Cell Reports, Volume 26

Supplemental Information

PPAR_γ Interaction with UBR5/ATMIN

Promotes DNA Repair

to Maintain Endothelial Homeostasis

Caiyun G. Li, Cathal Mahon, Nathaly M. Sweeney, Erik Verschueren, Vivek Kantamani, Dan Li, Jan K. Hennigs, David P. Marciano, Isabel Diebold, Ossama Abu-Halawa, Matthew Elliott, Silin Sa, Feng Guo, Lingli Wang, Aiqin Cao, Christophe Guignabert, Julie Sollier, Nils P. Nickel, Mark Kaschwich, Karlene A. Cimprich, and Marlene Rabinovitch **1** Supplementary Information

Figure S1 PPARy interacts with the MRE11-RAD50-NBS1 (MRN) complex via NBS1 in 293T cells. – Related to Figure 1, Table S1-2.

- (A) AP-MS experiments yielded a volcano plot revealing 87 PPARγ high confidence interactors (R2) out of the 352
- 7 interactors (R1+R2). Four (in red) were validated in (C) Dotted lines represent cut-off at Log₂(Fold-Change > 1.5)
- 8 and $Log_{10}(adj. P value \le 0.05 and 1.0x10^{-9})$. R1, region 1; R2, region 2, described in Results.

- 9 (B) Representative immunoblots of PPARγ interactions in 293T nuclear extracts.
- 10 (C) Experimental set up of the BS3 crosslinking mass spectrometry (XL-MS) using tandem immunoprecipitation of 11 Eleg NIPS1 and PDA By Stron to determine NIPS1 and PDA By binding interface
- **11** Flag-NBS1 and PPAR γ -Strep to determine NBS1 and PPAR γ binding interface.
- 12 (D) Raw MS/MS data of the identified crosslinked peptides from BS3 treated beads and trypsin-digested NBS1 and
- PPARγ. Amino acid positions of the peptides are as indicated. Analyses and methods are described in experimental
 procedures.
- 15 (E) Structural mapping of the three PPARγ peptides (red) identified in (D) to PPARγ crystal structure (light green)
- 16 obtained from PDB:3DZU. This structure depicts PPARγ and RXRα (blue) complex on DNA (yellow).
- 17 (F) Putative NBS1-PPARγ binding interface as indicated by the locations of the three Xlink peptides (red). The
- Xlink lysines (K) are labeled as green in inset. PPARγ N-terminus is in light green, and its ligand-binding domain
 (LBD) is in pink.
- 20
- 21
- 22
- 23
- 24 25

27 28 29

Figure S2 Nuclear PPARy and NBS1 are in an independent cellular pool from PPARy and RXRa. – Related to Figure 1.

Fraction # 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

📥 RXRα

- 30 (A) 293T nuclear extracts expressing PPAR_γ-2xStrep and Flag-NBS1 with and without HU treatment were analyzed
- 31 by size-exclusion chromatography on a Superose 6 gel filtration column. Proteins eluted from fractions #3-25 were
- further analyzed by immunoblots to detect PPAR γ (anti-Strep), NBS1 (ant-Flag) and RXR α (anti-RXR α). Graphs
- indicate densitometry results of each protein. Region 1 and 2 (R1, R2) are highlighted in red (in immunoblots) and
- 34 yellow (in graphs) to indicate PPARγ eluted fractions. Since PPARγ-2xStrep is approximately (approx.) a 60 kDa
- protein (analyzed by silver staining in Fig. 1e), PPARγ eluted from fraction #21 (approx. 67 kDa) might be the
- 36 excess monomeric form (due to overexpression). * indicates non-specific band.
- 37 (B) mRNA expression of PPAR γ target genes with NBS1 or PPAR γ depletion. mRNA expression was normalized to 38 β -actin mRNA.
- 39 (C) Representative immunoblots of interactions between Flag-PPARγ (F-PPARγ) without the ligand binding domain
 40 (ΔLBD) and MRN.
- (E) Representative immunoblots of endogenous co-immunoprecipitation (co-IP) between nuclear UBR5, NBS1 and
 PPARγ using anti-UBR5 or anti-NBS1.
- 43 (F) Representative immunoblots of endogenous IP of PPARy with UBR5 with NBS1 depletion (siNBS1).
- 44 Error bars, mean \pm s.e.m. (B). siC, siControl. Two-way ANOVA test with Fisher's LSD test (B). *, P < 0.05, **, P < 45 0.01, ***, P < 0.001, ****, P < 0.0001.
- 46
- 47 siC, siControl, siP γ , siPPAR γ , siU5, siUBR5. Error bars, mean \pm s.e.m. (B). siC, siControl. Two-way ANOVA test
- 48 with Fisher's LSD test (A-C). One-way ANOVA test with Fisher's LSD test (G). *, P < 0.05, **, P < 0.01, ***, P < 0.0
- **49** 0.001, ****, P < 0.0001.

Figure S3 PPARy promotes ATM signaling by increasing ATMIN ubiquitination in 293T cells. - Related to 53 Figure 2.

