Science Advances

advances.sciencemag.org/cgi/content/full/5/3/eaav3262/DC1

Supplementary Materials for

Taiji: System-level identification of key transcription factors reveals transcriptional waves in mouse embryonic development

Kai Zhang, Mengchi Wang, Ying Zhao, Wei Wang*

*Corresponding author. Email: wei-wang@ucsd.edu

Published 27 March 2019, *Sci. Adv.* **5**, eaav3262 (2019) DOI: 10.1126/sciadv.aav3262

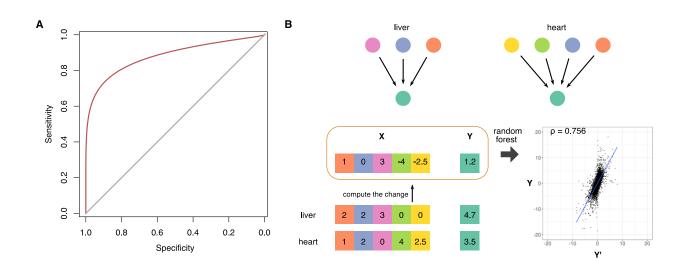
The PDF file includes:

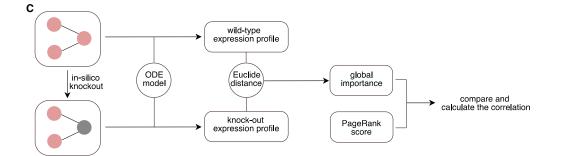
Fig. S1. Validating the Taiji framework.
Fig. S2. The topological properties of genetic networks.
Fig. S3. PageRank scores (color shade) and expression levels (circle size) of 35 constitutively active TFs across 12 tissues and eight stages.
Fig. S4. Identification of driver TFs in 12 tissues.
Fig. S5. Identification of driver TFs in early mouse embryonic development, including two-, four-, and eight-cell stages, ICM, and ESC.
Fig. S6. Selecting algorithms and parameters for clustering analysis.
Fig. S7. Transcriptional waves direct tissue differentiation during mouse embryogenesis.
Table S1. Driver TFs in the heart.
Table S2. Driver TFs in the limb.
Table S3. Driver TFs in the lung.
Table S4. Driver TFs in the kidney.
References (40–76)

Other Supplementary Material for this manuscript includes the following:

(available at advances.sciencemag.org/cgi/content/full/5/3/eaav3262/DC1)

Data file S1 (Microsoft Excel format). The accession numbers of datasets analyzed in this study. Data file S2 (Microsoft Excel format). Germ layer–specific TFs and their *P* values. Data file S3 (Microsoft Excel format). PageRank scores for all TFs across different stages and tissues.

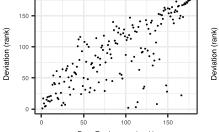

Data file S4 (.zip format). Chromatin interaction predictions made by EpiTensor.

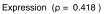

Supplementary Materials

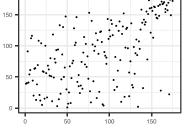
Literature evidence supports identified driver TFs

Here we list the supporting evidence for the identified driver TFs in five tissues, including heart, limb, liver, lung and kidney. The rest of the tissues (neural tube, forebrain, hindbrain, midbrain, craniofacial, stomach and intestine) are either less studied or closely related to each other (functionally and spatially), which makes it very difficult to assess their tissue specificity.

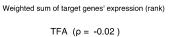
8 out of 11 (72.7%) predicted driver TFs in heart are supported by literature (Table S1). 8 out of 10 (80%) predicted driver TFs in limb are supported by literature (Table S2). 7 out of 11 (63.6%) predicted driver TFs in liver are supported by literature (Table S3). 11 out of 13 (84.6%) predicted driver TFs in lung are supported by literature (Table S4). 7 out of 10 (70%) predicted driver TFs in kidney are supported by literature (Table S5).

