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SUMMARY

Single-cell RNA sequencing (scRNA-seq) has
emerged as a powerful tool for resolving transcrip-
tional heterogeneity. However, its application to
studying cancerous tissues is currently hampered
by the lack of coverage across keymutation hotspots
in the vast majority of cells; this lack of coverage pre-
vents the correlation of genetic and transcriptional
readouts from the same single cell. To overcome
this, we developed TARGET-seq, a method for the
high-sensitivity detection ofmultiplemutationswithin
single cells from both genomic and coding DNA, in
parallel with unbiased whole-transcriptome analysis.
Applying TARGET-seq to 4,559 single cells, we
demonstrate how this technique uniquely resolves
transcriptional and genetic tumor heterogeneity in
myeloproliferative neoplasms (MPN) stem and pro-
genitor cells,providing insights intoderegulatedpath-
ways ofmutant and non-mutant cells. TARGET-seq is
a powerful tool for resolving the molecular signatures
of genetically distinct subclones of cancer cells.

INTRODUCTION

Resolving intratumoral heterogeneity (ITH) is critical for our un-

derstanding of tumor evolution and resistance to therapies;

this understanding, in turn, is required for the development of

effective cancer treatments and biomarkers for precision medi-

cine (McGranahan and Swanton, 2017). The best-characterized
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source of ITH has been at the genetic level; this heterogeneity

has been identified through advances in next-generation

sequencing (NGS) techniques at the bulk and single-cell levels

(Vogelstein et al., 2013). However, certain factors beyond so-

matic mutations contribute to ITH. For example, some tumors

are hierarchically organized and contain cancer stem cells

(CSCs), which propagate disease relapse. The genetic events

underlying tumor evolution originate in CSCs, which in some tu-

mors are rare within the total tumor bulk population (Clevers,

2011; Magee et al., 2012; Woll et al., 2014). Furthermore, the

CSCs’ normal cellular counterparts, which lack genetic muta-

tions, can be difficult to distinguish frommalignant cells because

they might share phenotypic features, but these cells can never-

theless be informative for disease biology (Giustacchini et al.,

2017). Consequently, resolving ITH requires methods that allow

these multiple layers of heterogeneity to be teased apart.

A potentially powerful approach for gaining a better under-

standing of the functional consequences of ITH is to link genetic

ITH with the transcriptional signatures of distinct subpopulations

of tumor cells. A number of studies have begun to apply single-

cell RNA sequencing (scRNA-seq) to characterize different ma-

lignancies, demonstrating the power of scRNA-seq to identify

the different cell types that are encompassed within a

tumor, including cells with ‘‘stemness’’ signatures and charac-

terization of developmental hierarchies of tumor cells (Patel

et al., 2014; Tirosh et al., 2016a, 2016b; Venteicher et al.,

2017). However, although scRNA-seq approaches can readily

resolve such transcriptional heterogeneity, current techniques

do not allow parallel mutational analysis because of a lack of

coverage across mutation hotspots (Kiselev et al., 2017; Patel

et al., 2014; Tirosh et al., 2016b). This integration of mutational

and transcriptional information is crucial for linking genetic

evolution events to the cell of origin; this is of considerable
or(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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importance because serial mutation acquisition might occur

within distinct and developmentally ordered stem and progenitor

cell types, as described in acute leukemia (Jan et al., 2012).

Furthermore, mutation analysis is also important for unravelling

disrupted gene expression in non-mutant cells; this disruption

of gene expression might be cell-extrinsically mediated and of

clinical importance (Giustacchini et al., 2017). In order to over-

come this current limitation in single-cell genomic techniques,

we set out to develop a method that combines full-length

scRNA-seq or 30-end-counting, high-throughput scRNA-seq

with high-sensitivity mutation analysis.

DESIGN

The limitation of applying current scRNA-sequencing techniques

to the detection of mutations in single cells partly relates to

the fact that commonly used ‘‘end-counting’’ scRNA-seq tech-

niques only detect the 30 or 50 region of transcripts (Hedlund

and Deng, 2018). Consequently, most mutations within the

body of a gene are not covered by sequencing reads. However,

scRNA-seq techniques that amplify full-length transcripts, such

as Smart-seq2 (Picelli et al., 2013), also have very poor sensitivity

with regard to detecting the expression of most genes in most

cells (Figure S1), and this difficulty precludes high-sensitivity

mutational analysis. Furthermore, the vast majority of mutations

identified in cancer are single-nucleotide variants (SNVs) and

small indels (Vogelstein et al., 2013); these might be either het-

erozygous or associated with loss of heterozygosity (LOH) and

have important functional consequences (Kharazi et al., 2011).

Therefore, a key challenge in the field is to minimize allelic drop-

outs (ADOs) in order to ensure the detection of both alleles from a

single cell.

It remains unclear whether the high ADO rates and lack of

coverage acrossmutation hotspots in scRNA-seq data is primar-

ily due to technical dropouts related to inefficient reverse tran-

scription (RT) and/or PCR amplification or whether they are the

result of true biological heterogeneity in the expression of mutant

transcripts across single cells. We therefore first optimized the

Smart-seq2 RT and PCR enzymatic conditions (SMART-seq+;

TableS1A); this resulted in a significant reduction in dropout rates

(Figure S1A), particularly for genes expressed at a low level (Fig-

uresS1BandC); a 25% increase in the number of genesdetected

per cell (Figure S1D); and a reduction in library bias (Figure S1E).

However, despite improved sensitivity for the detection of gene

expression with SMART-seq+, ADO rates remained exceedingly

high for most genes (Figures S1F–H), a fact that currently pre-

cludes reliable mutational analysis using scRNA-seq (Povinelli

et al., 2018). We therefore concluded that, because of the sto-

chastic nature of gene expression in single cells, improving sensi-

tivity for the analysis of coding DNA (cDNA) alone is unlikely to

provide sufficient sensitivity for the detection of most cancer-

associated mutations at the single-cell level.

Overcoming this problem requires the detection of mutations

from genomic DNA (gDNA) in parallel with cDNA. Techniques

for studying gDNA and mRNA from the same single cell have

been previously described. However, these techniques either

require both types of molecules to be physically separated

(Han et al., 2018; Hou et al., 2016; Macaulay et al., 2015), which
inevitably results in some loss of genetic material and conse-

quently limits the techniques’ sensitivity, or they rely on the par-

allel amplification of total gDNA and mRNA followed by the

masking of coding regions (Dey et al., 2015). These technical

constraints restrict the sensitivity of such techniques for the

confident detection of specific point mutations. Whole-genome

amplification also introduces significant expense to the method

and has inherently high ADO and false-positive rates (Hosokawa

et al., 2017;Wang et al., 2014). As a result, up to now, these tech-

niques have not been widely used for parallel mutation or

scRNA-seq analysis in cancer. Methods that combine targeted

single-cell gene expression and mutation analysis have also

been reported (Cheow et al., 2016; Wang et al., 2017), but these

approaches have the limitation that only the expression of a

limited number of pre-selected genes can be analyzed per cell.

Recently, we have described a method for the high-sensitivity

detection of BCR-ABL1 (breakpoint cluster region and Abelson

murine leukemia viral oncogene homolog 1 fusion protein) tran-

scripts in parallel with scRNA-seq in chronic myeloid leukemia

stem cells (Giustacchini et al., 2017). Although this study high-

lights the power of linking mutation and transcriptome informa-

tion in single cells, the method is dependent on the expression

of the targeted gene and/or allele in all mutated cells. This

approach was effective in the specific case of the BCR-ABL

fusion gene. However, for many autosomal genes, expression

is undetectable or highly allelic-biased in the majority of tran-

scriptionally active andhighly proliferative K562 cells (FigureS1F)

and also in quiescent Lin�CD34+CD38� primary human hemato-

poietic stem and progenitor cells (HSPCs; Figures S1G and H);

this makes this method unsuitable to profile most mutations

found in cancer. Moreover, this approach precludes analysis of

non-coding mutations with key roles in tumorigenesis (Khurana

et al., 2016). We therefore developed a method named

TARGET-seq, which dramatically reduces ADO and also enables

the efficient detection of non-coding mutations from the same

single cell by allowing parallel, targeted mutation analysis of

gDNA and cDNA alongside scRNA-seq.

RESULTS

TARGET-Seq Dramatically Increases the Sensitivity of
Mutation Detection in Single Cells
In order to improve the detection of specific mRNA and gDNA

amplicons, we extensively modified previously published tem-

plate-switching protocols (Hedlund and Deng, 2018; Picelli

et al., 2013; Zheng et al., 2018). To improve the release of

gDNA, we modified the lysis procedure to include a mild prote-

ase digestion (Figure 1A and Table S1); we subsequently heat-

inactivated the protease to avoid inhibition of the RT and PCR

steps. Target-specific primers for cDNA and gDNA were added

to the RT and PCR-amplification steps (Table S2), which also

used modified enzymes (Table S1) that provided more efficient

amplification (Figure 1A). We used an aliquot of the pre-amplified

gDNA and cDNA libraries for targeted NGS of specific cDNA and

gDNA amplicons and another aliquot for whole-transcriptome li-

brary preparation. The libraries used for targeted mutation anal-

ysis and those used for scRNA-seq were sequenced and

analyzed independently.
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Figure 1. TARGET-Seq: A Method for High-Sensitivity Mutation Detection and Parallel Whole-Transcriptome Analysis from the Same Sin-

gle Cell

(A) Schematic representation of the method (full details are available in STAR Methods and Supplemental Experimental Procedures). In brief, cells were sorted

into plates containing TARGET-seq lysis buffer; after lysis, protease was heat inactivated. RTmix was then added. OligodT-ISPCR primed polyadenylated mRNA

and target-specific primers primed mRNA molecules of interest. During subsequent PCR, we used ISPCR adaptors to amplify polyA-cDNA, and we used

(legend continued on next page)
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In clonal cell lines, TARGET-seq dramatically improved the

detection of ten mutation hotspots, including SNVs and small in-

dels across both coding and non-coding regions (Figure 1B).

Notably, gDNA amplicons alone achieved a mean 93% bi-allelic

mutation and/or SNV detection (Figure 1C; the variant-calling

pipeline and specific examples of variant calling can be found in

Figures S2A andS2B, respectively). Importantly,mutational anal-

ysis from rawRNA-sequencing readswas impossible in almost all

cells because of a lack of coverage (Figure S2C), despite the fact

that the mean sequencing depth reached 2.93 million reads/cell.

We next tested whether TARGET-seq would improve the

detection of combinations ofmutations in single cells.Weprofiled

four different mutations in a clonal T cell leukemia diploid cell line

(JURKAT) carrying heterozygous mutations in NOTCH1, RUNX1,

TP53, and PTEN. When we used SMART-seq+, detection of all of

the four mutations within the same single cell was not achieved in

any of the cells analyzed. mRNA targeting detected the four mu-

tations in 38.9% of cells, gDNA targeting in 87.1% of cells, and

TARGET-seq (combined mRNA+gDNA targeting) in 98.4% of

cells (Figure 1D). Therefore, TARGET-seq provides extremely

high sensitivity for the detection of multiple mutations in the

same single cell, and this high sensitivity is essential for reliable

reconstruction of tumor phylogenetic trees.

TARGET-Seq Produces Unbiased Transcriptomic
Readouts from Single Cells
To determine whether TARGET-seq introduces a bias in the sin-

gle-cell whole-transcriptome data, we evaluated its performance

in two cell lines (JURKAT and SET2) and in primary human

HSPCs. Cells clustered by cell type and not by method (Figures

2A and 2B), and there were no significant differences in the

number of genes detected between methods (Figure 2C). The

sequencing quality controls (QCs; Figure S3A), numbers of cells

passing QC (Figure S3B), and transcript coverage (Figure S3C)

were comparable between SMART-seq+ and TARGET-seq,

and there were good correlations of gene expression, including

for genes selected for targeted amplification (Figures 2D, S3D,

and S3E). Similarly, ERCC spike-in controls revealed high corre-

lations between methods (Figures 2E, S3F, and S3G), and cDNA

traces were comparable (Figures S3H–J). These results demon-

strate that TARGET-seq allows accurate mutation detection with

parallel, unbiased, and full-length (Figure S3C) scRNA-seq of the

same single cell.

The Stem Cell Compartment of Patients with MPN is
Genetically and Transcriptionally Heterogeneous
We next applied TARGET-seq to analyze 458 HSPCs in samples

from five patients with myeloproliferative neoplasms (MPN); the
target-specific cDNA and gDNA primers to amplify amplicons of interest. An aliqu

library and another aliquot for preparing the transcriptome library for scRNA-seq

(B) Frequency with which TARGET-seq detected heterozygous mutations in te

SMART-seq+ and mRNA targeting approaches (n = 376 cells, 2–3 independent

(C) Frequency of detection of heterozygous mutations for the same amplicons as i

bar graph represents mean ± SD.

(D) Frequency of detection of heterozygous mutations in JURKAT cells with SMA

cells), and TARGET-seq (n = 62 cells) when four different mutations (RUNX1,NOTC

experiments. Each slice of the pie chart represents a different combination of

single cell.
samples carried different combinations of JAK2V617F, EZH2,

and TET2 mutations (Tables 1 and S3). Two normal donors

were also included as controls. We isolated Lin�CD34+ cells

via fluorescence-activated cell sorting (FACS) (Figure S4) and

indexed the cells for CD38, CD90, CD45RA, and CD123 to allow

assessment of clonal involvement in different stem and progen-

itor cell compartments (Majeti et al., 2007). All mutations identi-

fied in total mononuclear cells were also detected in single cells

within the Lin�CD34+ compartment with TARGET-seq (Table

S3), revealing subclonal mutations with striking inter-patient het-

erogeneity. This allowed us to determine the mutation acquisi-

tion order (Table S3B), which is of importance for MPN biology

(Ortmann et al., 2015). For example, in patient SMD32316 (a

patient with essential thrombocythemia; Tables 1 andS3), we

could determine that a TET2 mutation was acquired after the

JAK2V617F mutation, whereas in patient OX2123 (a patient

with myelodysplastic syndrome [MDS]/MPN overlap; Tables 1

and S3), a TET2 mutation was acquired before a JAK2V617F

mutation. In two patients with a similar JAK2V617F variant allele

frequency (VAF) in bulk mononuclear cells (MNCs), the low per-

centage of ADO that was achieved by TARGET-seq analysis of

single cells revealed that JAK2V617F was heterozygous in

most Lin�CD34+CD38� cells in patient IF0602 (a patient who

had myelofibrosis [MF] and was receiving treatment with a

JAK1/2 inhibitor; Table 1), and there was a normal distribution

within the different Lin�CD34+CD38� stem and progenitor frac-

tions (Figure 3A). In contrast, in patient IF0111 (a patient who

had polycythemia vera and was receiving interferon; Table 1), a

lower fraction of clonally involved Lin�CD34+CD38� cells

were homozygous for JAK2V617F and predominantly had a

CD90+CD45RA+ aberrant phenotype (Figure 3B) that has also

been reported in other myeloid malignancies (Dimitriou et al.,

2016). The ability to reliably distinguish heterozygous versus ho-

mozygous JAK2V617F mutations is of considerable importance

for MPN biology (Li et al., 2014) and also, more broadly, in cancer

because a mutant-allele-specific imbalance is common during

disease progression (Soh et al., 2009).

