I'm sorry that I can't make it clear. The given and family names for the authors are highlighted in blue and yellow, respectively, as shown below, and the middle name is not highlighted...

<mark>Kien</mark> Van <mark>Vu,</mark> ↓

Chan-Young <mark>Jeong</mark>, 🖉

<mark>Thuy</mark> Thi <mark>Nguyen</mark>, 🖉

<mark>Trang</mark> Thi Huyen <mark>Dinh</mark>, 🎍

Hojoung Lee, 🧔

<mark>Suk-Whan</mark> <mark>Hong</mark>↓

I would appreciate it if the name of the funding organization in the Acknowledgements remains unchanged.

Table S1. List of primers used in this work				
Name	Oligo sequence 5' to 3'	Restriction enzyme site	Purpose	
LBb1	GCGTGGACCGCTTGCTGCAACT		Left border primer for identification of T-DNA	
P1 (GFAT1-1:F)	TAGGGACAGTGGCTAGTGGCC			
P2 (GFAT1-1:R)	GCTCACCATGAGTAGCCCACC			
P3 (GFAT1-2:F)	CTCAATCTTCTGGTCCTGGAG		Genotyping	
P4 (GFAT1-2:R)	ACCGCAGTTGCTTACAAACCC			
P5 (GFAT1-3:F)	GCGTGGATAGTGGCACAGTTG			
P6 (GFAT1-3:R)	TCAGCCCACCTAAGAGGACGG			
QRT1-4:F	GAGCTGTTGATATGGTTCCTG			
QRT1-4:R	CTAAGTAAATCTGCCCAGTAC			
pGFAT1:F	CAATG <u>AAGCTT</u> TACTATTCTG	HindIII	Making pGFAT1::GUS and	
pGFAT1:R	C <u>GGATCC</u> TTGAAAGAAAATGTTTCTCAG	BamHI	pGFAT1::GFAT1 constructs	
GFAT1 cDNA:F	C <u>GGATCC</u> ATGTGTGGAATCTTCGCG	BamHI	Making pGFAT1::GFAT1 and	
GFAT1 cDNA:R	C <u>GAGCTC</u> CTATTGAGTAGTCACACT	Sacl	GFAT1 OE constructs	
GFAT RNAi Sense:F	G <u>GGCGCGCC</u> GCTACTCATGGTGAGCCAGCT	Ascl		
GFAT RNAi Sense:R	G <u>ATTTAAAT</u> GTTCCACTGAAGCAGGTCTCG	Swal		
GFAT RNAi antisense:F	G <u>TCTAGA</u> GCTACTCATGGTGAGCCAGCT	Xbal	Making GFA11 RNAi construct	
GFAT RNAi antisense:R	G <u>GGATCC</u> GTTCCACTGAAGCAGGTCTCG	BamHI		
ACTIN2:F	GTGTGTCTTGTCTTACTCGGTTCG			
ACTIN2:R	AATAGCTGCATTGTCACCCGATACT		RT-PCR and qRT-PCR	
GFAT1:F	ACAGTGAAGGAATACTTGCAG			
GFAT1:R	TTGAGTAGTCACACTCTTTGC			
CNX1:F	CTCGTCGCCATTGTGGTTGTA			
CNX1:R	CCGTCTTCACATACATATTCC			
BIP1/2:F	AATGCCCTGGAGACATACGTG			
BIP1/2:R	CTCCTCAGTCGATGATTCTCC			
BIP3:F	GAAGATGACGAGGAACAAAGC			
BIP3:R	TTCCCAAGAAAGCTTCAGCTG			

gjuit-1, AlorATT overexpression and KINAI mies				
Linos	Number of seeds per one	er one Number of siliques per		
Lines	silique	one plant		
Col-0	50.2 ± 2.1	108.6 ± 12.3		
gfat1-1	51.5 ± 1.7	106.2 ± 9.5		
GFAT1 OE	50.0 ± 1.6	104.7 ± 11.6		
GFAT1 RNAi	29.8 ± 2.2	29.5 ± 4.9		