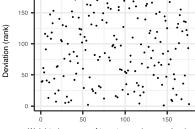


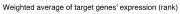


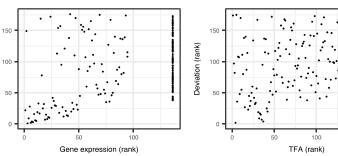

D

Deviation (rank)

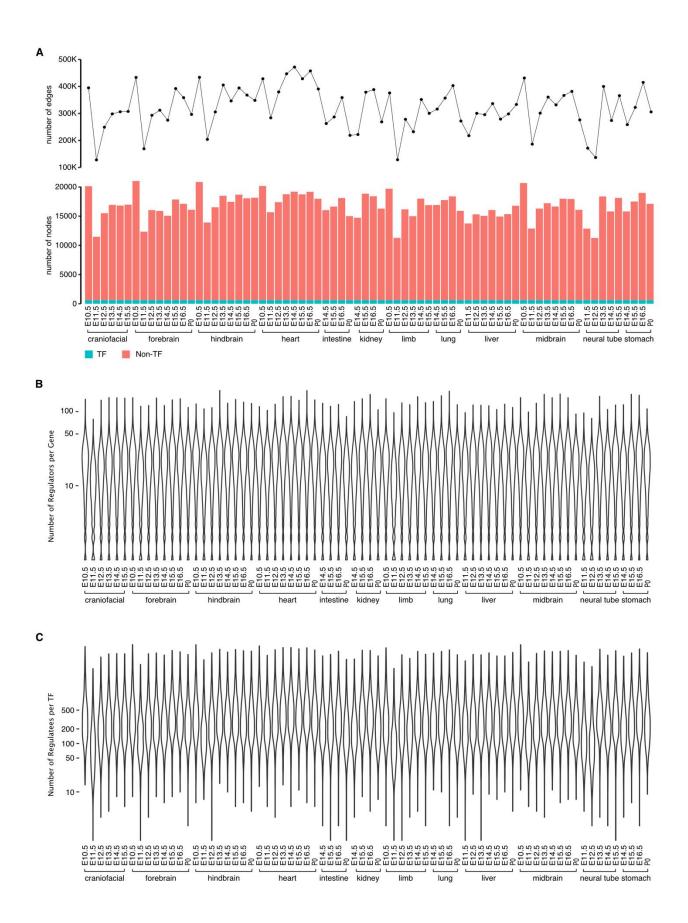




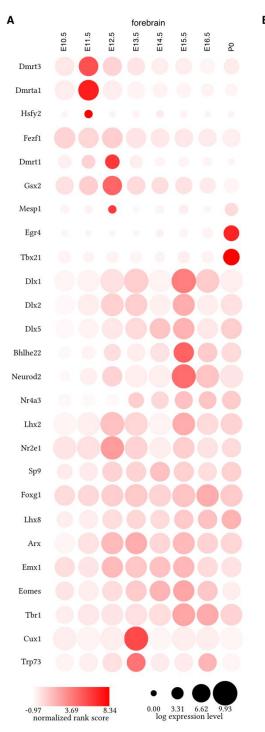

WSTG ($\rho = 0.571$)


. . . .

150



WATG ($\rho = 0.023$)


Fig. S1. Validating the Taiji framework. (A) Comparing EpiTensor's predictions with Hi-C interactions in mESC. The AUC is 0.87. (**B**) An illustration of the network validation process. The log-fold expression changes of genes and their regulators between two tissues were computed and used to train a random forest model. The performance was assessed by the Spearman's correlation between predictions and "ground truth" with 10-fold cross-validation. The average correlation is 0.756. (**C**) The workflow of the in-silico benchmark process for assessing PageRank's performance on predicting TFs' global importance. (**D**) Comparing different ranking methods in E. coli network.

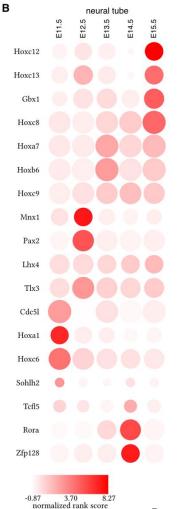
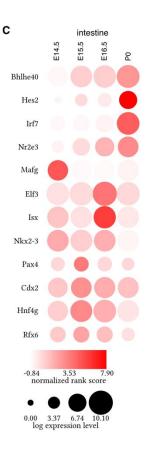
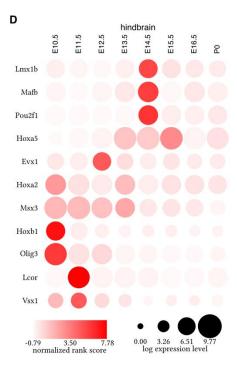
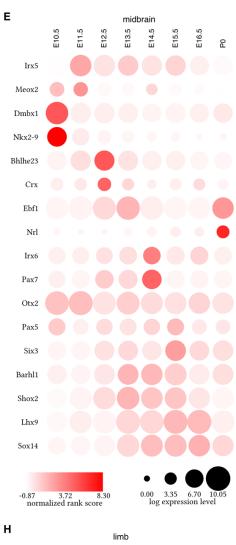
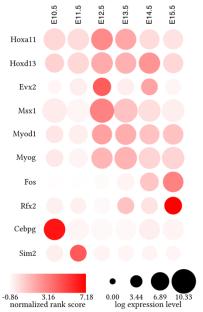