TARGET-seq analysis uniquely allowed wild-type (WT) HSPCs

to be reliably distinguished from JAK2V617F mutant cells in the

same samples. The analysis revealed the aberrant expression of

biologically relevant genes such as LEPR (Jiang et al., 2008) and

oncogenes such as MYCN, TP53, or PPP2R5A, as well as bio-

logically relevant pathways, including upregulation of hedgehog

(Figure 3D) and Wnt b-catenin (Figure 3F) pathway-associated

transcription (Table S4), in heterozygous (Figures 3C and 3D)

and homozygous (Figures 3E and 3F) JAK2V617F-mutated

HSPCs. HSPCs from patient IF0111 also showed dysregulation

of interferon-associated gene expression, consistent with the
ot of the resulting cDNA+amplicon mix was used for preparing the genotyping

.

n coding and non-coding regions in cell lines; this approach is compared to

experiments per amplicon; the bar graph represents mean ± SD).

n (B), showing exclusively results from targeted genomic DNA sequencing. The

RT-seq+ (n = 36 cells), mRNA targeting (n = 36 cells), gDNA targeting (n = 62

H1,PTEN, and TP53) in the same single cell were profiled in three independent

mutations, and each color represents the number of mutations detected per
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A B

EDC

Figure 2. Unbiased Whole-Transcriptome Analysis of Single Cells with TARGET-Seq

(A) Unsupervised hierarchical clustering of Spearman’s correlations from 180 single cells (JURKAT, n = 56; SET2, n = 86; and HSPC, n = 38); 4,088 highly variable

genes were used. scRNA-seq libraries were generated with SMART-seq+, mRNA targeting, or TARGET-seq as indicated.

(B) tSNE representation of HSPCs, SET2 cells, and JURKAT cells from (A); the same 4,088 highly variable genes as in (A) were used.

(C) Number of detected genes per cell (RPKMR 1) in HSPCs, SET2, and JURKAT cell lines fromSMART-seq+ or TARGET-seq. ‘‘p’’ indicates the Student’s-t-test

p value, and ‘‘ns’’ = non-significance. The boxes represent median and quartiles, and the dots represent the value for each individual cell.

(D) Whole-transcriptome Pearson’s correlation between SMART-seq+ and TARGET-seq ensembles (mean RPKM values per condition) in HSPCs. The

expression values for the genes targeted are highlighted.

(E) Pearson’s correlation between mean ERCC spike-in expression values from SMART-seq+ and TARGET-seq in HSPCs per ERCC spike-in concentration.
patient receiving treatmentwith interferon (Figure 3FandTable1).

The CD90+CD45RA+ aberrant phenotype was also present at a

similar low frequency in an additional patient with a homozygous

JAK2 mutation (Figure 3G; patient OX4739, an MF patient

receiving JAK1/2 inhibitor treatment). Cells from patient

OX4739 also showed disrupted expression of a number of the

same genes identified in patient IF0111 (Table S4E).

Importantly, this analysis allowed us to identify candidate bio-

markers for JAK2V617F mutations in HSPCs from patients with

an isolated JAK2 mutation (Figure 3H; RXFP1, GAS2, and

WDR86). Interestingly, VWF, a marker of platelet-biased stem

cells (Sanjuan-Pla et al., 2013), was specifically upregulated in

JAK2V617F mutant cells from patients IF0602 and OX4739,

whose disease was characterized by abnormal megakaryocytic

differentiation and MF, but it was not upregulated in JAK2V617F

mutant cells from patient IF0111, who had a polycythemia

phenotype (Figure 3I). These data support the notion that tran-
1296 Molecular Cell 73, 1292–1305, March 21, 2019
scriptional lineage priming in the HSPC compartment might be

linked to the disease phenotype in MPN.

Distinct Genetic Subclones Present Unique
Transcriptional Signatures
TARGET-seq also uniquely allowed comparison of WT cells from

patients’ samples and normal controls. Intriguingly, this analysis

established that WT HSPCs from patients with MPN were tran-

scriptionally distinct from normal donor HSPCs (Figure 4A) and

showed enrichment of inflammatory pathways associated with

tumor necrosis factor a (TNFa) and interferon (IFN) signaling

(Figures 3D, 3F, and 4B). These results might indicate the MPN

microenvironment’s effects on the wild-type cells from the

same patient; a similar finding was demonstrated to have clini-

cally predictive value in chronic myeloid leukemia (Giustacchini

et al., 2017). Interestingly, WT HSPCs from patient IF0111, who

was receiving interferon treatment, also showed strong IFN



Table 1. Summary of Donors in the Study, Mutation Status, and Clinical Characteristics

Sample Code Mutation(s) Donor Type Diagnosis Treatment Figures

HD7643 – normal donor – NA Figures 3C–F, 3H, 3I,

4A–E, and S4A

HD7650 – normal donor – NA Figures 3C–F, 3H, 3I, and

4A–E

Aph1 – normal donor – NA Figures 5A–G and 5I–K

HD85 – normal donor – NA Figures 5A–G and 5I–K

SMD32316 JAK2 p.Val617Phe,

TET2 p.Gln958Ter

patient ET aspirin Figures 4A–C and 4E

IF0111 JAK2 p.Val617Phe patient PV pegylated IFN

alpha-2a

Figures 3B, 3E, 3F, 3H, 3I,

4A–C, and 4E

OX4739 JAK2 p.Val617Phe patient myelofibrosis (PMF) ruxolitinib (JAK1 and

JAK2 inhibitor)

Figures 3G–I, 4C, and 4E

OX2123 JAK2 p.Val617Phe,

EZH2 p.Glu249AsnfsTer16,

TET2 c.3409+1G>C

patient MDS/MPN overlap with

grade 3 bone marrow

fibrosis

none Figures 4C, 4D and S4B

IF0602 JAK2 p.Val617Phe patient myelofibrosis (PMF) momelotinib (JAK1

and JAK2 inhibitor)

Figures 3A, 3C, 3D, 3H, 3I,

4A–C, and 4E (full length

TARGET-seq); and Figures 5A–K

(3’-TARGET-seq)

IF0155 JAK2 p.Val617Phe patient myelofibrosis (post-ET) anagrelide Figures 5A–K

IF0157 JAK2 p.Val617Phe patient myelofibrosis (post-PV) ruxolitinib 10 mg BD

(JAK1 and JAK2

inhibitor)

Figures 5A–K

IF0140 JAK2 p.Val617Phe,

TET2 p.Ser1612LeufsTer4

patient myelofibrosis (post-PV) ruxolitinib 20 mg BD

(JAK1 and JAK2

inhibitor)

Figures 5A–C

IF0101 JAK2 p.Val617Phe,

CBL p.Cys404Tyr,

SRSF2 p.Pro95His

patient myelofibrosis (PMF) ruxolitinib 10 mg BD

(JAK1 and JAK2

inhibitor)

Figures 5A–C, 6E, 6F, S6, S7C,

S7F, S7I, S7L, and S7O

IF0123 JAK2 p.Val617Phe,

SF3B1p.Lys666Asn

patient myelofibrosis (PMF) ruxolitinib 5 mg BD

(JAK1 and JAK2

inhibitor)

Figures 5A–G and S6

IF0138 JAK2 p.Val617Phe,

ASXL1 p.Gly646TrpfsTer12,

ASXL1 p.Gly644TrpfsTer12

patient myelofibrosis (post-PV) hydroxycarbamide Figures 5A–K, 6C, 6D, S6, S7B,

S7E, S7H, S7K, and S7N

IF0137 JAK2 p.Val617Phe,

U2AF1 p.Gln157Arg, TET2

p.Ile1105MetfsTer8, ASXL1

p.Gln910AlafsTer13, ASXL1

p.Trp898ArgfsTer5

patient myelofibrosis (PMF) none Figures 5A–G, 6A, 6B, S6, S7A,

S7D, S7G, S7J, and S7M

Additional clinical details are shown in Table S3. PMF, primary myelofibrosis; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm;

ET, essential thrombocythemia; PV, polycythemia vera.
signaling signatures, thus providing an additional layer of valida-

tion for the transcriptional signatures obtained (Figures 3F

and 4B).

Using the top 2,000 genes identified by random forest analysis

(Figure 4C), we analyzed combinations of mutations and showed

striking clustering of HSPCs of the same genotype from multiple

different patients. HSPCs carrying mutations in epigenetic mod-

ifiers had a highly distinct transcriptomic signature, whereas the

signature of cells carrying only heterozygous JAK2V617F muta-

tions more closely resembled the transcriptome of WT cells (Fig-

ure 4C). EZH2 mutant cells showed enrichment in pathways

such as apoptosis, P53 signaling, hypoxia, and the cell cycle
(Figure 4D and Table S4F) previously identified to be correlated

with loss of PRC2 function (Xie et al., 2014) and negative enrich-

ment in genes downregulated upon EZH2 knockdown (Table

S4F). TET2mutant cells also showed enrichment in HSC-related

genes and a negative enrichment in genes downregulated upon

TET2 knockout (Zhang et al., 2016) (Figure 4D and Table S4F).

Moreover, JAK2V617F cells showed dysregulation of STAT5A

targets (Figure 4E and Table S4G). Taken together, these data

demonstrate that TARGET-seq reveals distinct and biologically

relevant molecular signatures of HSPC subclones in MPN and

represents a powerful tool for biomarker and therapeutic target

discovery.
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Figure 3. TARGET-Seq Reveals Genetic and Transcriptional Heterogeneity in the Stem-Cell Compartment of Patients with MPN

(A and B) Variant allele frequency of JAK2V617Fmutation (left), as identified by bulk sequencing of total MNCs; proportion of single cells that carry the mutation

(including zygosity) in the Lin-CD34+CD38- compartment (center); and integration of index sorting with mutational information (right) for patients IF0602 (A) and

IF0111 (B).

(C–F) Analysis of disrupted gene expression associated with JAK2V617F mutation in HSPCs. Beeswarm plots show selected differentially expressed genes

between (C) JAK2wild-type (WT) and JAK2V617F-heterozygousmutant cells from patient IF0602 or (E) JAK2WTand JAK2V617F-homozygousmutant cells from

patient IF0111. Expression values for single cells from two normal donors (NORMAL) are also shown. Each dot represents the expression value for each single

cell; red squares represent mean expression values for each group, and boxes represent median and quartiles. Fisher’s test andWilcoxon test p values are shown

on the top of each graph; expressing cell frequencies are shown on the bottom of each bar for each group. Table S4A (patient IF0602) and Table S4C (patient

IF0111) show all significant, differentially expressed genes. (D) GSEA analysis of JAK2WT and JAK2V617F-heterozygous mutant cells from patient IF0602 or (F)

JAK2 WT and JAK2V617F-homozygous mutant cells from patient IF0111, as well as cells from normal donors (NORMAL). The heatmap represents –log10(FDR

q-values) for each comparison, for which a FDR q-value cut-off < 0.25 was used; a white color with ‘‘ns’’ represents non-significance. The borders of each square

of the heatmap are colored according to the group in which a particular pathway is enriched. Table S4B (patient IF0602) and Table S4D (patient IF0111) show

results for all significant genesets tested.

(G) Integration of index sorting with mutational information for patient OX4739.

(legend continued on next page)
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High-Throughput 30-TARGET-Seq Resolves Complex
Clonal Hierarchies in JAK2 Mutant Myelofibrosis
To increase the throughput of the technique, we adapted

TARGET-seq to allow barcoding and pooling of scRNA-seq li-

braries in a 384-well format in reduced reaction volumes, gener-

ating 30-biased libraries (Table S1C and Figure S5A). Barcodes

could be reliably detected (Figure S5B), sequencing quality met-

rics were in line with other 30-biased scRNA-seq methods (Paul

et al., 2015; Velten et al., 2017) (Figure S5C), and transcript

coverage was 30 biased (Figure S5D). We then analyzed 2,798

cells from a cohort of eight patients with MF and two age-

matched normal donors (Tables 1 and S3). TARGET-seq geno-

typing provided very low dropout rates, in stark contrast to

cDNA genotyping alone (Figures S6A and S6B). This allowed

reconstruction of clonal hierarchies in these patients at unprec-

edented scale and resolution (Figures S6B and S6C and Table

S3). Considerable inter-patient heterogeneity was observed,

and there were both linear and branching patterns of clonal

evolution (Figure S6C). Spliceosome mutations were an early

event in these patients; in contrast, ASXL1 mutations were ac-

quired late, and there were also multiple ASXL1 mutations ac-

quired independently in patient IF0137 (Figures S6B and S6C

and Table S3).

T-SNE analysis using 3,286 highly variable genes showed

distinct clusters of MF HSPCs according to their genotype (Fig-

ure 5A). HSPCs carrying mutations in spliceosome components

or epigenetic modifiers in addition to JAK2 clustered separately

fromWT HSPCs, including WT cells from the same patients, and

were also distinct from cells carrying a JAK2 mutation alone.

TARGET-seq allowed the identification of specific gene expres-

sion associated with certain genetic subclones of HSPCs. For

example, cells carrying mutations exclusively in JAK2 specif-

ically upregulated B4GALT1 (Figure 5B), which is associated

with acquisition of drug resistance in leukemia (Zhou et al.,

2013), and cells with mutations in epigenetic modifiers specif-

ically upregulated PITX1, which has been previously implicated

in leukemogenesis (Nagel et al., 2011). ZFP36 (also known as

TTP), which modulates the interferon-induced inflammatory

response (Sauer et al., 2006), was upregulated in cells carrying

mutations in spliceosome components. Cells carrying mutations

in spliceosome and epigenetic genes upregulated PHB, a pro-

posed therapeutic target in leukemia (Pomares et al., 2016).