- 54 (A) Densitometry of HU-induced ATM signaling pathways, pATM, pKAP1, pSMC1, γH2AX levels with PPARγ or 55 UBR5 depletion.
- 56 (B) Representative immunoblots and densitometry data of DoxR-induced ATM signaling pathways, pATM, pKAP1,
- 57 pSMC1, yH2AX levels with PPARy or UBR5 depletions.
- 58 (C) Densitometry data of HU-induced ATMIN and pRPA2 with PPARy depletion.
- 59 (D) Densitometry data of HU-induced ATMIN and pRPA2 with UBR5 depletion.
- 60 (E) Representative immunoblots of endogenous IP of nuclear PPARy with Flag-ATMIN (aa1-354) with UBR5 61 depletion.
- 62 (F) Representative immunoblots of endogenous IP of nuclear PPARy or UBR5 with Flag-ATMIN (aa1-354) with
- 63 HU. The samples were harvested at the indicated time after HU treatment and lysates were separately incubated with 64 anti-PPARy or anti-UBR5.
- 65 (G) Representative immunoblots and densitometry data of restoration of K48-linked polyubiquitins with siRNA
- 66 (siPPARy#9)-resistant PPARy overexpression.

Fig. S4 PPARy depletion suppresses pATM and yH2AX foci formation with various DNA damage stimuli and 70 has no effects on cell cycle in primary endothelial cells. - Related to Figure 3.

<0.1% O

- Reoxy

- 71 (A) Densitometry data of HU-induced pATM with PPARy depletion in PAEC.
- 72 (B) Representative immunoblots and densitometry data of HU-induced pRPA2 (S4/8) and yH2AX protein levels
- 73 with PPAR γ depletion in PAEC.

- 74 (C) Densitometry data of restoration of pATM with siRNA-resistant PPARγ (siResPPARγ) overexpression in
- 75 HUVEC.
- 76 (D) Densitometry data of HU-induced pATM and pKAP1 with PPARγ or/and ATMIN depletion in PAEC.
- 77 (E) Confocal microscopy and triplicate quantitative data of effects of PPAR γ depletion on pATM foci formation 78 march HL (24 here) triplicate quantitative data of effects of PPAR γ depletion on pATM foci formation
- **78** upon HU (24 hours) treatment in PAEC.
- 79 (F) Confocal microscopy and triplicate quantitative data of effects of PPARγ depletion on γH2AX foci formation
- 80 upon HU (24 hours) treatment in PAEC.
- 81 (G) Confocal microscopy and triplicate quantitative data of effects of PPARγ depletion by multiple siRNAs on
- γH2AX foci formation upon HU (24 hours) treatment in PAEC. PPARγ siRNAs (#7-9) are three out of the four
 individual PPARγ siRNAs used in the siPγ pool.
- 84 (H) Flow cytometry analysis of EdU incorporation shows cell cycle profiles of cells with PPARγ depletion and with
- HU (24 hours) treatment in PAEC.
- 86 (I) Confocal microscopy and triplicate quantitative data of 8-oxo-dG foci upon hypoxia (24 hours) (< 0.1% O₂) and
- 87 10 min reoxygenation (Reoxy) in PAEC.
- 88 (J) Replicate quantitative data of pATM foci with hypoxia-reoxygenation as described in (I).
- 89 siC, siControl, siP γ , siPPAR γ . Error bars, mean \pm s.e.m. The line in the box-and-whisker plots marks the median and 90 whiskers correspond to the 10th to 90th percentiles (E-G, I-J). Two-way ANOVA with Fisher's LSD test (A-D).
- 91 Kruskal–Wallis ANOVA test with Dunn's test (E-G, I). Unpaired t test (J). *, P < 0.05, **, P < 0.01, ***, P < 0.001;
- **92** ****, P < 0.0001. Scale bars, E-G, 50µm; I, 20µm.

- Fig. S5 PPARy depletion leads to persistent pRPA2 and yH2AX foci after HU-induced damage which are 97 resolved by ATMIN depletion in PAEC. - Related to Figure 4.
- 98 (A) Replicate quantitative data of extended comet tail lengths in PPARy depleted cells after HU (6 hours) was 99 removed (recovery for 24 hours).
- (B) Replicate quantitative data of pRPA2 and YH2AX foci in PPARY depleted cells after HU (24 hours) was 100
- 101 removed. Cells were fixed at various recovery time points as indicated.
- (C) Replicate quantitative data of resolution of pRPA2 foci with ATMIN depletion in addition to PPARy depletion. 102
- 103 (D) Densitometry data show restoration of pRPA2 protein levels with ATMIN depletion in addition to PPARy
- 104 depletion.
- 105 siC, siControl, siP γ , siPPAR γ . Error bars, mean \pm s.e.m. The line in the box-and-whisker plots marks the median and
- whiskers correspond to the 10th to 90th percentiles (A-C). Kruskal–Wallis ANOVA test with Dunn's test (A-C). 106
- 107 Two-way ANOVA with Fisher's LSD test (D). *, P < 0.05, **, P < 0.01, ***, P < 0.001; ****, P < 0.0001, ns, not 108 significant.