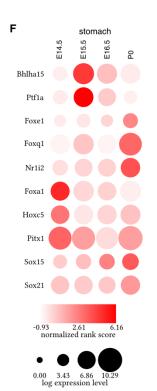
Fig. S2. The topological properties of genetic networks. (**A**) The number of edges (top) and nodes (bottom) in each genetic network. (**B**) The distribution of the number of regulators per gene for each genetic network. (**C**) The distribution of the number of regulatees per TF for each genetic network.

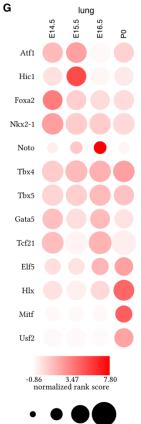

Fig. S3. PageRank scores (color shade) and expression levels (circle size) of 35 constitutively active TFs across 12 tissues and eight stages.

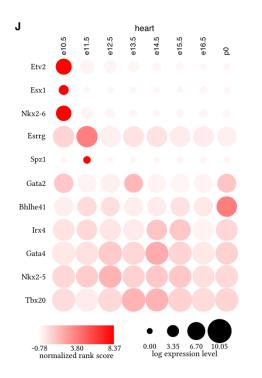


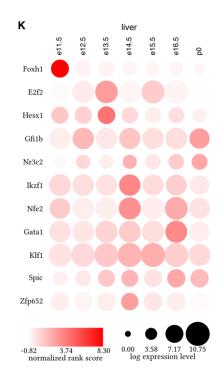


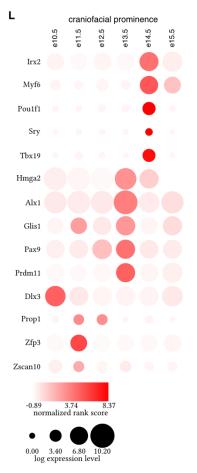

.


0.00 3.12 6.24 9.36 log expression level









0.00 3.56 7.12 10.68 log expression level

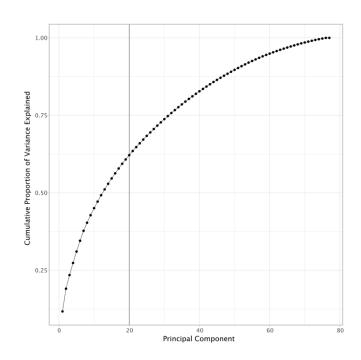


Fig. S4. Identification of driver TFs in 12 tissues. (A) forebrain. (B) neural tube. (C) intestine. (D) hindbrain. (E) midbrain. (F) stomach. (G) lung. (H) limb. (I) kidney. (J) heart. (K) liver. (L) craniofacial prominence.