MF HSPCs also showed more transcriptional diversity, including

within genetically defined subclones, than WT counterparts (Fig-

ure 5C), suggesting that this transcriptional heterogeneity is not

driven by genetic heterogeneity alone (Figure 5C). Normal donor

HSPCs also clustered separately from WT HSPCs from MF

patients (Figure 5D), an observation similar to that made by

full-length TARGET-seq. Differences between normal donor

and MF WT HSPCs included dysregulation of specific genes

and gene signatures associated with inflammation, as well as
(H) Beeswarmplots of selected genes identified as biomarkers of JAK2mutant cel

patients IF0602, IF0111, OX4739 (JAK2 WT and JAK2V617F mutant cells show

quencies are provided at the bottom of each graph for each group.

(I) A Beeswarm plot of VWF expression values across HSPCs for the same patients

single cell; red squares represent mean expression values for each group, and box

are shown on the top of each graph; expressing cell frequencies are shown on t
TNFa and TGFb signaling (Figures 5E and 5F and Table S5).

Furthermore, a number of oncogenes and tumor suppressors

were aberrantly expressed in WT HSPCs from MF patients (Fig-

ure 5G), raising the possibility that these cells might be more

susceptible to malignant transformation and the development

of secondary hematopoietic malignancy.

Specific analysis that compared only JAK2 mutant and WT

cells and used the top 2,000 genes identified by random forest

analysis showed specific clustering of WT, JAK2V617F-

heterozygous, and JAK2V617F-homozygous cells (Figure 5H).

JAK2V617F-heterozygous cells showed enrichment in inflam-

mation-related signatures such as TNFa, TGF b, and IFN

signaling; the G2M checkpoint; and the P53 pathway (Fig-

ure 5I), further validating the pathways previously identified

by full-length TARGET-seq in specific patients (Figure 3).

JAK2V617F-homozygous mutant cells showed enrichment in

WNT b-catenin, hedgehog signaling, and apoptosis, as well

as in inflammation-related signatures (Figure 5I). The distinct

clustering we observed was driven by a number of the same

genes identified by full-length TARGET-seq, e.g., GAS2 and

RXFP1 (Figure 5J and Table S5); we also identified a number

of additional genes (STAT1, CD69, and NFKBIZ [Figure 5J

and Table S5]), some of which were specifically upregulated

in JAK2-homozygous but not JAK2-heterozygous mutant cells

(IL8 and CLEC7A [Figure 5K]).

Transcriptional Differences between Genetic
Subclones within Individual Patients Are Identified with
TARGET-Seq
Finally, we explored whether distinct genetic subclones of

HSPCs in individual patients could be identified with TARGET-

seq. We analyzed three patients with complex clonal hierarchies

(at least three genetic subclones [Figure S6]): patients IF0137

(Figures 6A and 6B), IF0138 (Figures 6C and 6D), and IF0101

(Figures 6E and 6F). Each genetic subclone clustered

separately (Figures 6A, 6C, and 6E) and showed transcriptional

differences driven by pro-apoptotic genes (MCL1 [Figure 6B

and Table S6]), JAK2-STAT signaling (STAT2 [Figure 6D and Ta-

ble S6]), chemokines (CXCL2 [Figure 6D and Table S6), and

genes previously implicated in leukemogenesis (PHB, BCL11A,

and STAG2 [Figures 6B and 6F and Table S6) or drug resistance

(GSTK1 [Figure 6F and Table S6).

We then explored whether the same genetic subclones could

have been identified by common dimensionality reduction or

clustering methods. Dimensionality reduction using highly vari-

able genes (Figures S7A–C) did not identify distinct clustering

patterns associated with genetic subclones in patients IF0137,

IF0138, or IF0101 either when we regressed out the effect of

the cell-cycle phase (Figures S7D–F) or when we specifically

modeled zero inflation (Figures S7G–I) (Pierson and Yau, 2015).

Furthermore, genetic subclones could not be identified with a
ls independently of the patient analyzed. Expression values across HSPCs from

n separately), and two normal donors (NORMAL) are shown; expression fre-

and normal donors as in (H). Each dot represents the expression value for each

es represent the median and quartiles. Fisher’s test andWilcoxon test p values

he bottom of each bar for each group.

Molecular Cell 73, 1292–1305, March 21, 2019 1299



Figure 4. TARGET-Seq Reveals Distinct Transcriptional Signatures Associated with the Presence or Absence of Somatic Mutations in

Single HSPCs

(A) tSNE representation of 236 wild-type (WT) HSPCs from the three samples (from patients IF0602, SMD32316, and IF0111) in which WT cells are present, and

cells from two normal donors (donors HD7650 and HD7643); 5,365 highly variable genes were used. Cells from normal donors are colored in gray, and cells from

patients with MPN are colored in orange (patients SMD32316 and IF0602) or red (patient IF0111; patient treated with interferon).

(B) Enrichment of IFN-a (left) or IFN-g (right) signaling gene signatures as a projection of ssGSEA results at the same tSNE coordinates from the cells of the specific

donors or patients shown in (A). Each shape represents a group of donors.

(C) tSNE representation of 448 HSPCs from five patients and two normal controls; the top 2,000 genes as measured by the Gini index from the random forest

analysis were used. Only genotypes present in at least five cells were analyzed. The gene expression matrix was batch- and donor-corrected, and genotypes

were preserved.

(D and E) Enrichment of EZH2-related pathways, TET2-related pathways (D), or the JAK/STAT pathway (E) in cells carryingmutations in these genes compared to

(n = 106) cells from two normal donors. The heatmap represents –log10(FDR q-values) for each comparison, using a FDR q-value cut-off < 0.25. A complete list of

all significant genesets tested can be found in Tables S4F and S4G, and a summary list of all genesets can be found in Table S4H.
recently published single-cell K-means clustering method

(SC3) (Kiselev et al., 2017) previously reported to specifically

distinguish genetically distinct subclones of cells (Figures

S7J–L); they also could not be identified with the KNN-based

clustering implemented in the PAGODA2 package (Figures
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S7M–O). Distinct genetic subclones from the same patient

were, however, robustly identified by dimensionality reduction

when we used genes that were differentially expressed between

different genetic subclones, the identification of whichwasmade

possible by TARGET-seq (Figure 6).



Figure 5. High-Throughput TARGET-Seq

Identifies Molecular Signatures of Genetic

Subclones in HSPCs from JAK2-V617F

Mutant Myelofibrosis

(A) tSNE representation of 2,734 HSPCs from eight

patients and two age-matched normal donors; the

sampleswere processedwith 30-TARGET-seq, and

3,286 highly variable genes were used for the

analysis. Cells from age-matched normal donors

are colored in light gray (NORMAL). Wild-type (WT)

cells from patients with MF are colored in dark gray

(‘‘WT-P’’). Cells carrying mutations exclusively in

JAK2 are colored in blue (‘‘J’’); those carrying mu-

tations in JAK2 and epigenetic modifiers (TET2 and

ASXL1) are colored in purple (‘‘JE’’); those carrying

mutations in JAK2 and spliceosome components

(SF3B1, SRSF2, and U2AF1) are colored in light

green (‘‘JS’’); and those carrying mutations in

JAK2, spliceosome components, and epigenetic

modifiers are colored in dark green (‘‘JSE’’). The

gene expression matrix was batch- and donor-

corrected, and genotypes were preserved.

(B) Boxplots of representative differentially ex-

pressed genes from JAK2 only (B4GALT1),

JAK2+epigenetic (PITX1), JAK2+spliceosome

(ZFP36), or JAK2+spliceosome+epigenetic (PHB

and ZFP36) genetic subclones. Each dot repre-

sents the expression value for each single cell;

boxes represent median and quartiles, and the

central line represents the median for each group.

Expression frequencies are shown on the bottom

of each bar for each group.

(C) Boxplot of overall Pearson’s correlation of cells

from normal donors and cells from MF-patient

samples; the cells are grouped per donor type

(normal donor orpatient sample; left panel) or by the

genotype groups presented in (A) (right panel). A

Kolmogorov-Smirnov testprovided the significance

level for each comparison (***; p value < 0.001).

(D) tSNE representation of 1,066 WT cells from six

patients and two normal donors; 3,436 highly

variable genes were used. The gene expression

matrix was batch-corrected, and the donor effect

was preserved.

(E) tSNE projection (from the same cells as in [D])

representing relative gene expression levels from

selected differentially expressed inflammation-

associated genes in WT cells from patients and

normal donors.

(F) Enrichment of selected pathways in the same WT cells from the same samples as in (D) and (E) from normal donors and patients. A complete list of all

significant genesets tested can be found in Table S5A.

(G) tSNE projection representing relative gene expression levels from selected differentially expressed oncogenes (FOS) and tumor suppressors (ANXA1)

between the same WT cells from patients and normal donors as in (D).

(H) tSNE representation of 769 WT and JAK2-only mutant HSPCs from four patients with MF (patients IF0138, IF0155, IF0157, and IF0602); we used the top

2,000 genes as identified by the Gini index from random forest analysis.

(I) Enrichment of selected HALLMARK and STAT5A pathways from the same cells as in (H), as well as cells from normal donors (NORMAL). A complete list of all

significant genesets tested can be found in Tables S5B and S5C, and specific comparisons for subclones within patients can be found in Table S5D.

(J and K) Analysis of disrupted gene expression associated with JAK2V617F mutation in HSPCs. Boxplots show selected differentially expressed genes

specifically upregulated in JAK2 mutant cells independently of zygosity (J) or exclusively in JAK2-homozygous cells (K). Each dot represents the expression

value for each single cell; boxes represent median and quartiles, and the central line represents the median for each group. Expressing-cell frequencies

are shown on the bottom of each bar for each group. A complete list of all significant differentially expressed genes and associated p values can be found

in Table S5E. The heatmaps are colored according to –log10(FDR q-values) for each comparison, for which an FDR q-value cut-off < 0.25 was used. The

borders of each square of the heatmap are colored according to the group in which a particular pathway is enriched; a white color with ‘‘ns’’ represents

non-significance.
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Figure 6. TARGET-Seq Resolves Genetic

andTranscriptionalHeterogeneity of HSPCs

within Individual Myelofibrosis Patients

(A and B) Distinct transcriptional signatures of

genetic subclones identified by TARGET-seq in

patient IF0137. (A) tSNE representation of 555

cells; 633 differentially expressed genes identified

with ANOVA were used and (B) boxplots of

selected differentially expressed genes between

each genetic subclone from the same cells as in

(A). Genetic subclones carrying JAK2, U2AF1, and

ASXL1 (p897/p910) mutations from patient IF0137

are labeled JAK2-HET+U2AF1-HET+ASXL1-HET

and were analyzed together as indicated. Each

genetic subclone is colored and labeled according

to the legend provided in (A).

(C and D) Distinct transcriptional signatures of

genetic subclones from patient IF0138. (C) tSNE

representation of 243 cells; 418 differentially ex-

pressed genes identified with ANOVA were used.

(D) Boxplots of selected differentially expressed

genes between distinct genetic subclones. Each

genetic subclone is colored according to the

legend provided in (C).

(E and F) Distinct transcriptional signatures of ge-

netic subclones from patient IF0101. (E) tSNE

representation of 320 cells; 500 differentially ex-

pressed genes identified with ANOVA were used.

(F) Boxplots of selected differentially expressed

genes between distinct genetic subclones. Each

genetic subclone is colored according to the

legend provided in (E). Each dot represents the

expression value for each single cell; boxes

represent median and quartiles, and the central

line represents the median for each group. Ex-

pressing cell frequencies are shown on the bottom

of each bar for each group. The list of differentially

expressed genes identified in each patient and

associated p values for each comparison can be

found in Table S6. Only genetic subclones repre-

senting at least 5% of the total cells for each pa-

tient are included in the analysis.
DISCUSSION

With the advent ofmolecularly targeted therapy in cancer (Longo,

2017), clinical remissions and clonal responses can be readily

achieved in many patients. However, relapse frequently occurs,

and it is often associated with evidence of clonal evolution,

most likely reflecting ITH already present at diagnosis (Smith

et al., 2017) and a differential response to the targeted therapy

in distinct tumor subclones. Therefore, it is crucial to resolve

the clonal heterogeneity of tumors and dissect the transcriptional

heterogeneity associated with the responsive and resistant sub-

clones of cancer cells. Although scRNA-seqoffers great potential

to resolve the transcriptomic signatures of tumor subclones, up

to now it has not been possible to correlate scRNA-seq data

with mutation analysis because of the lack of coverage for small

indels or point mutations in the scRNA-seq reads, although large

chromosomal aberrations can be detected (Tirosh et al., 2016a).

For example, in a recent study of gliomas, from 22 mutations

analyzed, reads spanning the position of the mutations were de-

tected in 0.4% to 8.7%of the cells (Tirosh et al., 2016b). Although
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methods for the parallel sequencing of the whole-transcriptome

andwhole-genome of single cells have previously been reported,

these methods are not well suited for high-sensitivity mutation

detection because of high ADO rates (Dey et al., 2015; Macaulay

et al., 2015). Furthermore, these approaches are relatively costly

because of the requirement for whole-genome amplification.

Consequently, up to now, such techniques have not been widely

used for the analysis of cancerous tissues.

We herein report a single-cell RNA sequencing and genotyp-

ing method that provides a simple, easily implementable, and

customizable protocol for high-sensitivity mutation detection

with parallel, unbiased whole-transcriptome analysis. TARGET-

seq has clear advantages above other available scRNA-seq

methodologies and provides improved complexity of scRNA-

seq libraries and a dramatically improved ability to detect

multiple mutations in the same single cell, primarily attributable

to the detection of gDNA variants through modified cell lysis

and high-sensitivity, targeted amplification. The high sensitivity

for bi-allelic detection of mutations provided by our technique

is also of considerable importance as loss of heterozygosity of



a number of different mutations is an important driver of disease

phenotype as well as therapy response (Kharazi et al., 2011).

This is also demonstrated in our analysis of patients with MPN;

this analysis shows clear transcriptional differences between

JAK2-heterozygous and homozygous HSPCs in multiple pa-

tients. TARGET-seq also allowed analysis of the order of acqui-

sition of mutations, which is of importance in cancer biology

(Ortmann et al., 2015). Moreover, TARGET-seq has the advan-

tage of combining scRNA-seq data and mutational analysis

with index sorting, allowing cells to be traced back to canonical

stem and progenitor cell hierarchies. This revealed an aberrant

HSPC phenotype associated with the presence of a JAK2-ho-

mozygous mutation in patients with MPN. Furthermore, the reli-

able identification of WT cells by TARGET-seq allows analysis of

aberrant gene expression in normal tissue-residing cells; such

aberrant expression might reflect cell-extrinsic phenomena.