 Table S2. Number of siliques per plant and seeds per silique in wild-type,

 gfat1-1, AtGFAT1 overexpression and RNAi lines

The values are mean \pm SD (n = 50 for seeds per one silique; n = 10 for siliques per one plant)

At	1	MCGIFAYLNFHANKERRYILDVLENGLRRLEYRGYDSAGIAIDNSSBSSSPLVF
Mm	1	MCGIFAYLNYHVPRTRREILETLIKGLORLEYRGYDSAGVGIDGGNIKIWEANACKIOLI
Ce	1	MCGIFAYLNFLTPKKRSEIVDILVOGLORMEYRGYDSAGIAIDGSNEIESBHSSVALL
Ec	1	MCGIVCAIAQRDVABILLEGLRRLEYRGYDSAGIAVVDAEGHMTRL
At	55	RQAGNIESIVNSVNBEITNTDLNLDEVFYFHAGIAHTRWATHGEFAFRNSHFQSSGPGDD
Mm	61	KKKGKVKAIDEEVHKQQDMDLDIEFDVHLGIAHTRWATHGEFNPVNSHFQRSDKNNE
Ce	59	RKAGKVSVISDFIKESSDLDMDMEYNIHCGIAHTRWATHGSPRDVNSHFHRSNDKNE
Ec	47	RRLGKVQMIAQAAEPHPLHGGTGIAHTRWATHGEPSEVNAHPHVSEH
At	115	FLVVHNGVITNYBVIKETIVRHGFTFESDTDTEVIPKLAKFVFDKANEEGGQTVTFCEVV
Mm	118	FIVHNGIITNYKOLKKFLESKGYDFESETDTETIAKLVKYMYDNMESQDVSFTTLV
Ce	117	FLVVHNGIITNYRSIKEYLEKKGHKFESETDTEVIAKLAQHIHDRYPDFSFRQLV
Ec	94	IVVVHNGIIENHEPLRBELKARGYTFVSETDTEVIAHIVNMELKQGGTLREAV
At	175	FEVMRH <mark>LEGAYALIFKSWHYPNELIA</mark> CKL <mark>GSPLLIGVK</mark> ELDQGESNSH
Mm	175	ERVIQQLEGAFALVFKSVHFPGQAVGTRRGSPLLIGVRSEHKLSTLHIPILYRTARTQIG
Ce	172	ETVIQQLEGAFAL <mark>AFKSSRFPGQLVASRRGSPLLVGIKS</mark> NSRLQTNHFPVSFSKDAG
Ec	147	LRAIFQLRGAYGTVINDSRHPDTLLAARSGSPLVIGIGMG
At Mm Ce Ec	223 235 229 187	QD STWWGSQAE-RGKDQD WK-WGDEKQTDGRR <mark>B</mark> MSNHATHLRDETSFVETPNNILDLSIAVRSSN <mark>GS</mark> AKMEIS <mark>DSTT</mark> A
At	227	AHFLSKNDHPKEFFLSSDPHALVEHTKKVLVIEDGEVVNLKDGGVSILKFENERGRCNGL
Mm	263	LFPVSEKAVEYYFASDASAVIEHTNRVIFLEDIDVAAVVDGRLSIHRIKRTAGD
Ce	288	VRPFDSIDWEVEYFVASDAAAIIEHTKQVIFLEDIDVAFVEDGALTIHRISRHADN
Ec	187	
At	287	SRPAS <mark>VERALSVLEMEVEQIS</mark> KGKYDHYMQKEIHEQPESLTTTMRGRLIRGGSRKTKTVL
Mm	317	HPG <mark>RAVQTLQMELQQIMKGNFSSFMQKEIFEQPESVVNTMRGRV</mark> NFDDYTVN