109 Figure S6

110

111 Fig. S6 PPARy and ATMIN axis is impaired in PAEC from PAH patients. – Related to Figure 5.

(A) Phase-contrast microscopy shows healthy primary PAEC cultures established from explanted lungs of control

- 113 (unused donors) and PAH patient. Inserts indicate mitotic cells from the dotted square.
- (B) Replicate quantitative data of HU-induced pATM levels in control and PAH-PAEC.
- 115 (C) Densitometry data of ATMIN protein levels in control and PAH-PAEC.
- (D) Replicate quantitative data of pATM levels in control and PAH-PAEC with ATMIN depletion.
- 117 siC, siControl, siP γ , siPPAR γ . Error bars, mean \pm s.e.m. The line in the box-and-whisker plots marks the median and
- 118 whiskers correspond to the 10th to 90th percentiles (B,D). Kruskal–Wallis ANOVA test with Dunn's test (B,D).
- **119** Unpaired t test (C). *, P < 0.05, ***, P < 0.001; ****, P < 0.0001, ns, not significant.

		Adj. P	Gene		
Uniprot ID	Log2FC	value	name	Protein name	
P37231	7.32	0	PPARG	Peroxisome proliferator-activated receptor gamma	
P04637	6.9	0	TP53	Cellular tumor antigen p53	
P11142	6.22	0	HSPA8	Heat shock cognate 71 kDa protein	
O95816	6.22	0	BAG2	BAG family molecular chaperone regulator 2	
P19793	6.17	0	RXRA	Retinoic acid receptor RXR-alpha	
P23396	5.86	0	RPS3	40S ribosomal protein S3	
P52272	5.18	0	HNRNPM	Heterogeneous nuclear ribonucleoprotein M	
				Heterogeneous nuclear ribonucleoprotein H, N-terminally	
P31943	5.08	0	HNRNPH1	processed	
P49411	4.97	0	TUFM	Elongation factor Tu, mitochondrial	
P49368	4.82	0	CCT3	T-complex protein 1 subunit gamma	
Q92841	4.74	0	DDX17	Probable ATP-dependent RNA helicase DDX17	
P08107	4.53	0	HSPA1B	Heat shock 70 kDa protein 1A/1B	
P17987	4.38	0	TCP1	T-complex protein 1 subunit alpha	
P55072	3.98	0	VCP	Transitional endoplasmic reticulum ATPase	
Q9UL15	3.91	0	BAG5	BAG family molecular chaperone regulator 5	
Q08211	3.87	0	DHX9	ATP-dependent RNA helicase A	
P18669	3.74	0	PGAM1	Phosphoglycerate mutase 1	
P48047	3.43	0	ATP5O	ATP synthase subunit O, mitochondrial	
P52209	3.43	0	PGD	6-phosphogluconate dehydrogenase, decarboxylating	
Q9Y265	3.05	0	RUVBL1	RuvB-like 1	
Q9Y230	3.03	0	RUVBL2	RuvB-like 2	
P38646	3	0	HSPA9	Stress-70 protein, mitochondrial	
P11021	2.74	0	HSPA5	78 kDa glucose-regulated protein	
P13796	2.65	0	LCP1	Plastin-2	
P50990	2.65	0	CCT8	T-complex protein 1 subunit theta	
O14830	2.16	0	PPEF2	Serine/threonine-protein phosphatase with EF-hands 2	
P47929	2.11	0	LGALS7	Galectin-7	
P49959	2.08	0	MRE11A	Meiotic recombination 11 MRE11A	
Q02880	2	0	TOP2B	DNA topoisomerase 2-beta	
Q9H0A0	1.83	0	NAT10	N-acetyltransferase 10	
Q9Y490	1.79	0	TLN1	Talin-1	
P15927	1.58	0	RPA2	Replication protein A 32 kDa subunit	
P49916	1.55	0	LIG3	DNA ligase 3	
Q9UBQ0	1.54	0	VPS29	Vacuolar protein sorting-associated protein 29	
P62241	7.17	5.57E-15	RPS8	40S ribosomal protein S8	
Q86U86	5.1	1.02E-14	PBRM1	Protein polybromo-1	
Q7Z2W4	5.06	1.02E-14	ZC3HAV1	Zinc finger CCCH-type antiviral protein 1	
Q92945	4.55	1.02E-14	KHSRP	Far upstream element-binding protein 2	
				PERQ amino acid-rich with GYF domain-containing	
Q6Y7W6	1.83	2.01E-14	GIGYF2	protein 2	
P33993	4.09	2.95E-14	MCM7	DNA replication licensing factor MCM7	
P17066	3.06	3.37E-14	HSPA6	Heat shock 70 kDa protein 6	
Q13263	3.26	8.51E-14	TRIM28	Transcription intermediary factor 1-beta	
Q9H583	1.86	1.02E-13	HEATR1	HEAT repeat-containing protein 1, N-terminally processed	
P42704	1.71	1.05E-13	LRPPRC	Leucine-rich PPR motif-containing protein, mitochondrial	
P62906	4.96	1.07E-13	RPL10A	60S ribosomal protein L10a	
Q14151	4.04	2.02E-13	SAFB2	Scaffold attachment factor B2	
Q15393	3.32	3.40E-13	SF3B3	Splicing factor 3B subunit 3	
P78316	2.24	3.40E-13	NOP14	Nucleolar protein 14	
P62424	2.14	3.78E-13	RPL7A	60S ribosomal protein L7a	