Such microenvironmental factors might underlie many aspects

of tumor biology and therapy response.

TARGET-seq is adapted to allow both full-length and 30-
biased scRNA-seq approaches. The throughput of the full-length

technique would typically enable the preparation of approxi-

mately 400 cells per week and thousands of cells within a few

months; this amount is in line with the numbers of cells analyzed

in published scRNA-seq tumor datasets (Giustacchini et al.,

2017; Tirosh et al., 2016a, 2016b). This version of the protocol

generates scRNA-seq libraries of high complexity and sensitivity

for detecting low-level expressed genes. Moreover, it allows

analysis of alternative splicing patterns; this is of importance in

cancer biology (David and Manley, 2010), as well as in many

other diseases (Cooper et al., 2009), particularly because com-

ponents of the spliceosome machinery are recurrently mutated

in cancer (Kandoth et al., 2013).

Higher-throughput scRNA-seq techniques are available (Ma-

cosko et al., 2015; Zheng et al., 2017); these typically provide

shallowcoverageof only the 30 or 50 regionof transcripts and lower

molecular capture rates but enable the analysis of larger numbers

of cells. Therefore, we also developed 30-biased TARGET-seq to

allow higher-throughput analysis. 30-TARGET-seq is associated

with shallower coverage than full-length TARGET-seq, reducing

sequencing costs, but it retains high-sensitivity mutation analysis

at the single-cell level. 30-TARGET-seq is mostly automated, and

the process would typically allow 1,000 cells to be processed

per week and tens of thousands to be processed within a few

months, considerably increasing the throughput of the technique.

In a cohort of patients with MF, this approach revealed complex

clonal hierarchies and marked inter-patient variability that was

not apparent frombulk genetic analysis. This allowed distinct tran-

scriptional signatures of specific genetic subclones and non-

clonally involved WT HSPCs to be characterized, which was not

possible with other computational approaches.

In summary, TARGET-seq is a powerful tool for resolving both

genetic and transcriptional intratumoral heterogeneity. TARGET-

seq also uniquely allows the identification of specific molecular

signatures within genetically distinct subclones of tumor cells.

We expect that this will pave the way for the application of

scRNA sequencing for the definitive analysis of intratumoral het-

erogeneity and the identification and characterization of therapy-

resistant tumor subclones.
Limitations
A potential limitation of TARGET-seq is that this approach does

not support mutation discovery and relies on the analysis of

known driver mutations or mutations previously identified by

other discovery-type methods. However, because the lysate is

initially frozen and stored, this will routinely allow for mutational

analysis of the same sample before the subsequent processing

of single cells. Up to now, we have multiplexed primers to detect

a total of 12 different mutations per single cell. Although this will

be adequate for analyzing key driver mutations in many tumors,

for more genetically complex malignancies, a more complex

multiplexing strategy might be required. For very genetically

complex tumors where potentially hundreds of different muta-

tions need to be tracked, a whole-genome and whole-transcrip-

tome approach might be more appropriate (Dey et al., 2015;

Macaulay et al., 2015), albeit at the cost of reduced sensitivity

for the detection of those mutations (Hosokawa et al., 2017;

Wang et al., 2014). In the current study, we have applied this

technique to analyze hematopoietic tumors; however, this

method could be broadly applied to the analysis of a range of

cancers and is a powerful tool for linking transcriptional signa-

tures with genetic tumor heterogeneity.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD8-FITC (Lineage) BioLegend Clone: RPA-T8

Cat#: 301006

RRID: AB_314124

CD20-FITC (Lineage) BioLegend Clone: 2H7

Cat#: 302304

RRID: AB_314252

CD66b-FITC (Lineage) BioLegend Clone: G10F5

Cat#: 305104

RRID: AB_314496

CD10-FITC (Lineage) BioLegend Clone: HI10a

Cat#: 312208

RRID: AB_314919

CD127-FITC (Lineage) eBioscience Clone eBioRDR5; Cat#: 11-1278-42

RRID: AB_1907343

Human Hematopoietic Lineage Cocktail – FITC (Lineage) eBioscience Cat# 22-7778-72; RRID: AB_1311229

CD123-PECy7 BioLegend Clone: 6H6

Cat#: 306010

RRID: AB_493576

CD38-PETxRed Invitrogen Clone: HIT2

Cat#: MHCD3817

RRID: AB_10392545

CD90-BV421 BioLegend Clone: 5E10

Cat#: 328122

RRID: AB_2561420

CD45RA-PE eBioscience Clone: HI100

Cat#: 12-0458-41

RRID: AB_10717397

CD34-APC-eF780 eBioscience Clone: 4H11

Cat#: 47-0349-42

RRID: AB_2573956

CD34-PerCP/Cy5.5 BioLegend Clone: 562

Cat# 343611, RRID:AB_2566787

CD90-PE BioLegend Clone: 5E10

Cat# 328109

RRID: AB_893442

CD45RA-FITC Invitrogen Clone: MEM56

Cat# MHCD45RA01

RRID: AB_10373858

CD2-PE/Cy5 (Lineage) BioLegend Clone: RPA-2.10

Cat# 300209

RRID:AB_314033

CD3-PE/Cy5 (Lineage) BioLegend Clone: HIT3a

Cat# 300310

RRID: AB_314046

CD4-PE/Cy5 (Lineage) BioLegend Clone: RPA-T4

Cat# 300510

RRID: AB_314078

CD7-PE/Cy5 (Lineage) BioLegend Clone: 6B7

Cat# 343110

RRID: AB_2075096

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CD8-PE/Cy5 (Lineage) BioLegend Clone: RPA-T8

Cat# 301010

RRID: AB_314128

CD10-PE/Cy5 (Lineage) BioLegend Clone: HI10a

Cat# 312206

RRID: AB_314917

CD11b-PE/Cy5 (Lineage) BioLegend Clone: ICRF44

Cat# 301308

RRID: AB_314160

CD14-PE/Cy5 (Lineage) Invitrogen Clone: 61D3

Cat# 15-0149-41

RRID: AB_2573057

CD19-PE/Cy5 (Lineage) BioLegend Clone: HIB19

Cat# AB_314240

RRID: 302210

CD20-PE/Cy5 (Lineage) BioLegend Clone: 2H7

Cat# AB_314256

RRID: 302308

CD56-PE/Cy5 (Lineage) BD Biosciences Clone: B159

Cat# 555517

RRID: AB_395907

CD235a,b-PE/Cy5 (Lineage) BioLegend Clone: HIR2

Cat# 306606

RRID: AB_314624

Biological Samples

Healthy Donors (HD7643; HD7650; Aph1; HD85) and MPN

patient samples (OX2123; IF0602; IF0111; SMD32316;

OX4739; IF0101; IF0123; IF0137; IF0138; IF0140; IF0155;

IF0157; See Table 1 and Table S3)

INForMeD Study (REC:199833,

University of Oxford)

https://www.hra.nhs.uk/planning-

and-improving-research/application-

summaries/research-summaries/

the-informed-study/

Chemicals, Peptides, and Recombinant Proteins

Protease QIAGEN Cat# 19155

RNase Inhibitor Takara (Clontech) Cat# 2313A

SMARTScribe Takara (Clontech) Cat# 639537

SeqAMP Takara (Clontech) Cat# 638509

Critical Commercial Assays

Nextera XT DNA Library Preparation Kit Illumina Cat# FC-131-1096

Nextera XT Index Kit v2 Set A Illumina Cat# FC-131-2001

Nextera XT Index Kit v2 Set C Illumina Cat# FC-131-2003

KAPA 2G Robust HS PCR Kit Kapa Biosystems Cat# KK5517

FastStart High Fidelity PCR System, dNTPack - Sigma-Aldrich Roche Cat# 04-738-292 001

Access Array� Barcode Library for Illumina� Sequencers-384,

Single Direction

Fluidigm Cat# 100-4876

Deposited Data

Single-cell RNA sequencing this paper GEO: GSE105454

Targeted genotyping sequencing (validation; Figure 1) this paper SRA: PRJNA503734

Targeted genotyping sequencing (patients processed using

full-length TARGET-seq; Figures 3–4)

this paper SRA: PRJNA503736

Targeted genotyping sequencing (patients processed using

30-TARGET-seq; Figures 5 and 6; Figures S6 and S7)

this paper SRA: PRJNA503628

Experimental Models: Cell Lines

K562 ATCC RRID:CVCL_0004

MOLT4 ATCC RRID:CVCL_0013

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

NALM6 DSMZ RRID:CVCL_0092

SET2 Laboratory of Dr. Jacqueline

Boultwood

RRID:CVCL_2187

JURKAT ATCC RRID:CVCL_0367

Oligonucleotides

OligodT-ISPCR (HPLC purification):

aagcagtggtatcaacgcagagtacttttttttttttttttttttttttttttttvn

Picelli et al., 2013 N/A

TSO-LNA (RNase Free HPLC purification):

AAGCAGTGGTATCAACGCAGAGTACATrGrG+G

Picelli et al., 2013 N/A

ISPCR (HPLC purification): AAGCAGTGGTATCAACGCAGAGT Picelli et al., 2013 N/A

P5_index (HPLC purification):

AATGATACGGCGACCACCGAGATCTACACGCCTGTC

CGCGGAAGCAGTGGTATCAACGCAGAGT*T*G

this paper; adapted from

Zheng et al., 2018

N/A

P5_SEQ (PAGE purification): GCCTGTCCGCGGAAGCAGTGG

TATCAACGCAGAGTTGC*T

this paper; adapted from

Zheng et al., 2018

N/A

CS1-seq sequencing primer (HPLC purification):

A+CA+CTG+ACGACATGGTTCTACA

N/A N/A

CS2-seq sequencing primer (HPLC purification):

T+AC+GGT+AGCAGAGACTTGGTCT

N/A N/A

CS1rc-seq sequencing primer (HPLC purification):

T+GT+AG+AACCATGTCGTCAGTGT

N/A N/A

CS2rc-seq sequencing primer (HPLC purification):

A+GAC+CA+AGTCTCTGCTACCGTA

N/A N/A

See Table S2 for pre-amplification, barcoding PCR1

target-specific primer sequences and barcoded

oligodT-ISPCR primers

this paper and adaptor

from Zheng et al., 2018

N/A

Software and Algorithms

bcl2fastq (version 2.20) Illumina RRID:SCR_015058

STAR (version 2.4.2a) Dobin et al., 2013 https://github.com/alexdobin/STAR

RRID: SCR_015899

TrimGalore (version 0.4.1) Felix Krueger, The

Babraham Institute

https://www.bioinformatics.babraham.

ac.uk/projects/trim_galore/

FeatureCounts (version 1.4.5-p1) Liao et al., 2014 http://subread.sourceforge.net/

RRID: SCR_012919

Samtools (version 1.1) Li et al., 2009 http://samtools.sourceforge.net/

RRID:SCR_002105

R (version 3.4.3) CRAN RRID:SCR_001905

Flowjo Tree Star RRID:SCR_008520

Gene set enrichment analysis (GSEA) Broad Institute RRID:SCR_003199

MSigDB Broad Institute RRID:SCR_003199

Graphpad Prism (version 7) Graphpad RRID:SCR_002798

Other

Full-length TARGET-seq, 30TARGETseq detailed protocols and

primer design and validation technical note

This Paper Methods S1
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Adam

Mead (adam.mead@imm.ox.ac.uk).
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METHOD DETAILS

Cell Lines
K562, MOLT4 and JURKAT cells were obtained from the American Type Culture Collection (ATCC). NALM6 cells were obtained from

the German Collection of Microorganisms and Cell Cultures (DSMZ). SET2 cells were kindly provided by Dr. Jacqueline Boultwood

and Dr. Andrea Pellagatti (Radcliffe Department of Medicine, University of Oxford). All cell lines were maintained in culture in RPMI-

1640 supplemented with 10%Fetal Calf Serum (FCS) and antibiotics. Cell lines were authenticated by targeted sequencing of known

mutations.

Banking and Processing of Human Samples
Patients and normal donors provided written informed consent in accordance with the Declaration of Helsinki for sample collection

and use in research under the INForMeD Study (REC:199833, University of Oxford). Cryopreserved peripheral blood and bone

marrow mononuclear cells (MNCs) were thawed and processed for flow cytometry analysis as previously described (Woll et al.,

2014). Briefly, cryopreserved cells were thawed and 1 mL of FCS was immediately added to each sample. Samples were further

diluted with 8mL IMDM (Iscove’s Modified Dulbecco’s Medium) supplemented with 20% FCS and 10% DNase I (Merck). Samples

were spun down for 10 min at 350 g, washed and spun down again for 10 min at 350 g. A summary of patients and normal donors’

samples used for analysis can be found in Table 1 and Table S3.

Bulk Sequencing of Mononuclear Cells
Bulk genomic DNA from patient samples’ mononuclear cells was isolated using DNeasy Blood & Tissue Kit (QIAGEN) as per man-

ufacturer’s instructions. Targeted sequencing was performed using a TruSeq Custom Amplicon panel (Illumina) consisting of 341

amplicons (�56 kb) designed around exons of 32 genes frequently mutated in myeloid malignancies (Hamblin et al., 2014). Library

preparation was performed as per manufacturer’s instructions using 50-250 ng genomic DNA.

Targets were chosen based on the genes/exons most frequently mutated and/or likely to alter clinical practice (diagnostic, prog-

nostic, predictive or monitoring capacity) across a range of myeloid malignancies (e.g., MDS/AML/ MPN), and can be found in the

table below:
Gene Exons Covered Gene Exons Covered

ASXL1 12 KRAS 2, 3

ATRX 8, 9, 10, 17-31 MPL 10

CBL 8-9 NPM1 11

CBLB 9-10 NRAS 2,3

CBLC 9-10 PDGFRA 12, 14, 18

CEBPA 1 PHF6 2-10

CSF3R 14-17 PTEN 5-7

DNMT3A 23 RUNX1 3-8

ETV6 1-8 SETBP1 4

EZH2 2-20 SF3B1 14,15

FLT3 14, 15, 20 SRSF2 1

HRAS 2,3 TET2 3-11

IDH1 4 TP53 4-9

IDH2 4 U2AF1 2, 6

JAK2 12,14 WT1 7, 9

KIT 2, 8-11, 13, 17 ZRSR2 1-11
Alignment and variant calling were performed in Basespace (utilizing BWA andGATK/Somatic variant caller; Illumina, or SVC) while

filtering and annotation were performed using Variant Studio (Illumina).