Ce	344	GEQKREVKILEMELQEIMKGSFKTYMQKEIFEQPISVVNTMRGRVLPSGQVV
Ec	228	AEVKRQDIESNLQYDAGDKGIYRHYMQKEIYEQENAIKNTITGRISHGQVD
At	347	LGGLKDHL-KTIRRSRRIVFICCGTSYNAALASRFILEELSGIPVSMEIASDLWDRQGPI
Mm	369	LGGLKDHI-KEIQRCRRIIIIACGTSYHAGVATRQVLEELTELPVMVEIASDFLDRNTPV
Ce	396	LGGIKEYL-PDIKRCRRIIMVACGTSYHSAIACRQILEELSELPVVVEIASDFLDRETPI
Ec	279	LSELGPNADELLSKVEHIQIIACGTSYNSGMVSRYWFESLAGIPCDVEIASEFRYRKSAV
At	406	YREDTAVFVSQSGETADTILAIDYARENGALC-VGITNTVGSSIARKIHCGVHINAGAEI
Mm	428	FRDDVCFFISQSGETADTIMGLRYCKERGALT-VGITNTVGSSISREIDCGVHINAGPEI
Ce	455	FRDDVCIFISQSGETADTILALRYCKERGALT-IGVTNTVGSSICRESHCGIHINAGPEI
Ec	339	RRNSIMITISQSGETADTILACRISKELGYIGSLAICNVFGSSIVRESDLAIMTNAGTEI
At	465	GVASTKAYTSQIVVMVMIALAIGSDTISSQKRREAIIDGLLDLPYKVKEVLKLDDEMKDL
Mm	487	GVASTKAYTSQF <mark>VSLVMFALMMCDDRISMQERRK</mark> EIMLGLKRLPDLIKEVLSMDDEIQKL
Ce	514	GVASTKAYTSQILSLLMFALTLSDDRISMAKRREEIIDALNDLPELIREVLQLDEKVLDI
Ec	399	GVASTKAFTTQITVLLMLVAKLSRLKGLDASIEHDIVHGLQALPSRIEQMLSQDKRIEAL
At	525	AQLLIDEQSLLVFGRGYNYATALEGALKVKEVALMHSEGILAGEMKHGPLALVDENIPIA
Mm	547	ATELYHQKSVLIMGRGYHYATCLEGALKIKEITYMHSEGILAGELKHGPLALVDKLMPVI
Ce	574	AKQIYKEKSLLIMGRGLNFATCLEGALKIKEISYMHCEGIMSGELKHGPLANVDEFISIC
Ec	459	AEIFSDKHHALFIGRGDQYPIALEGALKIKEISYTHAEAYAAGELKHGPLALIDADMPVI
At	585	VIATRDACESKQQSVIQQIHARKGRLIVMCSKGDAASVSSSGSCRAIEVPQVEDCLQPVI
Mm	607	MIIMRDHTYAKCQNALQQVVARQGRPVVICDKEDTEIIKNIKKTIKVPHSVDCLQGIL
Ce	634	MVVCNDRVYKKSINALQQVVARKGAPIIIADCTVPEG-DLA <mark>G</mark> MKHIIRVPKTVDCVQNIL
Ec	519	VVAPNNELLEKIKSNIEEVRARGGQLYVFADQIAGFV <mark>SS</mark> DNMHIIEVPHVEDVIAPIF
At	645	NIVPLQLLAYHL <mark>T</mark> VLRGHNVDQPRNLAKSVTTQ
Mm	665	SVIPLQLLAFHLAVLRGYDVDFPRNLAKSVTVE
Ce	693	TVIPLQLLS <mark>YHIAELNG</mark> ANVDRPRNLAKSVTVE
Ec	577	YTVPLQLLAYHVALIKGTDVDQPRNLAKSVTVE