121 Table S1 High-confidence PPARy interactors identified from AP-MS. – Related to Figure 1; Figure S1.

P32969	5.6	6.05E-13	RPL9P7	60S ribosomal protein L9
P78347	4.3	6.89E-13	GTF2I	General transcription factor II-I
Q99615	4.96	9.02E-13	DNAJC7	DnaJ homolog subfamily C member 7
Q15029	3.75	9.05E-13	EFTUD2	116 kDa U5 small nuclear ribonucleoprotein component
Q9NVP1	2.43	9.05E-13	DDX18	ATP-dependent RNA helicase DDX18
075368	1.91	1.10E-12	SH3BGRL	SH3 domain-binding glutamic acid-rich-like protein
O95786	2.4	1.11E-12	DDX58	Probable ATP-dependent RNA helicase DDX58
P28702	4.1	1.50E-12	RXRB	Retinoic acid receptor RXR-beta
P61978	2.25	1.66E-12	HNRNPK	Heterogeneous nuclear ribonucleoprotein K
Q96EY1	5.01	2.90E-12	DNAJA3	DnaJ homolog subfamily A member 3, mitochondrial
Q8N1F7	2.57	3.12E-12	NUP93	Nuclear pore complex protein Nup93
O60934	2.32	8.83E-12	NBS1	Nibrin
O00231	4.86	1.18E-11	PSMD11	26S proteasome non-ATPase regulatory subunit 11
Q12906	5.8	1.22E-11	ILF3	Interleukin enhancer-binding factor 3
Q92878	1.77	1.47E-11	RAD50	DNA repair protein RAD50
				SWI/SNF-related matrix-associated actin-dependent
O60264	1.76	2.00E-11	SMARCA5	regulator of chromatin subfamily A member 5
O15042	5.15	2.02E-11	U2SURP	U2 snRNP-associated SURP motif-containing protein
O76021	2.28	2.53E-11	RSL1D1	Ribosomal L1 domain-containing protein 1
P62191	3.77	3.35E-11	PSMC1	26S protease regulatory subunit 4
				Probable 28S rRNA (cytosine(4447)-C(5))-
P46087	3.91	3.67E-11	NOP2	methyltransferase
Q9Y2R4	3.68	4.88E-11	DDX52	Probable ATP-dependent RNA helicase DDX52
Q9BVJ6	4.41	4.97E-11	UTP14A	U3 small nucleolar RNA-associated protein 14 homolog A
015144	2.26	5.08E-11	ARPC2	Actin-related protein 2/3 complex subunit 2
Q12905	3.1	5.40E-11	ILF2	Interleukin enhancer-binding factor 2
P62701	4.93	5.77E-11	RPS4X	40S ribosomal protein S4, X isoform
Q9BZE4	2.7	7.08E-11	GTPBP4	Nucleolar GTP-binding protein 1
075367	2.76	9.21E-11	H2AFY	Core histone macro-H2A.1
P15924	1.62	9.21E-11	DSP	Desmoplakin
Q9Y2X3	4.4	9.27E-11	NOP58	Nucleolar protein 58
Q8WVV4	1.54	1.01E-10	POF1B	Protein POF1B
P17931	2.23	2.46E-10	LGALS3	Galectin-3
Q9BVP2	2.07	3.14E-10	GNL3	Guanine nucleotide-binding protein-like 3
P26038	2.36	3.16E-10	MSN	Moesin
P06702	1.91	3.16E-10	S100A9	Protein S100-A9
			HSP90AA	
P07900	3.08	3.80E-10	1	Heat shock protein HSP 90-alpha
P31689	3.87	4.49E-10	DNAJA1	DnaJ homolog subfamily A member 1
015511	2.34	5.01E-10	ARPC5	Actin-related protein 2/3 complex subunit 5
O15160	3.33	5.70E-10	POLR1C	DNA-directed RNA polymerases I and III subunit RPAC1
O43818	1.72	9.22E-10	RRP9	U3 small nucleolar RNA-interacting protein 2

Proteins co-purified with Flag-PPARγ from 293T nuclear extracts were detected by mass spectrometry and analyzed
 as described in Experimental Procedures. Proteins in red were validated in Fig. 1c. Log₂FC (Fold-Change) indicates

125 the fold enrichment of proteins immunoprecipitated from Flag-PPAR γ expressing cells as compared to Flag-vector

expressing cells. The adjusted (adj.) P values are indicated and the data was obtained from four independent

127 experiments. Proteins are listed by their adj. P values.