Every variant was individually assessed against COSMIC, dbSNP, gnomAD and published literature for frequency in the germline

and acquired state andwhether any data (in vitro or in vivo) suggests its likely pathogenicity. Variants with a population frequency of >

1% were considered polymorphisms. Variants with a population frequency of < 1% but with ethnicity bias and a variant allele fre-

quency close to 50% were also considered polymorphisms.

Any variant passing these criteria and a variant allele frequency cut-off of 5% of the reads (point mutations) or 2% of reads (inser-

tions/deletions longer than 5 bp) was reported as mutated in Table S3 and analyzed for each patient.
Molecular Cell 73, 1292–1305.e1–e8, March 21, 2019 e4



Fluorescent Activated Cell Sorting (FACS) Staining and Single-Cell Isolation
Single cell FACS-sorting was performed as previously described (Giustacchini et al., 2017), using BD Aria III or BD Fusion I instru-

ments (Becton Dickinson) for 96-well plate experiments and SH800S (SONY) for 384-well plate experiments. Full details are provided

in Supplemental Experimental Procedures. Experiments involving isolation of human hematopoietic stem and progenitor cells

(HSPCs) included single color stained controls (CompBeads, BD Biosciences) and Fluorescence Minus One controls (FMOs). Line-

age-CD34+ cells were sorted and indexed for CD38, CD90, CD45RA and CD123 markers, which allowed us to record the fluores-

cence levels of each marker for each single cell. For samples processed using full-length TARGET-seq in 96 well-plates (Table S3),

HSPCs were stained with the following the antibody cocktail: Lineage-FITC, CD34-APC-e780, CD38-PE-TxRed, CD90-BV421,

CD45RA-PE and CD123-PECy7. For samples processed using 30-TARGET-seq in 384-well plates (Table S3), HSPCs were stained

with the following antibody cocktail: Lineage-PE/Cy5, CD34-PerCp/Cy5.5, CD38-PE-TxRed, CD90-PE, CD45RA-FITC, CD123-

PECy7. The full list of antibodies used for HSPCs immunophenotyping and isolation can be found in Key Resources; 7- aminoacti-

nomycin D (7-AAD) was used for dead cell exclusion. Briefly, single cells directly sorted into 96-well PCR plates containing 4.1-4.2 mL

of lysis buffer or into 384-well plates containing 2.07 mL of lysis buffer . K562 cells were sorted into the lysis buffer described in Table

S1A. JURKAT, MOLT4, NALM6, SET2 and HSPCs (processed using full length TARGET-seq) were sorted into lysis buffers described

in Table S1B. HSPCs processed using 30-TARGET-seq were sorted into the lysis buffer described in Table S1C, using the barcoded

oligodT-ISPCR primers listed in Table S2C (adapted from (Zheng et al., 2018)). Flow cytometry profiles of the HSPC compartment

(Figure S4) were analyzed using FlowJo software (version 10.1).

cDNA Synthesis (RT-PCR)
For K562 cells, RT and PCR steps were performed as described in Table S1A, using 18 cycles of PCR amplification. For JURKAT,

MOLT4, NALM6, SET2 cells and HSPCs (full length TARGET-seq), RT and PCR steps were performed as described in Table S1B,

using 20 cycles of PCR amplification for cell lines and 22 cycles of amplification for HSPCs. For HSPCs processed using

30-TARGET-seq, RT and PCR stepswere performed as described in Table S1C, using 24 cycles of PCR amplification. The sequences

of the primers used in the RT and PCR steps, for whole transcriptome and targeted retrotranscription and cDNA amplification, can be

found in Table S2A and Key Resources Table. Primers were designed to amplify amplicons 250-700 bp long and specificity was

checked against RefSeq and human genome assembly databases using PrimerBlast. mRNA and cDNA primers were designed to

amplify coding regions whereas gDNA primers were designed to bind at least to one intronic region. More information regarding

primer design and validation can be found in the Supplemental Experimental Procedures ‘‘Technical Note: Primer Design and Vali-

dation.’’ After PCR, an aliquot of the cDNA-amplicon mix was used for whole transcriptome library preparation and another aliquot,

for single-cell genotyping library preparation. For full length TARGET-seq, 15 mL from a total of 25 mL of cDNA-amplicon mix were

diluted with 11 mL of water, purified using 16 mL of Ampure XPBeads (0.6:1 beads to cDNA ratio; BeckmanCoulter), and resuspended

in a final volume of 8 mL of EB buffer (QIAGEN). For high throughput 30-TARGET-seq, 1 mL from each quadrant of a 384-well plate was

pooled to generate a cDNA pool of barcoded libraries; each cDNA pool was purified twice using Ampure XP beads (0.6:1 beads to

cDNA ratio). The quality of cDNA traces was checked using a High Sensitivity DNA Kit in a Bioanalyzer instrument (Agilent Technol-

ogies). The remaining of the cDNA-amplicon mix was used for subsequent single-cell genotyping or stored at �20 C.

Targeted NGS Single-Cell Genotyping
After RT-PCR, 1.5 mL aliquot from each single cell derived cDNA+ampliconmixwas used as input to generate a targeted and Illumina-

compatible library for single cell genotyping. The preparation of single cell genotyping libraries involves 2 PCR steps (See Supple-

mental Experimental Procedures). In the first PCR step, target specific primers (Table S2B) attached to universal CS1 / CS2 adaptors

(Figure 1, Forward adaptor, CS1: ACACTGACGACATGGTTCTACA; Reverse adaptor, CS2: TACGGTAGCAGAGACTTGGTCT) are

used to amplify the target regions of interest. Target-specific primers were designed to specifically amplify cDNA or gDNA, amplifying

annotated coding regions in the case of cDNA amplicons and at least one intronic region in the case of genomic DNA amplicons. In

the second PCR step (See Detailed Protocol), Illumina compatible adaptors (PE1/PE2) containing 10 bp single-direction indexes

(Access Array Barcode Library for Illumina� Sequencers-384, Single Direction, Fluidigm) are attached to pre-amplified amplicons

from the first PCR through CS1/CS2 regions, to generate single-cell barcoded libraries. Amplicons were pooled using a Mosquito

HTS liquid handling platform (TTP Labtech) and pooled amplicons were purified with Ampure XP beads (0.8:1 ratio beads to product;

Beckman Coulter). Purified pools were quantified using Quant-iT Picogreen (Thermo Fisher Scientific) and each pool was diluted to a

final concentration of 4 nM. Pools were further diluted to 10 pM in HT1 buffer prior sequencing.

Up to 384 single cells were sequenced on a MiSeq (Illumina) instrument, with the following sequencing configuration: 151 bp R1,

10 bp index read, 151 bp R2. We used custom sequencing primers for Read1 and Read 2 (500 nM CS1-seq and 500 nM CS2-seq;

See Key Resources) and Index Read (500 nMCS1rc-seq and 500 nMCS2rc-seq; See Key Resources) diluted in 700 mL of HT1 buffer.

Reads were aligned to GRCh37/hg19 using STAR with default settings (version 2.4.2a) and cDNA/gDNA amplicons were separated

into different bam files using a custom pipeline, extracting reads matching the different primer sequences used for targeted PCR

barcoding. This allowed us to obtain independent mutational information from cDNA and gDNA. Variant calling was performed using

mpileup (samtools version 1.1, options–minBQ 30,–count-orphans,–ignore overlaps) and results were summarized with a custom

pipeline (https://github.com/albarmeira/TARGET-seq; Figure S2A). Thresholds for the detection of each amplicon were set based

on non-template controls and thresholds for mutation calling were based on WT controls and customized for each amplicon
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(1.5%–4% of the reads, representative examples can be found in Figure S2B). Both non-template and WT controls were routinely

processed in parallel to test samples. Importantly, none of the tested mutations were detected in any control cells (n = 874) or blanks

(n = 114) in any of the experiments using the mutational pipeline and cut-offs described, implying that the false positive rate of variant

calling is effectively zero. For experiments involving isolation of HSPCs, QC genotyping was performed as follows: single cells where

one of the targeted amplified genes tested failed to be detected by either gDNA or mRNA were excluded from analysis. Cells for

which cDNA/gDNA mutation analysis showed discrepant readouts were considered heterozygous if one of the molecules (cDNA

or gDNA) gave a heterozygous readout. When one of the molecules gave a homozygous readout and the other gave a WT readout,

cells were also considered heterozygous, although this was a rare event occurring in 0.18% of the amplicons. We considered a cell

homozygous when only the mutant allele was detected at the genomic DNA level and we considered a cell WT when only the WT

allele was detected at the genomic DNA level. We excluded cells in which only the WT or mutant allele were detected at the

mRNA level, but the same gene was not detected at the gDNA level, a rare event occurring in 0.57% of amplicons. Specifically

for JAK2mutation, where we carried out extensive analysis of the data for zygosity, we included an additional ‘‘not determined’’ cate-

gory for cells with mRNA and gDNA JAK2 amplicons in which allele frequency was 0.03 < AF < 0.1 for gDNA (full-length TARGET-seq

dataset), 0.04 < AF < 0.1 for gDNA (30-TARGET-seq dataset) and 0.03 < AF < 0.1 for mRNA (30-TARGET-seq dataset). Not determined

amplicons were excluded from analysis: 36 of 3900 amplicons detected for gJAK2 and 51 out of 1295 amplicons detected for

mJAK2. We required a minimum coverage of 30 reads per amplicon to obtain mutational readouts; the mean coverage per amplicon

is 2641 reads.

Nextera XT Library Preparation for Full-Length Whole-Transcriptome Sequencing
Bead-purified cDNA libraries were used for tagmentation with Nextera XT DNA Kit (Illumina) using one fourth of the original volume

as previously described (Giustacchini et al., 2017). 4nM libraries were diluted to 1.8 pM in HT1 buffer and sequenced on a NextSeq

instrument with 75 bp single-end reads using a NextSeq 500/550 High Output v2 kit (Illumina). HSPCs were sequenced to a mean

sequencing depth of 2.4 M reads.

Nextera XT Library Preparation for 30-Biased Whole-Transcriptome Sequencing
Bead-purified and pooled cDNA libraries were used for tagmentation-based library preparation with Nextera XT DNA Kit (Illumina)

using a custom PCR amplification strategy. Briefly, 1 ng of each barcoded cDNA pool was tagmented as per manufacturer’s

instructions. Subsequently, reaction was stopped and PCR was performed as per manufacturer’s instructions, with the exception

of P5 adaptor, for which 200 nM of a custom P5 adaptor was used (P5_index; See Key Resources). Each indexed pool was bead

purified twice with Ampure XP beads (0.7:1 beads to cDNA ratio). 4nM libraries were diluted to 3 pM in a total volume of 1.3 mL

of HT1 buffer and were sequenced on a NextSeq instrument, using a NextSeq 500/550 High Output v2 kit (Illumina) with a custom

sequencing primer for read1 (P5_SEQ, 900 nM in a total volume of 3 mL of HT1 buffer; See Key Resources) and the following

sequencing configuration: 20 bp R1; 8 bp index read; 64 bp R2. HSPCs were sequenced to a mean sequencing depth of

152,552 reads.

Single Cell Full-Length RNA-Sequencing Data Pre-Processing
RNA-sequencing reads were trimmed for Nextera adaptors with TrimGalore (version 0.4.1) and aligned to the human genome (hg19)

using STAR with default settings (version 2.4.2a). RefSeq gene model was used as the reference for gene expression quantification.

Counts for each RefSeq gene were obtained with FeatureCounts (version 1.4.5-p1; options–primary) and were normalized to reads

per kilobase per million mapped reads (RPKM). Genes with RPKM values less than 1 were considered non-detected (Giustacchini

et al., 2017) and expression values for these genes were converted to zero. We further normalized RPKM expression values into

the log2 scale. QC filtering was performed using the following parameters: percentage of readsmapping in exons > 50%, percentage

of mapped reads > 50% and number of detected genes per cell (RPKM > = 1) > 6000 for JURKAT and SET2 cells, > 5000 for K562

cells and > 1500 for primary HSPCs. For cell lines, we excluded 8 cells after applying these QC filters (5.3%) and for HSPCs,

33 cells (6.1%).

Single Cell 30-Biased RNA-Sequencing Data Pre-Processing
FASTQ files were generated using bcl2fastq (version 2.20) with default parameters and the following read configuration: Y12N*, I8,

Y64N*, in which read1 corresponds to an 8bp cell-specific barcode, index read corresponds to i7 index from each cDNA pool and

read2 corresponds to cDNA sequence. Demultiplexed FASTQ files were trimmed for polyA tails using TrimGalore (version 0.4.1); files

from different lanes were merged together using samtools (version 1.1) and aligned to the human genome using STAR (version

2.4.2a). RefSeq gene model was used as the reference for gene expression quantification. Counts for each RefSeq gene were ob-

tained with FeatureCounts (version 1.4.5-p1; options–primary). Counts were normalized as follows: counts for each single cell were

divided by the total library size for that cell and multiplied by the mean library size of all cells processed (68,412). Genes with normal-

ized count values less than 1 were considered non-detected and expression values for these genes were converted to zero. We

further normalized counts into the log2 scale. QC filtering was performed using the following parameters: library size > 2000 reads;

percentage of reads mapping to the mitochondrial chromosome < 10%; percentage of ERCC < 50% and number of detected genes

per cell (normalized counts > = 1) > 500. We retained 2851 cells after applying these QC filters (81.6%).
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Whole-Transcriptome Variant Calling from Single Cells
Bam files from 48 single K562 cells (Figure S1F) or 38 single HSPCs (Figure S1H) were merged using samtools to computationally

create a single cell ensemble. LoFreq software (Wilm et al., 2012) was used for variant calling in the single cell ensemble. Heterozy-

gous regions across the transcriptome (AF > 0.05 of the minor allele, Allele Frequency) were used for variant calling in each

individual cell, requiring a minimum coverage of 10 reads and minimum base quality of 30. A SNV was considered heterozygous

if 0.05 < AF < 0.95 and homozygous if AF < 0.05 or AF < 0.95.

Mutational Analysis from RNA-Sequencing Reads
Variant calling from raw RNA-sequencing reads was performed using mpileup (samtools version 1.1, options–minBQ 30,–count-

orphans,–ignore overlaps) and results were summarized with a custom script (https://github.com/albarmeira/TARGET-seq). Thresh-

olds for the detection of amplicons were set at 30 reads per position (Figure S2C), in line with variant calling guidelines (Sims

et al., 2014).

Dropout Frequency and Library Bias Calculation
The frequency of dropout for a given gene was calculated as the percentage of cells from a specific condition (SMART-seq2 or

SMART-seq+) in which the gene is not detected (RPKM < 1), as compared to the average expression of that gene in K562 bulk sam-

ples (6 replicates of 100 cells each; 3 replicates per chemistry). Library bias was calculated as the ratio between the mean RPKM of

the top 10% expressed genes in the library and the mean RPKM of all genes.

