFAT). At, *Arabidopsis thaliana* GFAT (At3g24090); Mm, *Mus musculus* GFAT (P47856); Ce, *Caenorhabditis elegans* GFAT (Q19130); Ec, *Escherichia coli glmS* GFAT (P17169). The black-filled boxes and the grayfilled boxes indicate identical and similar residues, respectively.

Supplementary Figure S2. The *gaft1-2* mutation has no effect on morphology, nuclear division, and viability of pollen quartets at the tricellular stage. (A) Scanning electron microscopy (SEM) imaging of pollen quartets from *qrt1-4*/*qrt1-4* and *qrt1-4*/*qrt1-4 gfat1- 2*/+ plants. (B) DAPI staining analysis of pollen quartets. (C) Alexander staining analysis of pollen quartets. Scale bars: 20 μm.

Supplementary Figure S3. Complementation of male gametophytic defect of *gfat1-2*/+ plants by introduction of *pGFAT1::GFAT1*. (A) PCR analysis for distinguishment of *AtGFAT1* cDNA and genomic DNA using the *gfat1-2* F and *gfat1-2 R* primers and for identification of T-DNA insertion using the *gfat1-2* F and LBb1 primers. Genomic DNA was extracted from leaves of 4-week-old plants. As expected, the 641-bp T-DNA specific and the 475-bp *AtGFAT1* cDNAspecific PCR products were amplified from *gfat1-2/gfat1-2* plants. However, the 915-bp genespecific PCR products, including intron, was not amplified in the *gfat1-2 /gfat1-2* mutant plants. In contrast, wild-type plants yielded only the 915-bp gene-specific PCR products including intron. (B) 10-day-old and 4-week-old plants of the complementation line (*gfat1-2 pGFAT1::GFAT1*) displayed no detectable differences under normal conditions compared to the wild-type plant (Col-O). (C) *In vitro* germination of pollen grains from wild-type and the complementation plants. Scale bars: 1.5 cm (B), 50 μm (C).

Supplementary Figure S4. Construction of *AtGFAT1* overexpression and RNAi suppression lines. (A) The schematic diagrams for construction of *AtGFAT1* overexpression and *RNAi* constructs. Full-length *AtGFAT1* cDNA was placed under the control of the cauliflower mosaic virus 35S (CaMV35S) promoter in pBI121 vector to make the *AtGFAT* overexpression (OE) construct, and the *AtGFAT1* RNA interference (RNAi) construct was produced containing an inverted repeat of a 601 bp DNA fragment of *AtGFAT1* cDNA in the pFGC5941 vector. These constructs were transformed into wild-type *Arabidopsis* using the Agrobacterium strain GV3101. We selected three independent *h*omozygous lines of transgenic plants carrying a single copy of the transformed construct at T3 generation for detailed analyses. (B) Photographs of representative 10-day-old and 4-week-old plants of wild-type and transgenic plants. Scale bars: 1.5 cm.

 -350 aaaacagagagattcctaattatgaattgatttttactgtatttaattat -300 gaattgatctgaacttagggacagtggctagtggcctatatcagcacgtg -250 acactagccacgcgtagcggttccgctccaacaaaaaagcaaactcgcta -200 tctgtccaatcaggaacaaccacgtcatagctcctgacagaagtgaaaaa -150 gacgaaactatcCaaacttatggatcgtatttacaaagtcaaacccaaat -100 ctgagtcaaaaaaataagaatctcaccgttccttacttcttcttcatcttc -50 cctcgaaaaactgagaaacattttctttcaaaagagagattacaacaacc $+1$ ATG

Supplementary Figure S5. Schematic representation of predicted promoter sequence of *AtGFAT1*. Line and arrow indicate the promoter and the coding region of *AtGFAT1*, respectively. Green box indicates the relative location of the ERSE motif in the *AtGFAT1* promoter. The nucleotide sequences of the ERSE motif in the promoter are represented in green color. The A of ATG, the translation initiation codon, is set to $+1$ to determine the position of the promoter sequence.

Supplementary Figure S6. The effect of DTT on the primary root growth of wild-type, *gfat1-1*, *AtGFAT1* OE, and RNAi lines. (A) Wild-type, *gfat1-1*, *AtGFAT1* OE, and RNAi seedlings were vertically grown for 10 days on ½ MS media supplemented with a range of DTT concentrations. Representative pictures of 10-day-old seedlings were taken. (B) The primary root length grown under DTT treatment was represented as a relative value for the root grown in normal conditions. Values represent means \pm SE of three repeats ($n \ge 20$ per repeat).