128 Table S2

129	Biological functions associated with the high-confidence PPARy interactome. – Related to Figure 1; Figure
130	S1

Uniprot ID Gene name **Biological function name** 015144 ARPC2 Actin cytoskeleton organization 015511 ARPC5 Actin cytoskeleton organization P47929 LGALS7 Cell-cell interaction Q8WVV4 POF1B Cell-cell interaction Q9Y490 TLN1 Cell-cell interaction P48047 ATP50 Cellular metabolism 095816 BAG2 Cellular metabolism Q9UL15 BAG5 Cellular metabolism P18669 PGAM1 Cellular metabolism P52209 PGD Cellular metabolism P37231 PPARG Cellular metabolism P19793 RXRA Cellular metabolism P28702 RXRB Cellular metabolism Cellular metabolism P49411 TUFM Q9UBQ0 VPS29 Cellular metabolism Q08211 DHX9 DNA damage response and replication P31689 DNAJA1 DNA damage response and replication DNA damage response and replication Q96EY1 DNAJA3 075367 H2AFY DNA damage response and replication P07900 HSP90AA1 DNA damage response and replication P08107 HSPA1B DNA damage response and replication P11142 HSPA8 DNA damage response and replication Q92945 KHSRP DNA damage response and replication P49916 LIG3 DNA damage response and replication P42704 LRPPRC DNA damage response and replication P33993 MCM7 DNA damage response and replication P49959 MRE11A DNA damage response and replication 060934 NBN DNA damage response and replication Q8N1F7 NUP93 DNA damage response and replication Q86U86 PBRM1 DNA damage response and replication P62191 PSMC1 DNA damage response and replication O00231 PSMD11 DNA damage response and replication Q92878 RAD50 DNA damage response and replication P15927 RPA2 DNA damage response and replication Q9Y265 RUVBL1 DNA damage response and replication Q9Y230 RUVBL2 DNA damage response and replication Q14151 SAFB2 DNA damage response and replication 060264 SMARCA5 DNA damage response and replication TOP2B Q02880 DNA damage response and replication P04637 TP53 DNA damage response and replication TRIM28 Q13263 DNA damage response and replication VCP P55072 DNA damage response and replication Innate immune response O95786 DDX58 P13796 LCP1 Innate immune response P17931 LGALS3 Innate immune response P06702 S100A9 Innate immune response Q7Z2W4 ZC3HAV1 Innate immune response Q92841 DDX17 mRNA metabolic process and RNA processing Q9NVP1 DDX18 mRNA metabolic process and RNA processing Q9Y2R4 DDX52 mRNA metabolic process and RNA processing

Q15029	EFTUD2	mRNA metabolic process and RNA processing
Q6Y7W6	GIGYF2	mRNA metabolic process and RNA processing
Q9BVP2	GNL3	mRNA metabolic process and RNA processing
Q9BZE4	GTPBP4	mRNA metabolic process and RNA processing
Q9H583	HEATR1	mRNA metabolic process and RNA processing
P31943	HNRNPH1	mRNA metabolic process and RNA processing
P61978	HNRNPK	mRNA metabolic process and RNA processing
P52272	HNRNPM	mRNA metabolic process and RNA processing
Q12905	ILF2	mRNA metabolic process and RNA processing
Q12906	ILF3	mRNA metabolic process and RNA processing
Q9H0A0	NAT10	mRNA metabolic process and RNA processing
P78316	NOP14	mRNA metabolic process and RNA processing
P46087	NOP2	mRNA metabolic process and RNA processing
Q9Y2X3	NOP58	mRNA metabolic process and RNA processing
P62906	RPL10A	mRNA metabolic process and RNA processing
P62424	RPL7A	mRNA metabolic process and RNA processing
P32969	RPL9P7	mRNA metabolic process and RNA processing
P23396	RPS3	mRNA metabolic process and RNA processing
P62701	RPS4X	mRNA metabolic process and RNA processing
P62241	RPS8	mRNA metabolic process and RNA processing
O43818	RRP9	mRNA metabolic process and RNA processing
O76021	RSL1D1	mRNA metabolic process and RNA processing
Q15393	SF3B3	mRNA metabolic process and RNA processing
O15042	U2SURP	mRNA metabolic process and RNA processing
Q9BVJ6	UTP14A	mRNA metabolic process and RNA processing
P49368	CCT3	Protein folding
P50990	CCT8	Protein folding
Q99615	DNAJC7	Protein folding
P15924	DSP	Protein folding
P11021	HSPA5	Protein folding
P17066	HSPA6	Protein folding
P38646	HSPA9	Protein folding
P26038	MSN	Protein folding
P17987	TCP1	Protein folding
P78347	GTF2I	NA
O15160	POLR1C	NA
O14830	PPEF2	NA
O75368	SH3BGRL	NA

Biological functions enriched among the top ranked 87 PPARγ interactors defined in Supplementary Table 1. NA, not available.