Transcript Coverage
Normalized transcript coverage was calculated using ‘‘geneBody_coverage.py’’ script from RSeQC package (Wang et al., 2012),

using a list of 4040 housekeeping genes obtained from http://rseqc.sourceforge.net/.

Differential Expression Analysis
Differentially expressed genes were identified using a combination of non-parametric Wilcoxon test, to compare the expression

values for each group, and Fisher’s exact test, to compare the frequency of expression for each group, as previously described (Gius-

tacchini et al., 2017). We used log2(RPKM) and log2(normalized counts) matrices, including genes expressed in at least two cells

(when analyzing less than 200 cells; Table S4) or in at least five cells (when analyzing over 200 cells; Tables S5, and S6). P values

were combined using Fisher’s method and adjusted p values were derived using Benjamini & Hochberg procedure. Significant genes

were selected on the basis of adjusted P value < 0.1 and absolute log2(fold change)>0.5. Differentially expressed genes in between

several distinct genetic subclones (Figure 6, and Table S6) were identified using the ‘‘genefilter’’ package in R with analysis of

variance (p value < 0.05). Beeswarm plots from selected genes were generated using ‘‘beeswarm’’ package in R and boxplots

from selected genes were generated using ‘‘ggplot2’’ package in R.

Identification of Highly Variable Genes
We identified variable genes above technical noise by fitting a lowess model of the log2(mean expression level) and coefficient of

variation for each gene. We selected genes with a coefficient of variation above the fitted model and log2(mean expression) > = 0.

Single Cell Clustering and Dimensionality Reduction
T-distributed stochastic neighbor embedding (tSNE) was performed using ‘Rtsne’ package, the implementation of the method in R,

with ‘‘perplexity’’ = 15 for Figures 4A and 4B ‘‘perplexity=20’’ for Figures 2B and 4C. For the analysis of 30-TARGET-seq, similarly to

other high-throughput 30-biased techniques, we first computed a PCA reduction using 50 dimensions, and then used the top thirty

(Figures 5A, 5D, 5E, and 5G), top twenty (Figure 5H) or top five dimensions (Figures 6A, 6C, 6E, and S7A–F) with higher variance to

generate the tSNE plots in Figures 5, 6, and S7, using ‘‘perplexity=20’’ for Figure 5H, ‘‘perplexity=25’’ for Figures 6A, 6C, 6E, and S7A–

F, and ‘‘perplexity=30’’ for Figures 5A, 5D, 5E, and 5G. The number of genes used for each analysis is specified in the legend for each

figure. Zero Inflated Factor Analysis (ZIFA) (Pierson and Yau, 2015) was used to assess transcriptional heterogeneity associated with

the subclonal composition of patients IF0137, IF0138 and IF0101 (Figures S7G–I), performed using highly variable genes with default

parameters. SC3 software (Kiselev et al., 2017) was used to analyze the subclonal composition of patients IF0137, IF0138 and

IF0101, using default parameters and k = 4 for patient IF0137 (as there are four genetically-distinct subclones; Figure S7J) or k =

3 for patients IF0138 and IF0101 (as there are three genetically-distinct subclones; Figures S7K and S7L) with default parameters.

K-Nearest Neighbors clustering integrated in the PAGODA2 package (https://github.com/hms-dbmi/pagoda2) was used to analyze

the subclonal composition of patients IF0137, IF0138 and IF0101 (Figures S7M–O). We calculated a PCA reduction of the batch-

corrected gene expressionmatrix using 50 principal components and 3000 overdispersed genes, computed nearest neighbors using

‘‘cosine’’ distance (k = 15) and identified clusters using ‘‘multilevel community’’ method. We then plotted the tSNE graphs presented

in Figures S7M–O with ‘‘perplexity=25.’’ We observed that transcriptional heterogeneity between genetic subclones within

individual patients was better captured with higher-dimensionality representations, and we therefore represent three tSNE dimen-

sions in Figures 6 and S7.
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Cell to Cell Correlation Measurements
Pearson’s correlation between single cells for each genetic subgroup was calculated using the log2(normalized counts), including

genes expressed in at least five cells (Figure 5C).

Batch Correction
Batch correction was performed using ‘‘limma’’ package in R (Figures 4, 5, 6, and S7). Gene expression matrix was batch and

donor corrected in Figures 4C, 5A, and 5H, while preserving genotypes. Gene expression matrix was batch corrected in Figures

5D, 5E, and 5G, while preserving donor effect. Gene expression matrix was batch corrected in Figures S7A and S7D and plate cor-

rected in Figures S7C and S7F.We used batchNorm function from PAGODA2 package (method = ’’glm’’) to perform batch correction

in Figures S7M and S7O.

Cell Cycle Phase Assignment and Correction
AnS-phase andG2M-phase cell cycle score was calculated as themean expression value of a set of S-phase andG2M-phase genes

(Tirosh et al., 2016a) for each cell. S-phase and G2M-phase scores were used to fit a linear model on the normalized and logged gene

expression matrices using ‘‘limma’’ package in R, in order to remove the effect of cell cycle. Cell-cycle corrected matrices were used

as an input for the analysis presented in Figures 5A, 5H, and S7D–F.

Random Forest Analysis
Random forest analysis was performed using ‘randomForest’ package in R (ntree = 2000), trained on the genotypes of single cells.

Only genotypes with at least five cells were included in this analysis. Expression matrix was batch and donor-corrected, and geno-

types were preserved. The top 2000 genes identified by the random forest analysis (MeanDecreaseGini > 0.041 in Figure 4C;

MeanDecreaseGini > 0.045 in Figure 5H) were used for the tSNE representation in Figures 4C and 5H (perplexity = 20). Clustering

of cells was stable when selecting from 500 to 5000 top genes from the random forest analysis.

GeneSet Enrichment Analysis
GSEAwas performed usingGSEA software (http://software.broadinstitute.org/gsea) with default parameters and 1000 permutations

on the phenotype. Gene sets used for the analysis were downloaded from MSigDB or relevant studies (Table S4H). Single Sample

GSEA (ssGSEA) was performed using ssGSEA Projection Module (https://genepattern.broadinstitute.org) with default settings and

combine mode ‘combine.off’. A projection of ssGSEA results is shown in Figure 4B.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unpaired Student t test with Welch’s correction was used for the comparisons in Figures S1A, S1B, S1D, S1E, 2C, and S3A.

Kolmogorov-Smirnov test was used for the comparison of Pearson’s correlations distributions in Figure 5C.

Computational Reconstruction of Clonal Hierarchies
Phylogenetic tree reconstruction for patients with more than one driver mutation was performed using SCITE (Jahn et al., 2016)

with default parameters and ‘‘-r 1 -l 900000 -fd 0.001 -ad 0.01 0.01 -cc 0.’’ We accounted for Loss of Heterozygosity in JAK2 by

introducing the mutational status of each JAK2 allele as separate components of the mutational matrix.

Code Availability
R, Perl and Python scripts used for the analysis are available upon request or accessible at https://github.com/albarmeira/TARGET-

seq. Genotyping pipeline used for analysis of targeted-sequencing data generated by TARGET-seq (SCpipeline) can be downloaded

from https://github.com/albarmeira/TARGET-seq.

DATA AND SOFTWARE AVAILABILITY

Single cell RNA-sequencing data is available at GEO: GSE105454. Single cell targeted sequencing data is available at the NCBI’s

SRA data repository with project number SRA: PRJNA503734 (validation experiments), SRA: PRJNA503736 (full-length TARGETseq

patients’ dataset) and SRA: PRJNA503628 (30-TARGETseq patients’ dataset).

ADDITIONAL RESOURCES

Detailed protocols and primer design technical note: a detailed full-length TARGET-seq, 30-TARGET-seq protocol and a Technical

Note describing primer design and validation is provided as Supplemental Experimental Procedures.
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Figure S1, related to Figure 1. Single-cell RNA-sequencing is associated with high 

levels of allelic dropout. (a) Comparison of dropout frequency between SMART-seq2 (SS2) 

and SMART-seq+ methods (n=48 single K562 cells; 24 cells per chemistry from three 

independent experiments) for all genes expressed in K562 bulk samples (RPKM>1; 9096 

genes). P-value from two-tailed unpaired Student’s t-test is shown on the top of the graph. 

Points represent the mean for each group. (b) Comparison of dropout frequency for lowly 

expressed genes (2>RPKM>1; 1347 genes) between SMART-seq2 (SS2) and SMART-seq+ 

methods for the same cells as in (a). P-value from two-tailed unpaired Student’s t-test is 

shown on the top of the graph. Points represent the mean for each group. (c) Pearson’s 

correlation between mean log2(RPKM+1) values for SMART-seq2 and SMART-seq+ 

chemistries (n=48). (d) Number of detected genes per cell in K562 cells processed using 

Smart-seq2 or optimized SMART-seq+ chemistry for the same cells as in (a-c). P-value from 

two-tailed unpaired Student’s t-test is shown on the top of the graph. Boxes represent median 

and quartiles and points represent the value for each single cell. (e) Library bias per 

chemistry, calculated as the ratio between the mean RPKM values of the top 10% expressed 

genes and the mean RPKM for all genes expressed in the library, using the same 48 cells as 

in (a-d). P-value from two-tailed unpaired Student’s t-test is shown on the top of the graph. 

Points represent the mean for each group. (f) Percentage of total (dark blue line) or bi-allelic 

detection in heterozygous SNVs for Smart-seq2 (orange dots and red line) or optimized 

SMART-seq+ (grey dots and black line) chemistries (n=48 single K562 cells). Lines represent 

the mean percentage of detection (y-axis) with respect to log2(coverage; x-axis) and points 

represent individual SNVs. (g) Total percentage of detection of selected myeloid genes in Lin-

CD34+CD38- hematopoietic stem/progenitor cells (HSPC; n=38; y-axis) with respect to the 

average level of expression for each gene (log2(RPKM+1); x-axis). Blue bars represent 

detection of specific gene transcripts that are frequently mutated in myeloid malignancies. 

The light blue line represents the average percentage of detection for a certain expression 

value (number of cells that express that gene divided by the total number of cells), and each 

grey dot represents an individual transcript. (h) Total versus bi-allelic percentage of detection 

of heterozygous SNVs in the same single cells as in (g) with respect to the total number of 

reads spanning that position (log2(coverage); x-axis). The blue line and grey points represent 

the total percentage of detection for a certain heterozygous position. The black line and red 

points indicate the detection of both alleles (at least 5% of reads mapping to either of the 

alleles).  
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Figure S2, related to Figure 1. Targeted pre-amplification and sequencing of mRNA and 

gDNA amplicons dramatically increases the sensitivity of mutation detection. (a) 

Schematic representation of the pipeline used for variant calling of targeted next generation 

sequencing. (b) Representative examples of variant allele frequencies and mutational cutoffs 

for gDNA and cDNA amplicons in TET2 p.R1261 mutation in NALM6 cell line, RUNX1 

p.A149T mutation in JURKAT cell line, and CBL p.C404 and SRSF2 p.P95 mutations in 

patient samples and normal donors. Black lines represent mutation cut-offs for each 

amplicon. (c) RNA-sequencing coverage of JAK2 mutation in SET2 cells and TP53, 

NOTCH1, RUNX1 and PTEN mutations in JURKAT cells. The y-axis represents the number 

of cells against their coverage for each mutation in the x-axis. Red line represents a coverage 

threshold of 30, used as minimum coverage for targeted sequencing experiments. 
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Figure S3, related to Figure 2. Unbiased whole transcriptome analysis of single cells 

using TARGET-seq. (a) Sequencing statistics of single cell libraries from HSPCs processed 

using SMART-seq+ or TARGET-seq. The bar graph represents the proportion of reads for 

each sequencing statistic and condition, and error bars represent standard deviation of the 

mean. P-values from two-tailed Student’s t-test and fold change values for each sequencing 

statistic are shown on the top of each pair of bars. (b) Number of cells passing or failing QC 

(Quality Control) per method. The percentage of cells failing QC for each method is shown on 

the top of each bar. (c) Normalized transcript coverage from single HSPCs processed using 

SMART-seq+ or TARGET-seq methods, using 4040 housekeeping genes. (d,e) Whole 

transcriptome Pearson’s correlation between SMART-seq+ and TARGET-seq ensembles 

(mean RPKM values per condition) in JURKAT (d) and SET2 cells (e). The expression values 

for the genes targeted are highlighted in each cell type. (f,g) Pearson’s correlation between 

mean ERCC spike-in expression values from SMART-seq+ and TARGET-seq in JURKAT 

cells (f) and SET2 cells (g) per each ERCC spike-in concentration. (h-j) Bioanalyzer traces of 

representative cDNA libraries synthetized using SMART-seq+ or TARGET-seq in JURKAT 

(h), SET2 (i) or HSPCs (j). 
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Figure S4, related to Figures 3 and 4. Schematic representation of gating and sorting 

strategy. (a-b) Schematic representation of gating and sorting strategy for a CD34+ selected 

healthy donor sample (a; HD7643) or patient sample (b; OX2123). Orange square represents 

sorting gate. Numbers represent percentage of gated cells. Antibodies used for HSPC 

isolation are listed in Key Resources Table and STAR Methods.  
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Figure S5, related to Figures 5 and 6. Validation of high throughput 3’-TARGET-seq. (a) 

Schematic representation of 3’-TARGET-seq method. Briefly, a barcoded oligodT-ISPCR 

primer was used to prime polyadenylated mRNA molecules from each single cell; a 3’-specific 

sequence is also added to preferentially enrich for fragments containing the 3’-end of the 

molecule in tagmentation-based library preparation and 3’-biased sequencing. (b) Detection 

of cellular barcodes using 3’-TARGETseq in 16 HSPCs. Blue bars represent total number of 

reads mapping to cellular barcodes used for cDNA synthesis of HSPCs (16 barcodes); blank 

barcodes represent those not used for cDNA synthesis (80 barcodes); red bar represents the 

total number of reads from cell barcodes that do not match any of the 96 available cell 

barcodes. (c) Sequencing statistics of 3’-TARGET-seq libraries from the same 16 HSPCs as 

in (b) and number of genes detected per cell. Bars represents the proportion of reads for each 

sequencing statistic (left panel) or number of genes detected per cell (normalized counts≥1, 

right panel); error bars represent standard deviation of the mean. “GC” refers to guanine-

cytosine content. (d) Normalized transcript coverage across 4040 housekeeping genes for 16 

single HSPCs processed using 3’-TARGET-seq, showing expected 3’ bias. 
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Figure S6, related to Figures 5 and 6. TARGET-seq reveals genetic subclones in the 

HSPC compartment from myelofibrosis patients that could not be inferred through 

bulk sequencing or by mRNA targeting alone. (a-b) Subclonal composition of indicated 

patients’ HSPC compartment identified by single cell genotyping using (a) mutational 

information from targeted mRNA amplicons (mRNA targeting) or (b) TARGET-seq. Total 

number of cells identified per subclone is shown in each slice of the pie chart, and the total 

number of cells passing QC genotyping for each patient is shown below each chart. 