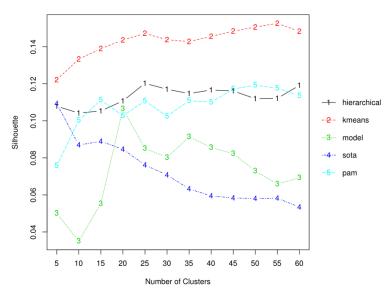
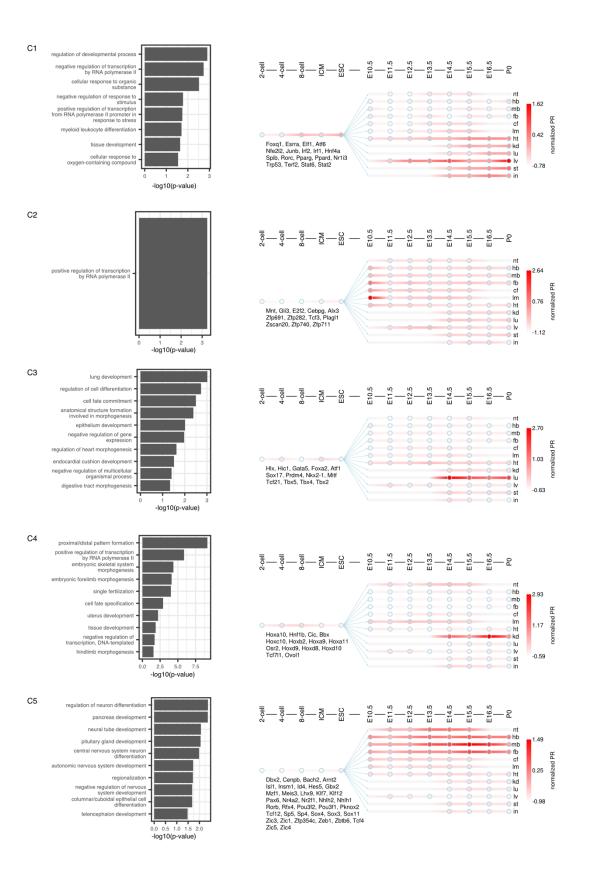
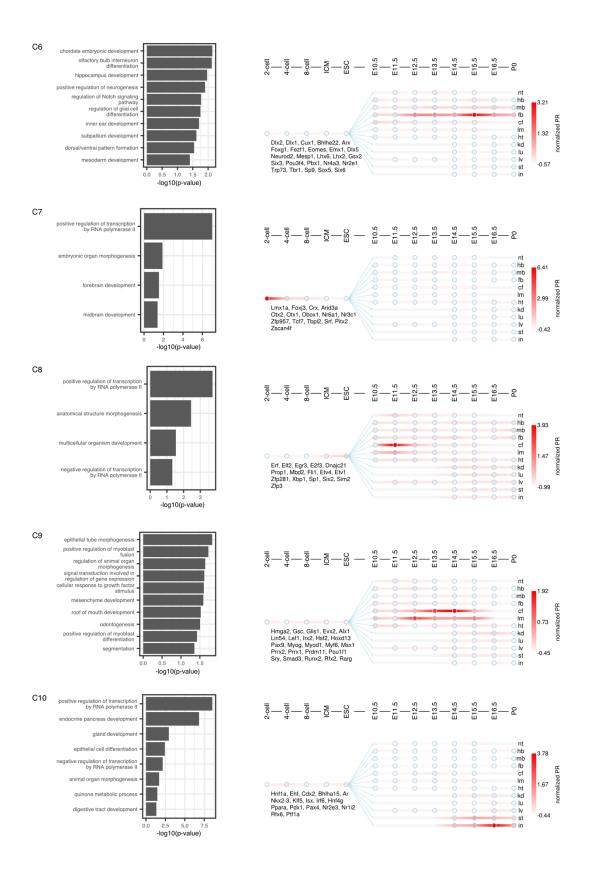
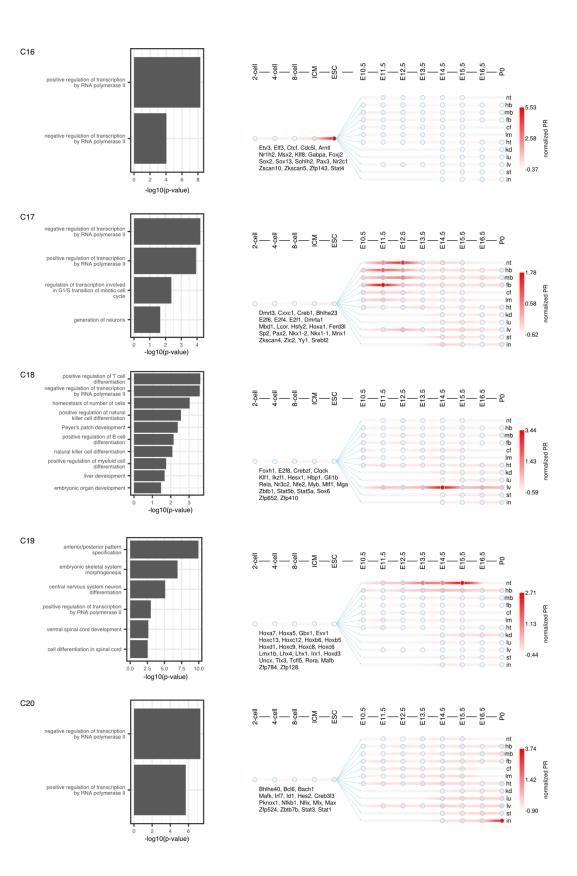