135 Table S3

136 Tandem affinity purification identified proteins interacting with PPARγ and NBS1 in unperturbed cells. –

137 Related to Figure 1.

Uniprot ID	Log2FC	Adj. P value	Gene name	Protein name
O60934	6.24	0	NBS1	Nibrin
P37231	6.03	0	PPARG	Peroxisome proliferator-activated receptor gamma
P49959	5.22	0	MRE11A	Meiotic recombination 11 MRE11A
Q92878	5.01	0	RAD50	DNA repair protein RAD50
O95816	3.7	1.71E-08	BAG2	BAG family molecular chaperone regulator 2
Q9UL15	2.9	4.03E-07	BAG5	BAG family molecular chaperone regulator 5
075594	2.56	2.25E-02	PGLYRP1	Peptidoglycan recognition protein 1
P04637	2.46	7.99E-09	TP53	Cellular tumor antigen p53
P62269	2.2	0	RPS18	40S ribosomal protein S18
				Complement component 1 Q subcomponent-binding
Q07021	2.1	2.05E-08	C1QBP	protein, mitochondrial
P23588	1.96	4.10E-10	EIF4B	Eukaryotic translation initiation factor 4B
Q02878	1.93	0	RPL6	60S ribosomal protein L6
P18124	1.9	1.60E-13	RPL7	60S ribosomal protein L7
P34932	1.84	0	HSPA4	Heat shock 70 kDa protein 4
P50914	1.8	0	RPL14	60S ribosomal protein L14
O95071	1.8	3.37E-02	UBR5*	E3 ubiquitin-protein ligase UBR5
P98175	1.78	4.19E-11	RBM10	RNA-binding protein 10
P62701	1.66	7.94E-07	RPS4X	40S ribosomal protein S4, X isoform
P62333	1.65	2.25E-03	PSMC6*	26S protease regulatory subunit 10B
Q9Y2W1	1.55	7.34E-11	THRAP3*	Thyroid hormone receptor-associated protein 3
P11142	1.54	0	HSPA8	Heat shock cognate 71 kDa protein

138

139 Proteins were co-purified with PPARγ-2xStrep and sequentially with Flag-NBS1 from 293T whole cell extracts

140 [unperturbed cells or with HU treatment (Supplementary Table 4)]. Log₂FC indicates the fold enrichment of proteins

immunoprecipitated from the PPARγ-2xStrep and Flag-NBS1 expressing cells as compared to GFP-Strep-Flag

expressing cells (negative control). The adjusted P value is indicated and the data were obtained from three independent experiments

143 independent experiments.

144 * indicates proteins specifically enriched in unperturbed cells but not present in the HU treated cells. THRAP3 and

145 UBR5 (red) are validated in Fig. 1e, f. Proteins are listed by the Log₂FC.

146 Table S4

147 Tandem affinity purification identified proteins interacting with PPARγ and NBS1 upon HU treatment. –

148 Related to Figure 1.

	5			
Uniprot ID	Log2FC	Adj. P value	Gene name	Protein name
O60934	6.25	0	NBS1	Nibrin
P37231	6.09	0	PPARG	Peroxisome proliferator-activated receptor gamma
P49959	5.02	0	MRE11A	Meiotic recombination 11 MRE11A
Q92878	4.78	0	RAD50	DNA repair protein RAD50
O95816	3.88	6.05E-09	BAG2	BAG family molecular chaperone regulator 2
Q9UL15	3.65	7.27E-08	BAG5	BAG family molecular chaperone regulator 5
Q92552	3.16	3.37E-02	MRPS27*	28S ribosomal protein S27, mitochondrial
075594	2.7	2.17E-02	PGLYRP1	Peptidoglycan recognition protein 1
Q02878	2.61	0	RPL6	60S ribosomal protein L6
P18124	2.58	0	RPL7	60S ribosomal protein L7
				Complement component 1 Q subcomponent-binding
Q07021	2.36	1.18E-09	C1QBP	protein, mitochondrial
P04637	2.08	6.15E-07	TP53	Cellular tumor antigen p53
P50914	2.07	0	RPL14	60S ribosomal protein L14
P43686	1.89	1.08E-07	PSMC4*	26S protease regulatory subunit 6B
Q9BRT6	1.87	4.32E-02	LLPH*	Protein LLP homolog
O60318	1.83	2.30E-02	MCM3AP*	Germinal-center associated nuclear protein
P11388	1.82	3.49E-09	TOP2A*	DNA topoisomerase 2-alpha
P23588	1.79	1.21E-09	EIF4B	Eukaryotic translation initiation factor 4B
P62269	1.78	0	RPS18	40S ribosomal protein S18
P98175	1.76	1.56E-11	RBM10	RNA-binding protein 10
Q75N03	1.73	1.62E-02	CBLL1*	E3 ubiquitin-protein ligase Hakai
P40429	1.71	2.38E-02	RPL13A*	60S ribosomal protein L13a
Q02880	1.7	3.50E-04	TOP2B*	DNA topoisomerase 2-beta
P36578	1.69	9.59E-14	RPL4*	60S ribosomal protein L4
				Nicotinamide/nicotinic acid mononucleotide
Q9HAN9	1.67	3.64E-04	NMNAT1*	adenylyltransferase 1
P62917	1.65	0	RPL8*	60S ribosomal protein L8
Q07020	1.64	6.87E-10	RPL18*	60S ribosomal protein L18
P62266	1.62	6.37E-07	RPS23*	40S ribosomal protein S23
P62847	1.61	3.98E-09	RPS24*	40S ribosomal protein S24
P34932	1.61	8.63E-14	HSPA4	Heat shock 70 kDa protein 4
P62701	1.59	9.46E-07	RPS4X	40S ribosomal protein S4, X isoform
P11142	1.58	0	HSPA8	Heat shock cognate 71 kDa protein
P62158	1.56	2.83E-06	CALM2*	Calmodulin
P62249	1.55	5.53E-09	RPS16*	40S ribosomal protein S16
P62241	1.54	1.43E-08	RPS8*	40S ribosomal protein S8
P49368	1.51	2.20E-02	CCT3*	T-complex protein 1 subunit gamma

149

150 Proteins were co-purified with PPARγ-2xStrep and sequentially with Flag-NBS1 from 293T whole cell extracts with

151 HU treatment. Log₂FC (Fold-Change) indicates the fold enrichment of proteins immunoprecipitated from the

152 PPARγ-2xStrep and Flag-NBS1 expressing cells as compared to GFP-Strep-Flag expressing cells (negative control).

153 The adjusted P value is indicated and the data were obtained from three independent experiments. * indicates

154 proteins specifically enriched in the HU treated cells but not present in unperturbed cells. Proteins are listed by the 155 Log₂FC.