“Undetermined” cells (those not fitting in the clonal hierarchy determined by SCITE) are 

coloured in white; “ND” (Not Detected; coloured in red) represents cells in which at least one 

of the amplicons was not detected. Each patient is labelled according to the code provided in 

Table S3. (c) Clonal hierarchies identified by SCITE for each patient. Each subclone in (a-b) 

is color-coded according to the clonal tree presented in (c). A full list of genetic subclones 

identified for all patients can be found in Table S3b. The size of circles in the clonal tree 

represents the relative fraction of detected cells according to (b). 
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Figure S7, related to Figure 6. Computational analysis of scRNA-seq data does not 

distinguish genetically distinct subclones of HSPCs within individual myelofibrosis 

patients. (a-c) tSNE representation of 555 cells from patient IF0137 (a), 243 cells from 

patient IF0138 (b) and 320 cells from patient IF0101 (c) using 3031  (a), 2605  (b) and 3023 

(c) highly variable genes. Gene expression matrices were batch corrected and genotypes 

were preserved. Cells are colored according to each genotype group for each patient. (d-f) 

tSNE representation from the same cells and patients as in (a-c), using highly variable genes 

and regressing out the effect of the cell cycle. Gene expression matrices were batch 

corrected and genotypes were preserved. (g-i) ZIFA dimensionality reduction from the same 

single cells and patients as in (a-c) using 3031 (g), 2605 (h) or 3023 (i) highly variable genes. 

(j-l) SC3 K-means clustering clustering from the same single cells and patients as in (a-c) 

using k=4 for patient IF0137 (j), k=3 for patient IF0138 (k) and k=3 for patient IF0101 (l). 

Heatmaps are coloured according to the consensus score computed by SC3. (m-o) tSNE 

representation of clusters identified by PAGODA2 from the same single cells and patients as 

in (a-c), coloured by genotype (left panel) or by clusters identified by PAGODA2 (right panel). 

We identified 7 clusters in patient IF0137 (m), 5 clusters in patient IF0138 (n) and 4 clusters in 

patient IF0101 (o). Gene expression matrices were batch corrected using the batchNorm 

function (method=’glm’). 

	



SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
Detailed step by step TARGET-seq protocols and primer design and validation technical 
note, related to Figure 1 and Figure S5. 
 
Full-length TARGET-seq protocol in 96 well plates 

 
Materials 
 

• 96-well PCR plates (Thermo Fisher Scientific, AB-0900) 
• 384 well PCR plates (FrameStar, 4titude, 4ti-0384/C) 
• Corning® 96 Well TC-Treated Microplates (Cat. No. CLS3595-50EA) 
• RNase Free Microfuge Tubes (Invitrogen, AM12400) 
• V-shaped 96 well plate (AXYGEN, P-96-450V-C, 500 uL 96 well "V" bottom clear; 

Ref. 391-02-501) 
• PCR film (Thermo Fisher Scientific, MicroAMp Clear Adhesive Film, Cat. No. 

4306311) 
• Aluminium Sealing Film (StarLab, E2796-0792) 
• 96-well magnetic stand (Invitrogen, AM10027) 
• Protease (Qiagen, Cat#19155) 
• Triton X-100 (Sigma-Aldrich, Cat#T8787) 
• RNase inhibitor (TAKARA, Cat#2313A) 
• dNTPs (Life Technologies, Cat#R0192) 
• UltraPure DNAse/RNAse-Free Distilled Water (Life Technologies, Cat#10977035) 
• EB Buffer (Qiagen, Cat No./ID: 19086) 
• Ethanol 
• RNAse-free TE buffer (Invitrogen, Cat#AM9849) 
• ERCC aliquot (Ambion, Cat#4456740) 
• SMARTScribe enzyme (Clontech - Cat. No. 639537). 
• SeqAMP enzyme (Clontech, Cat#638509 ). 
• RT-PCR Grade Water (Life Technologies, Cat#AM9935). 
• Ampure XP beads (Beckman Coulter, Cat#A63881) 
• Pre-amplification primers: oligodT-ISPCR primer, mRNA target-specific primers, 

TSO-LNA; gDNA target-specific primers, cDNA target-specific primers and ISPCR 
primers. Keep in dedicated “pre-amplification” area only. Custom primers from 
Biomers.net (oligodT-ISPCR, mRNA/gDNA/cDNA target-specific primers, ISPCR 
primers; HPLC purification) and Qiagen (TSO-LNA; RNAse free HPLC 
purification). 

• High Sensitivity NGS Fragment Analysis Kit (1bp - 6,000 bp; Agilent; Cat# DNF-
474) or similar kit for capillary system (High Sensitivity D5000 ScreenTape System; 
Agilent, Cat# 5067- 5592 and Cat# 5067- 5593; or Agilent High Sensitivity DNA Kit 
to use with Agilent 2100 Bioanalyzer System, Cat#5067-4627 and Cat#5067-
4626). 

• PCR1 primers: CS1/CS2-target specific primers for gDNA and cDNA PCR1 
barcoding (custom primers from Invitrogen; desalted). 

• Sequencing primers for targeted genotyping libraries: CS1-seq, CS2-seq, CS1rc-
seq, CS2rc-seq (custom LNA primers from Qiagen; HPLC purification). 



• Nextera XT Kit Library Preparation Kit (Illumina , Cat#15032354) including i7 
indexes and i5 indexes (Nextera XT Index Kit, Illumina , Cat#FC-131-1001). 

• KAPA 2G Robust HS PCR Kit (Sigma Aldrich,Cat#KK5517) 
• FastStart High Fidelity PCR System  (Roche, REF:04738292001) 
• Access Array™ Barcode Library for Illumina® Sequencers-384, Single Direction 

(Fluidigm, Cat#100-4876). 
• Qubit (ThermoFisher, Cat. No. 32854) 

 
Sorting and lysis – Timing: variable 
 
1. First, prepare sufficient lysis buffer for the required number of cells for each 

experiment, plus 10% dead volume. Aliquot the lysis buffer (containing oligodT-ISPCR 
primer) into each well of a 96-well PCR plate (Thermo Scientific #AB-0900) in a clean 
environment dedicated to ‘pre-amplification’ work only. Cover with a PCR film and 
keep on ice/in the fridge until use. Lysis buffer should be prepared fresh on the day of 
sorting, maximum a few hours before use. 

 
Lysis 1 cell Storage Cat. No./Supplier 

Triton 0.4%  1.9 µL -20 °C 
Sigma-Aldrich # T8787, 
resuspended in 
DNAse/RNAse-Free water 

RNAse Inhibitor  0.1 µL -20 °C TAKARA #2313A 
dNTPs (10 mM) 1 µL -20 °C Life Technologies #R0192 

Oligo-dT-ISPCR (10 µM) 1 µL -20 °C Biomers (custom oligo, HPLC 
purified) 

Protease (1.09 AU/mL in water) 0.1 µL +4 °C 

Qiagen #19155; resuspend in  
UltraPure DNAse/RNAse-Free 
Distilled Water (Life Tech, 
#10977035) 

ERCC RNA spike-in mix (1:2e6) 0.1 µL -80 °C(single 
use aliquot) Ambion #4456740 

TOTAL 4.2 µL   
 

2. Prepare the sorter for single-cell sorting. Use single cell purity mode and keep the 
event rate low (less than 1000/s).  

 
3. Check sorter alignment: use a 96 well tissue culture flat-bottom plate (Corning) and 

sort one fluorescent bead per well. Check under a fluorescent microscope that there is 
only one bead per well and that the position of the bead is centered. Note: don’t add 
any media into the plate so that the bead stays in the place it was deposited by the 
sorter.  
 

4. Use a 96-well PCR plate (Thermo Scientific #AB-0900, same model as the one in 
which cells will be sorted) covered with a PCR film, and sort 50 cells in positions 1A, 
1H, 12A and 12H. Droplets should be positioned in the centre of the wells if the sorter 
is correctly aligned; if not, make necessary adjustments until drops are falling perfectly 
into each well.   

 



5. After this initial check, remove the PCR film from the 96 PCR plate and sort 50 cells 
into columns 1 and 12 (wells 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H and 12A, 12B, 12C, 12D, 
12E, 12F, 12G, 12H): drops should now be deposited at the very bottom of each well 
with no traces of liquid been left in the sides of each well. If correct, alignment checks 
are now complete. 
 

6. Perform a purity sort of desired populations.  
 

7. Sort cells directly into a 96 well PCR plate (Thermo Scientific #AB-0900) containing 
the lysis buffer, cover the plate with an aluminium PCR film (StarLab), spin down the 
plate and incubate 5 minutes at room temperature to allow for protease digestion. If 
sorting time is longer than 10 minutes, there is no need to incubate the plate further.  

 
8. Put the plate directly into dry ice and store at -80 °C up to 1-2 months. (Processing 

plates after 3 months of -80 °C storage has shown decreased yield and/or signs of 
RNA degradation).  
 

 
Heat inactivation, cDNA synthesis and amplification (RTPCR) – Timing: 6.5 hours; 
1.5 hours hands-on time 
 
9. Transport the plate(s) and TSO-LNA aliquot from -80 C storage on dry ice to a ‘pre-

amplification’ dedicated workspace/clean room. 
 

10. Thaw the 5X Buffer, RT-PCR Grade Water and any mRNA targeting primers that you 
might add to the mix. These can be thawed at room temperature. Aliquot them into an 
RNase free tube to prepare a master mix for the retrotranscription (RT) step as per the 
table below. RNase inhibitor, TSO-LNA and SMARTScribe enzyme will be added to 
the mix during heat inactivation step. 
 

RT 1 cell (µL) Storage Cat. No. 

Buffer 5X 2.00 µL -20 °C Clontech - Cat. No. 639537 
(delivered with enzyme) 

RNase Inhibitor 
(wait until the 72C 
step to add it) 

0.25 µL -20 °C TAKARA – Cat#2313A 

TSO-LNA (100 µM) 
(wait until 72C step 
to add it) 

0.10 µL 

-80 °C (aliquot into 
single use aliquots 
to avoid 
freeze/thaw 
cycles) 

Custom TSO-LNA oligo from 
Exiqon-Qiagen (same as 
Picelli et al., 2013) 

RT-PCR Grade 
Water Variable -20 °C Life Tech - AM9935 

mRNA primers 
(0.035 µL of each 
primer from a 200 
uM stock) 

Variable -20 °C 

Custom HPLC purified 
primers from biomers.net; 
resuspend in RNAse Free 
TE/water 

SMARTScribe (wait 
until 72C step to 
add it) 

1.00 µL -20 °C Clontech - Cat. No. 639537 



TOTAL 5.60 µL   
TOTAL 
(cumulative) 9.80 µL   

 
11. Incubate the sample plate 15 minutes at 72 °C in a thermocycler (no RT mix has been 

added at this point). This step will inactivate the protease included in the lysis buffer so 
it doesn’t interfere with any subsequent enzymatic steps.  
 

12. During the heat inactivation time, add the RNAse Inhibitor, TSO-LNA and RT enzyme 
to the RT master mix on ice/cold block. Vortex and spin down.  

 
13. Once the heat inactivation step is finished, take the plate out of the thermocycler, spin 

down and place into ice/cold rack. Aliquot 5.6 µL of RT mix into each well and 
carefully seal the plate with a PCR film (MicroAMp Clear Adhesive Film, Cat. No. 
4306311). Note: it is essential that this step is performed within 5-7 minutes to avoid 
RNA degradation. 

 
14. Spin down and run the following program in a thermocycler: 

 
 

Temperature Time Cycles 
42 C 90 min 1 
50 C 2 min 10 cycles 

  42 C 2 min 
70 C 15 min 1 
4 C HOLD - 

 
 
15. Fifteen minutes before the RT program finishes, start thawing reagents to prepare the 

PCR master mix.  
 

PCR 1 cell 
(µL) Storage Cat. No.  

2X Buffer 12.50 µL -20 °C 638509 - Clontech (delivered 
with enzyme 

ISPCR (10 µM) 0.125 µL -20 °C 
Custom HPLC oligo from 
biomers.net (same as Picelli et 
al., 2013) 

RT-PCR Water Variable -20 °C Life Tech - AM9935 
SeqAMP Enzyme - wait until 
RT is about to finish to add 0.50 µL -20 °C 638509 - Clontech 

cDNA primers - (0.035 µL 
from each primer from 20 µM 
stock) 

Variable -20 °C Custom HPLC purified primers 
from biomers.net; resuspend in 
RNAse Free TE/water Genomic primers (0.1 µL 

from each primer from a 200 
µM stock) 

Variable -20 °C 

TOTAL 15.00 µL   
TOTAL (cumulative) 24.80 µL   



 
16. Once the RT program is finished, spin down the plate and add PCR master mix on 

ice/cold rack. Spin down the plate at 1000 g for 15 seconds. Take outside of the clean 
room workspace, place in a thermocycler and run the following program: 

 
Temperature Time Cycles 
98 C 3 min   
98 C  00:15 22 cycles 

(single 
HSPCs) 

67 C 00:20 
72 C  6 min 
72 C 5 min   
4 C HOLD   

 
 

Bead clean-up – Timing: 45 minutes  
 

17. Add 16 µL of beads (Ampure XP Beads, Beckman Coulter, Cat. No. 391-02-501) into 
a V-shaped 96 well plate (AXYGEN, P-96-450V-C, 500 uL 96 well "V" bottom clear; 
Ref. 391-02-501).  
 

18. Aliquot 11 µL of clean water (PCR grade) into the same V-shaped 96 well plate.  
 

19. Aliquot 14 µL of each cDNA+amplicon mix into each well of the same plate and pipette 
up and down to mix the cDNA+amplicon mix with beads (0.6:1 beads to cDNA ratio). 
Incubate for 5 minutes at room temperature. 
  