	2-cell	4-cell	8-cell	ICM	mESC		2-cell	4-cell	8-cell	ICM	mESC		2-cell	4-cell	8-cell	ICM	mESC		2-cell	4-cell	8-cell	ICM	mESC		
Pbx3				•		Mlx						Rfx3				•	٠	Foxa1							
Nfe2				•		Nanog						Sox2						Ovol1							
Pou2f2						Zfp523				•	٠	Zfp354c						Pknox1							
Gata3 Hmg20b						Elf2						Foxj1	٠	•	•	•	•	Arid3b							
Rorc			•	•		Erf						E2f3		•				Pitx1	•	•	•		•		
Klf1		•	•	•		Sp1						Hnf1a						Spib	•	•	•	•	•		
Nr2c2						Atf2						Etv4			•			Mef2a							
Patz1						Gabpa						Tfdp1						Spz1				•			
Pou2f1						Sp4				•		Ets1				•	•	Stat2							
Cdc5l						Max						Zic3						Usf1							
Rel						Etv6						E2f4						Pou6f1							
Runx1						Sp2						Hdx					•	Sox21							
Rfx1						Creb3l2						Nfat5						Pou2f3							
Fos						Zfx						E2f8						Prdm4							
Meis1					•	Sox4						Nr1h2						Tcf7l1		٠					
Etv1						Nr2f6	•	•			•	Rxrb						Pax2		•	•	•	•		
Klf4						Pdx1	•	•			٠	Zscan10						Sox15							
Mecp2						Sp5		•			٠	Esr2			•	•		Zbtb6					•		
Rfx2						Sox5	•			•	٠	Meis2						Myc							
Pou5f1						Stat1						Gli3					•	Pitx3		•	•				
Foxh1						Ascl2					٠	Nr6a1						Hhex							
Srebf1						Sox11						Foxj3						Spic							
Lhx8				•		Zfp263						Esrrg						Zfp105							
Tbx2	•	•	•	•	•	Foxj2			•			Prrx2			•			Foxc1		•					
Elf4		•		•		Stat4						E2f1						Lin54							
Zeb1						Pax3			•		•	Otx2	•	•				Nr2e1				•			
Gata2		•	•	•		Rara						Irf3						Obox1							
Ebf1	•	•	•		•	Klf12	•	•	•	•	•	Tbpl2	•	٠	•	•		Foxk1							
Rfx4		•	•	•	•	Zfp3						Arid3a	•	•				Gata1							
Elf5	•	•	•	•	•	Etv3						Lef1						Sox18	•	•					
Sox17	•	•	•	•	•	Nr2c1						Lmx1a				•	•	Otx1	•						
Zfp691	•			•		Egr1						Nkx2-9	•	•	•	•	•	Nr5a2							
Glis2				•		Zfp524						Nr3c1						Foxi3	•	•	•				
Zic5		•				Stat6						Pitx2	•	•	•	•	•	Rreb1							
Elk3						Msx1					•	Tcf7						Foxe1							
Msx2						Zfp711	•	•			•	Gata6						Ahctf1							
Klf5						Tgif1						Nfic		•		•		Zfp637	Ŏ	Ŏ	ŏ		0.	00 2.97 5.95 8	.92
Stat3						Tbx3			Ó	Ó		Foxo3						Erg		•	•			log expression level	l.
Elf3				Ó		Zfp652			•			Gfi1b	•			•		Nr2e3		•					
Hnf4a				•		Arntl						Sp9			•	•		Crx					-1	.50 0.14 normalized rank sco	1.79 ore
Klf8						Rfx7						Bbx						Zscan4f							
											-				-					-					

Fig. S5. Identification of driver TFs in early mouse embryonic development, including two-, four-, and eight-cell stages, ICM, and ESC.






Internal validation


Fig. S6. Selecting algorithms and parameters for clustering analysis. (A) Plotting the cumulative proportion of variance explained against the number of principal components (PCs). The first 20 PCs were kept according to the "elbow" method. (B) Selecting the best clustering algorithm and number of clusters according to the Silhouette metric. The k-means algorithm (k = 25) was picked using the "elbow" method. hierarchical, hierarchical clustering algorithm; kmeans, k-means algorithm; model, model-based algorithm; sota, self-organizing tree algorithm; pam, partitioning around medoids algorithm.