156 157 158 Table S5 – Related to STAR Methods.

Characteristics of (a) control subjects and (b) PAH patients used in this study.

(a) Control

	Cells/		Age (yr)/	Race/	
Control ID	Tissues	Assays	Gender	Ethnicity	Cause of Death
				White/	Grade 4 subarachnoid hemorrhage,
				Non-	ruptured anterior cerebral artery
Control-1	Tissue	IF	41/F	Hispanic	aneurysm
				White/	
				Non-	
Control-2	Tissue	IF	43/M	Hispanic	Fatal gunshot to head
				White/	
				Non-	
Control-3	Tissue	IF	57/F	Hispanic	Intracranial hemorrhage/stroke
				White/	
				Non-	
Control-4	Tissue	IF	28/F	Hispanic	MVC-anoxia
				White/	
				Non-	
Control-5	SPAEC	Comet	47/M	Hispanic	Head trauma-bicycle vs. car accident
				White/	
				Non-	
Control-6	Tissue	IF	56/F	Hispanic	Cerebrovascular accident
				Unknown/	
				Hispanic	
Control-7	SPAEC	Comet	55/F	or Latino	Cerebrovascular stroke
		IF, comet,		White/	
	Tissue/	protein		Non-	
Control-8	LPAEC	expression	57-F	Hispanic	Acute myocardial infarction
				Unknown/	
				Non-	
Control-9	LPAEC	Comet	12/M	Hispanic	Head trauma rollover MVC ejection
				White/	
				Non-	
Control-10	LPAEC	Comet	49/M	Hispanic	Head trauma
				White/	
		Protein		Non-	
Control-11	SPAEC	expression	33/F	Hispanic	Head trauma. Blunt injury.

				Unknown/	
		IP, protein		Hispanic	
Control-12	LPAEC	expression	54/M	or Latino	Cerebrovascular/stroke ICH
				Asian/	
		IP, protein		Non-	
Control-13	LPAEC	expression	34/F	Hispanic	Cerebrovascular/stroke ICH
				White/	
				Non-	
Control-14	LPAEC	IP	1/M	Hispanic	Anoxia/drowning
				White/	
		IP, protein		Non-	
Control-15*	LPAEC	expression	35/M	Hispanic	Gunshot wound
		IP, protein		Asian/Un	
Control-16	LPAEC	expression	46/M	known	Cerebrovascular/stroke ICH

(b) PAH patients

									6 Min Walkc	
Patient ID	Cells/ Tissues	Assays	Age (yr)/ Gender	Race/ Ethnicity	Diagnosis	BMPR2 mutation	(s/d/m)PAPa	PVRb (mmHg)	(Wood Units)	PAH Medications (m), up to transplant date
				White/ Non-						
PAH-1	Tissue	IF	15-F	Hispanic	IPAH	No	(175/66/102)	25.24	387	sildenafil, epoprostenol
PAH-2	Tissue	IF	40-F	White/ Non- Hispanic	IPAH	No	(84/26/47)	NA	294	ambrisentan, sildenafil, iloprost, epoprostenol
РАН-3	LPAEC	Protein expressoo pm	33-F	Black or African American/ Non- Hispanic	FPAH	Yes	(75/33/48)	15.57	326.1	epoprostenol, bosentan, sildenafil, treprostinil
PAH-4	Tissue	IF	56-F	White/ Non- Hispanic	IPAH	No	(83/39/57)	11.41	137.2	sildenafil, ambrisentan, treprostinil
PAH-5	Tissue,S/ LPAEC	IF, comet,	27-F	White/ Non- Hispanic	IPAH	Yes	(110/49/69)	12.11	359.7	sildenafil, treprostinil, bosentan, iloprost

	CDAEC		40.14	White/ Hispanic	IDAU	N	(110/40/64)	72	120	sildenafil, ambrisentan,
PAH-6	SPAEC	Comet	40-M	or Latino	IPAH	NO	(118/49/64)	/3	420	sildenafil, sitaxsentan,
				W 71.:4 - /						ambrisentan,
				Non-						(investigational),
PAH-7	SPAEC	Comet	37-M	Hispanic	FPAH	Yes	(119/51/77)	14.22	309	treprostinil
		Comet, IP,		White/						
PAH-8	LPAEC	expression	32-F	Non- Hispanic	IPAH	No	(68/38/49)	15.34	238	bosentan, epoprostenol
		IF comet		White/	АРАН-					
	Tissue/	IP, protein		Non-	Congenita					
PAH-9	LPAEC	expression	30-M	Hispanic	1 ASD	No	(128/60/85)	NA	160	sildenafil, bosentan
				White/						
DALL 10	IDAEC	IP, protein	16 F	Non-	IDAII				102.4	sildenafil, subcutaneous
PAH-10	LPAEC	expression	10-F	Hispanic	IPAH	IN/A	(NA/NA/95)	IN/A	102.4	treprostinii
				White/						sildenafil, ambrisentan,
		Protein		Hispanic	APAH-					bosentan, treprostinil,
PAH-11	LPAEC	expression	50-F	or Latino	D&T	N/A	(113/43/65)	16.18	384	epoprostenol
				White/						
	TRADE	Protein		Non-				10.65		sildenafil, ambrisentan,
PAH-12	LPAEC	expression	22 - F	Hispanic	FPAH	Yes	(98/46/66)	10.19	506	tadalafil, treprostinil