Supplementary Figure S1. Multiple alignment of amino acid sequences of L-glutamine D-fructose-6-phosphate amidotransferase (GFAT). At, *Arabidopsis thaliana* GFAT (At3g24090); Mm, *Mus musculus* GFAT (P47856); Ce, *Caenorhabditis elegans* GFAT (Q19130); Ec, *Escherichia coli glmS* GFAT (P17169). The black-filled boxes and the gray-filled boxes indicate identical and similar residues, respectively.

Supplementary Figure S2. The *gaft1-2* mutation has no effect on morphology, nuclear division, and viability of pollen quartets at the tricellular stage. (A) Scanning electron microscopy (SEM) imaging of pollen quartets from *qrt1-4/qrt1-4* and *qrt1-4/qrt1-4* gfat1-2/+ plants. (B) DAPI staining analysis of pollen quartets. (C) Alexander staining analysis of pollen quartets. Scale bars: 20 µm.

Supplementary Figure S3. Complementation of male gametophytic defect of *gfat1-2/+* plants by introduction of *pGFAT1::GFAT1*. (A) PCR analysis for distinguishment of *AtGFAT1* cDNA and genomic DNA using the *gfat1-2* F and *gfat1-2 R* primers and for identification of T-DNA insertion using the *gfat1-2* F and LBb1 primers. Genomic DNA was extracted from leaves of 4-week-old plants. As expected, the 641-bp T-DNA specific and the 475-bp *AtGFAT1* cDNA-specific PCR products were amplified from *gfat1-2/gfat1-2* plants. However, the 915-bp gene-specific PCR products, including intron, was not amplified in the *gfat1-2 /gfat1-2* mutant plants. In contrast, wild-type plants yielded only the 915-bp gene-specific PCR products including and 4-week-old plants of the complementation line (*gfat1-2 pGFAT1::GFAT1*) displayed no detectable differences under normal conditions compared to the wild-type plant. Scale bars: 1.5 cm (B), 50 µm (C).

Supplementary Figure S4. Construction of *AtGFAT1* overexpression and RNAi suppression lines. (A) The schematic diagrams for construction of *AtGFAT1* overexpression and *RNAi* constructs. Full-length *AtGFAT1* cDNA was placed under the control of the cauliflower mosaic virus 35S (CaMV35S) promoter in pBI121 vector to make the *AtGFAT* overexpression (OE) construct, and the *AtGFAT1* RNA interference (RNAi) construct was produced containing an inverted repeat of a 601 bp DNA fragment of *AtGFAT1* cDNA in the pFGC5941 vector. These constructs were transformed into wild-type *Arabidopsis* using the Agrobacterium strain GV3101. We selected three independent *h*omozygous lines of transgenic plants carrying a single copy of the transformed construct at T3 generation for detailed analyses. (B) Photographs of representative 10-day-old and 4-week-old plants of wild-type and transgenic plants. Scale bars: 1.5 cm.

-350 aaaacagagagattcctaattatgaattgatttttactgtatttaattat -300 gaattgatctgaacttagggacagtggctagtggcctatatcagcacgtg -250 acactagccacgcgtagcggttccgctccaacaaaaagcaaactcgcta -200 tctgtccaatcaggaacaaccacgtcatagctcctgacagaagtgaaaaa -150 gacgaaactatcCaaacttatggatcgtatttacaaagtcaaacccaaat -100 ctgagtcaaaaataagaatctcaccgttccttacttcttcttcatcttc -50 cctcgaaaaactgagaaacattttctttcaaaagagagattacaacaacc +1 ATG

Supplementary Figure S5. Schematic representation of predicted promoter sequence of *AtGFAT1*. Line and arrow indicate the promoter and the coding region of *AtGFAT1*, respectively. Green box indicates the relative location of the ERSE motif in the *AtGFAT1* promoter. The nucleotide sequences of the ERSE motif in the promoter are represented in green color. The A of ATG, the translation initiation codon, is set to +1 to determine the position of the promoter sequence.

Supplementary Figure S6. The effect of DTT on the primary root growth of wild-type, *gfat1-1*, *AtGFAT1* OE, and RNAi lines. (A) Wild-type, *gfat1-1*, *AtGFAT1* OE, and RNAi seedlings were vertically grown for 10 days on ½ MS media supplemented with a range of DTT concentrations. Representative pictures of 10-day-old seedlings were taken. (B) The primary root length grown under DTT treatment was represented as a relative value for the root grown in normal conditions. Values represent means \pm SE of three repeats ($n \ge 20$ per repeat).