-log10(p-value)

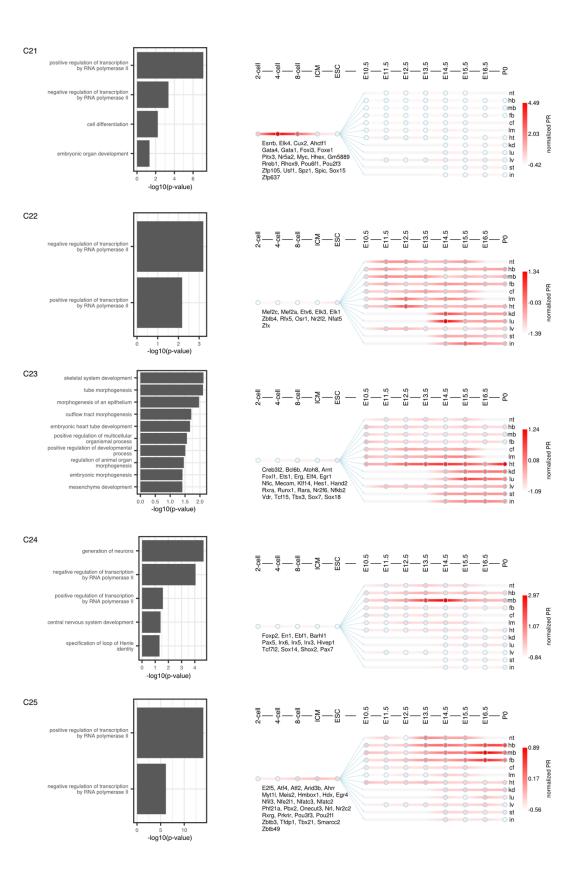


Fig. S7. Transcriptional waves direct tissue differentiation during mouse embryogenesis.

Table S1. Driver TFs in the heart.

Predicted driver TFs	Evidence
Etv2	Affect heart development (40)
Esx1	Unknown
Nkx2-6	Relate to congenital heart disease (41)
Bhlhe41	Unknown
Gata2	Relate to coronary artery disease (42)
Gata4	Essential for heart development (43)
Nkx2-5	Relate to heart development (44)
Tbx20	Essential for heart development (45)
Esrrg	Affect heart development (46)
Spz1	Unknown
Irx4	Affect heart development (47)

Table S2. Driver TFs in the limb.

Predicted driver TFs	Evidence
Hoxa11	Relate to limb development (48)
Hoxa13	Relate to limb development (48)
Evx2	Important for limb development (49)
Msx1	Important for limb development (50)
Myod1	Important for limb development (51)
Myog	Important for limb development (52)
Sim2	Affect limb development (53)
Fos	Relate to limb mesenchymal chondrogenesis (54)
Rfx2	Unknown
Cebpg	Unknown

Table S3. Driver TFs in the liver.

Predicted driver TFs	Evidence
Gfi1b	Relate to liver development (55)
Nr3c2	Unknown
Ikzf1	Relate to liver cancer (56)
Nfe2	Important for liver function (57)
Gata1	Important for liver development (58)
Klf1	Relate to liver development (59)
Spic	Relate to liver development (60)
E2f2	Important for liver function (61)
Hesx1	Unknown
Zfp652	Unknown
Foxh1	Unknown

Table S4. Driver TFs in the lung.

Predicted driver TFs	Evidence
Tcf21	Important for heart development (62)
Usf2	Relate to heart development (63)
Gata5	Important for heart development (64)
Foxa2	Important for heart development (65)
Nkx2-1	Essential for heart development (66, 67)
Mitf	Relate to heart cancer (20)
Elf5	Relate to heart development (68)
Tbx4	Important for heart development (69)
Hic1	Relate to heart cancer (19)
Atf1	Important for heart development (70)
Tbx5	Important for heart development (69)
Noto	Unknown
Hlx	Unknown

Table S5. Driver TFs in the kidney.

Predicted driver TFs	Evidence
Hoxd8	Relate to kidney development (71)
Osr2	Relate to early pectoral fin specification and
	pronephric development (72)
Ovol1	Relate to kidney development (73)
Hnf1b	Relate to kidney disease (74)
Bbx	Relate to kidney development (75)
Hoxa10	Important for kidney development (76)
Hoxc10	Important for kidney development (76)
Cic	Unknown
Hoxa9	Unknown
Ehf	Unknown