162 a (s/d/m) PAP= Systolic, diastolic, and mean pulmonary arterial pressure. b PVR= Pulmonary vascular resistance. c 6 min walk = distance walked in six minutes.

a-c Values are closest to transplant date. * Control line that did not meet PHBI inclusion criteria due to known history of amphetamine/methamphetamine use.

164 Abbreviations: SPAEC, small pulmonary arterial endothelial cells (<1 mm by dissection); LPAEC, large PAEC (>1 mm); IF, immunofluorescence; IP,

165 immunoprecipitation; F, female; M, male; MVC, motor vehicle accident; ICH, intracranial hemorrhage; IPAH, idiopathic pulmonary arterial hypertension;

166 FPAH, familiar PAH; APAH, associated PAH; ASD, atrial septal defect ; D&T, drug and toxin; NA, not available.

168 169 Table S6 – Related to STAR Methods.Table of Oligonucleotides used.

Oligo	Sequence (5'-3')	Description
PPARγ-	GTGGCCATCCGCATCTGACAGGGCTG	Primer used for generating Flag-PPARvALBD
delLBD F	CCAGTTTCG	
PPARγ-	CGAAACTGGCAGCCCTGTCAGATGC	Primer used for generating Flag-PPARγΔLBD
delLBD_R	GGATGGCCAC	
2Strep-	TAGTCCAGTGTGGTGGAATTCGCCGC	Primer used for generating 2xStrep-PPARy
PPARγ-F	CATGACCATGGTTGACACAG	
2Strep-	CACCGCCTCCCTCGAGCGGCCGCACG	Primer used for generating 2xStrep-PPARy
PPARγ-R		
SIRES-	ATGACAGCGATCICGCAATATITATT	Primer used for generating siRNA-resistant-Flag-
$PPAR\gamma_F$		$\frac{PPAR\gamma}{P}$
SIKES-		Primer used for generating siRNA-resistant-Flag-
$PPAR\gamma_R$		PPARγ Primer used for quantitative real time PCP
$\Gamma \Gamma A R \gamma_{\Gamma}$	TACCCACACATCCACCCACCTCA	Primer used for quantitative real-time PCR
ΡΡΑΚγ_Κ		Primer used for quantitative real-time PCR
UBR5_F		Primer used for quantitative real-time PCR
UBR5_R	AITCGAGGIGGCCIGIAIIG	Primer used for quantitative real-time PCR
ATMIN_F	AACAGCACTGCAGTCTCACA	Primer used for quantitative real-time PCR
ATMIN_R	CTGGTCTAGGGATTGGTTGGT	Primer used for quantitative real-time PCR
NBS1_F	CACTCACCTTGTCATGGTATCAG	Primer used for quantitative real-time PCR
NBS1_R	CTGCTTCTTGGACTCAA CTGC	Primer used for quantitative real-time PCR
PLIN2_F	ATGGCATCCGTTGCAGTTGAT	Primer used for quantitative real-time PCR
PLIN2_R	GGACATGAGGTCATACGTGGAG	Primer used for quantitative real-time PCR
ACOX1_F	GGAACTCACCTTCGAGGCTTG	Primer used for quantitative real-time PCR
ACOX1_R	TTCCCCTTAGTGATGAGCTGG	Primer used for quantitative real-time PCR
CPT1B_F	CCTGCTACATGGCAACTGCTA	Primer used for quantitative real-time PCR
CPT1B_R	AGAGGTGCCCAATGATGGGA	Primer used for quantitative real-time PCR
ACSF2_F	ATGGCTGTCTACGTCGGG	Primer used for quantitative real-time PCR
ACSF2_R	GACCATGCGATCCACCTCTC	Primer used for quantitative real-time PCR
ME1 F	CTGCTGACACGGAACCCTC	Primer used for quantitative real-time PCR
ME1 R	GATCTCCTGACTGTTGAAGGAAG	Primer used for quantitative real-time PCR
CFD F	GACACCATCGACCACGACC	Primer used for quantitative real-time PCR
CFD R	GCCACGTCGCAGAGAGTTC	Primer used for quantitative real-time PCR
IDH3A F	GGACCTGGAGGAAAGTGGAT	Primer used for quantitative real-time PCR
IDH3A R	GCTGCTATTGGGGTCTTCAA	Primer used for quantitative real-time PCR
ß-actin F	CATGCCATCCTGCGTCTGGA	Primer used for quantitative real-time PCR
β-actin R	CCGTGGCCATCTCTTGCTCG	Primer used for quantitative real-time PCR