20. Incubate mixture on a 96-well magnetic stand for 2 minutes. Once the liquid is clear of 
beads, remove the liquid.  
 

21. Wash the beads twice with 80 % EtOH (freshly prepared, dilute EtOH in PCR grade 
water). Add 100 µL of ethanol to each well, incubate for 30 seconds and remove. 
Repeat once more (2 times in total) and use P10 tips to remove any remaining 
ethanol. 

 
22. Leave the beads to air-dry for 3 minutes. Be careful not to overdry the beads at this 

point or it will be difficult to resuspend them.  
 

23. Resuspend the beads into 8 µL of EB Buffer (Qiagen Cat No./ID: 19086) with the plate 
off the magnet. Incubate for 30 seconds and put the plate back onto the magnet. 
Incubate into the magnet until the liquid is clear, then transfer 7.5 µL of purified cDNA 
library to a new plate for -20 C storage or further processing. 

 
24. Check cDNA traces quality and size distributions using Bioanalyzer (Agilent), 

Fragment Analyzer Automated CE System (Advanced Analytical) or similar capillary 
system. Representative good quality cDNA traces are shown below (Figure MS1). 

 
 



 
 
Figure MS1. Representative bead-purified cDNA traces from single HSPCs synthesized using full-
length TARGET-seq in 96-well plates. 
 
 

Whole transcriptome library preparation – Timing: 2 hours – 1.5 hours hands on 
time 

 
25. Library preparation is performed using a commercially available Nextera XT Kit (FC-

131-1096, Illumina) and commercially available i5 and i7 indeces (Nextera XT Index 
Kit, FC-131-1001, Illumina) using one fourth of the recommended volume. First, add 
2.5 µL of Tagmentation Buffer into the required number of wells in a 96-well or 384-
well plate (one well will be used for each cell). 

 
26. Add 700 pg of bead-purified cDNA from each pool in a total volume of 1.25 µL and 

1.25 µL of Amplicon Tagmentation Mix (ATM). Incubate 6 minutes at 55 C (total 
volume 5 µL).  

 
Reagents 1 reaction (µL) 
Tagmentation Buffer 2.5 µL 
Bead purified cDNA (560 pg/µL) 1.25 µL 
ATM (Amplicon Tagment Mix) 1.25 µL 
TOTAL 5 µL 

 
27.  Once the incubation is finished, add 1.25 µL of NT (Neutralization) buffer to neutralize 

the tagmentation reaction. 
 

28. Prepare PCR master mix as outlined below.  

   Reagents 1 reaction (µL) 
 i7 index (2 µM) 1.25 µL 
 i5 index (2 µM) 1.25 µL 
 NPM (PCR master mix) 3.75 µL 
 TOTAL 6.25 µL 
 TOTAL (cumulative) 12.5 µL  

 
29. Incubate in a thermocycler and run the following PCR program: 

 
Temperature Time Cycles 
72 C 3 minutes 1 
95 C 30 seconds 1 
95 C 10 seconds 14 cycles 



55 C 30 seconds 
72 C 30 seconds 
72 C 5 minutes 1 
4 C HOLD 1 

 
30. Bead-purify barcoded and tagmented Nextera XT libraries using Ampure XP beads. 

First, dilute the product 1:1 with 12.5 µL of PCR-grade water. Aliquot each barcoded 
and tagmented library into a V-shaped 96 well plate (Cat. No. P-96-450V-C, Axygen) 
and aliquot 16 µL of pre-warmed (room temperature) Ampure XP beads (Beckman 
Coulter; Cat. No. A63881) into each well (0.6:1 beads to cDNA ratio). Incubate for 5 
minutes at room temperature.  
 

31. Incubate mixture into a 96-well magnetic stand for 2 minutes. Once the liquid is clear 
of beads, remove the liquid.  
 

32. Wash the beads twice with 80 % EtOH (freshly prepared, dilute EtOH in PCR grade 
water). Add 100 µL of ethanol to each well, incubate for 30 seconds and remove. 
Repeat once more (2 times in total) and use P10 tips to remove any remaining 
ethanol. 

 
33. Leave the beads to air-dry for 3 minutes. Be careful not to overdry the beads at this 

point or it will be difficult to resuspend them.  
 

34. Resuspend the beads into 21 µL of EB Buffer (Qiagen Cat No./ID: 19086) with the 
plate off the magnet. Incubate for 30 seconds and put the plate back onto the magnet. 

 
35. Incubate on the magnet until the liquid is clear of beads, then transfer 20 µL of purified 

tagmented/barcoded library to a new plate for -20 °C storage or further processing. 
 

36. Run libraries on D5000 TapeStation or similar capillary array. Library fragments 
should be from 300 bp to 800 bp on average (Figure MS2): 
 

 
Figure MS2. Representative traces of tagmented, amplified and bead-purified full-length Nextera XT 

libraries. 
 

37. Quantify tagmented and barcoded libraries using Qubit (ThermoFisher, Cat. No. 
32854) and pool equimolar concentrations of each library. Quantify the final pool and 
sequence on a NextSeq/HiSeq platform. 

 
 
 



Single cell genotyping library preparation for NGS – Timing: 5 hours – 2 hours 
hands on time 

 
38. Take one aliquot of the unpurified cDNA+amplicon mix, dilute 1:2 with PCR Grade 

water and use as an input for the first barcoding PCR (PCR1). Perform an individual 
PCR reaction for each sample in a 384 well-plate (FrameStar 384, Cat. No. 4ti-
0384/C). During this PCR reaction, target-specific primers attached to universal tags 
(CS1/CS2 adaptors) will be added to each amplicon from each sample, in order to 
prepare a targeted sequencing library. Targets with similar amplification efficiencies 
might be amplified simultaneously in the same reaction for the same single cell. Note: 
gDNA and cDNA pre-amplified amplicons don’t have a cell-specific barcode at this 
stage; therefore, amplicons corresponding to each cell should be kept in individual 
wells of the 384 well-plate, taking precautions to avoid cross-well contamination. 
 

39. Prepare PCR1 Mix and aliquot in the 384 well-plate using a Biomek FxP Liquid 
Handler (Beckman Coulter) of similar liquid handling platform: 
 

PCR1 BARCODING with 
target-specific primers 1 Reaction Storage Cat. No. 

KAPA 2G Ready Mix 3.125 µL -20 °C KAPA 2G Robust HS 
PCR Kit #KK5517 

Primer F1+R1 (20 µM) 0.375 µL -20 °C 
Custom primers 
(Invitrogen) desalted, 
resuspend in TE 

Primer F2+R2 (20 µM) 0.375 µL -20 °C 
Primer F3+R3 (20 µM) 0.375 µL -20 °C 
Primer FX+RX… … … 

RT-PCR Grade Water Variable -20 °C 

UltraPure 
DNAse/RNAse-Free 
Distilled Water, (Life 
Technologies, 
#10977035) 

cDNA aliquot 1.5 µL -20 °C  
TOTAL 6.25 µL   

 
40. Incubate in a thermocycler and run the following PCR program: 

 
PCR1 PROGRAM 

Temperature  Time 
(min:sec) Cycles 

95 C 03:00 1 
95 C 00:15 

20 60 C 00:20 
72 C 01:00 
72 C 05:00 1 
4 C HOLD   

 
41. Use 2.5 µL of PCR1 product as an input for the next reaction (PCR2). During this step, 

sample-specific barcodes are attached to previously tagged amplicons using the 



Access Array™ Barcode Library for Illumina® Sequencers (384, Single Direction, 
Fluidigm). Barcode each sample in individual reactions.  
 

42. Aliquot the barcodes (Access Array™ Barcode Library for Illumina® Sequencers) into 
a 384 well plate, and aliquot the PCR1 product into the same plate using a Biomek 
FxP Liquid Handler (Beckman Coulter) of similar liquid handling platform. 

 
43. Prepare the PCR2 master mix and aliquot:  

 
PCR2 BARCODING with 
Illumina compatible primers 1 Reaction Storage Cat. No.  

FastStart High Fidelity 10X 
Reaction Buffer 1 µL -20 °C 

FastStart High 
Fidelity PCR 
System  
REF:04738292001 

MgCl2 (25 mM) 1.8 µL -20 °C 
DMSO 0.5 µL -20 °C 
dNTP Mix (10 mM) 0.2 µL -20 °C 
FastStart High Fidelity 
Enzyme (5U/µL) 0.1 µL -20 °C 

RT-PCR Grade Water 

1.90 µL -20 °C 

UltraPure 
DNAse/RNAse-
Free Distilled 
Water, (Life 
Technologies, 
#10977035) 

Single-direction barcodes (2 
µM, Fluidigm) 2.0 µL -20 °C 

Access Array™ 
Barcode Library for 
Illumina® 
Sequencers-384, 
Single Direction, 
Fluidigm (Cat. No. 
100-4876) 

PCR1 barcoding aliquot 2.5 µL -20 °C  
TOTAL 10 µL   

 
44. Incubate in a thermocycler and run the following PCR program: 

 
PCR2 PROGRAM 

Temperature  Time 
(min:sec) Cycles 

95 C 10:00 1 
95 C 00:15 

10 60 C 00:30 
72 C 01:00 
72 C 03:00 1 
4 C HOLD   

 
45.  Pool amplicons from each barcoded library using a liquid handling platform and use 

Ampure XP beads to clean-up pooled libraries (0.8:1 beads to cDNA ratio). Quantify 



libraries using Qubit (ThermoFisher; Cat No. 32854) and check library size distribution 
and specific amplification of targeted amplicons on D1000 TapeStation or similar 
capillary array (Figure MS3). Note: barcodes and adaptors add 103 bp extra to the 
original PCR product.  
 

 
Figure MS3. Representative distributions of targeted amplicon libraries from genomic JAK2 and mRNA 
SF3B1 amplicons in a multiplexed reaction. 

 
46. Libraries are ready for sequencing using custom sequencing primers targeted to 

CS1/CS2 tags (500 nM of CS1-seq and CS2-seq primers in a total volume of 700 µL 
for R1 and R2; 500 nM of CS1rc-seq and CS2rc-seq primers in a total volume of 700 
µL for Index Read when using the MiSeq platform, Illumina).  Note: CS1/CS2 and 
CS1rc/CS2rc sequencing primers contain LNA modifications (see Key Resources), as 
compared to CS1/CS2 tags used for PCR1 target-specific primers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



3’-TARGET-seq protocol in 384 well plates  
 
Materials 
 

• 96-well PCR plates (Thermo Fisher Scientific, AB-0900) 
• 384 well PCR plates (FrameStar, 4titude, 4ti-0384/C) 
• 384 well microplate (Corning® , CLS3702-100EA) 
• RNase Free Microfuge Tubes (Invitrogen, AM12400) 
• V-shaped 96 well plate (AXYGEN, P-96-450V-C, 500 uL 96 well "V" bottom clear; 

Ref. 391-02-501) 
• PCR film (Thermo Fisher Scientific, MicroAMp Clear Adhesive Film, Cat. No. 

4306311) 
• Aluminium Sealing Film (StarLab, E2796-0792) 
• 96-well magnetic stand (Invitrogen, AM10027) 
• Protease (Qiagen, Cat#19155) 
• Triton X-100 (Sigma-Aldrich, Cat#T8787) 
• RNase inhibitor (TAKARA, Cat#2313A) 
• dNTPs (Life Technologies, Cat#R0192) 
• UltraPure DNAse/RNAse-Free Distilled Water (Life Technologies, Cat#10977035) 
• EB Buffer (Qiagen, Cat No./ID: 19086) 
• RNAse-free TE buffer (Invitrogen, Cat#AM9849) 
• Ethanol 
• ERCC aliquot (Ambion, Cat#4456740) 
• SMARTScribe enzyme (Clontech - Cat. No. 639537). 
• SeqAMP enzyme (Clontech, Cat#638509 ). 
• RT-PCR Grade Water (Life Technologies, Cat#AM9935). 
• Ampure XP beads (Beckman Coulter, Cat#A63881) 
• Pre-amplification primers: oligodT-ISPCR barcoded primers, mRNA target-specific 

primers, TSO-LNA; gDNA target-specific primers, cDNA target-specific primers 
and ISPCR primers. Keep in dedicated “pre-amplification” area only. Custom 
primers from Biomers.net (oligodT-ISPCR barcoded primers, mRNA/gDNA/cDNA 
target-specific primers, ISPCR primers; HPLC purification) and Qiagen (TSO-LNA; 
RNAse free HPLC purification). 

• PCR1 primers: CS1/CS2-target specific primers for gDNA and cDNA PCR1 
barcoding (custom primers from Invitrogen; desalted). 

• High Sensitivity NGS Fragment Analysis Kit (1bp - 6,000 bp; Agilent; Cat# DNF-
474) or similar kit for capillary system (High Sensitivity D5000 ScreenTape System; 
Agilent, Cat# 5067- 5592 and Cat# 5067- 5593; or Agilent High Sensitivity DNA Kit 
to use with Agilent 2100 Bioanalyzer System, Cat#5067-4627, Cat#5067-4626). 

• P5_index primer (custom oligonucleotide from Biomers.net; HPLC purified, 
contains PTO modifications; See Key Resources) 

• Sequencing primers for targeted genotyping libraries: CS1-seq, CS2-seq, CS1rc-
seq, CS2rc-seq (custom LNA primers from Qiagen; HPLC purification; See Key 
Resources). 

• Sequencing primer: P5_SEQ (custom oligonucleotide from Biomers.net; PAGE 
purified, contains PTO modifications; See Key Resources). 

• Nextera XT Kit Library Preparation Kit (Cat. No.15032354, Illumina) including i7 
indexes (Illumina, Cat#FC-131-1001; alternatively, custom i7 primers can be used) 



• KAPA 2G Robust HS PCR Kit (Sigma Aldrich,Cat#KK5517) 
• FastStart High Fidelity PCR System  (Roche, REF:04738292001) 
• Access Array™ Barcode Library for Illumina® Sequencers-384, Single Direction 

(Fluidigm, Cat#100-4876). 
• Qubit (ThermoFisher, Cat. No. 32854) 

 
Sorting and lysis – Timing: variable 

 
1. First, prepare a lysis buffer+oligodT stock plate. Sufficient lysis buffer (without 

barcoded oligo-dT) should be calculated to account for the required number of 
cells for each experiment plus 15% dead volume, and aliquoted into a 96-well PCR 
plate (Thermo Scientific #AB-0900) in a clean environment dedicated to 
‘preamplification’ work only. Keep the lysis buffer on ice/in a cold rack. Lysis buffer 
should be prepared fresh on the day of sorting, maximum a few hours before use. 

 
2. Aliquot each barcoded oligodT-ISPCR primer in each well of the same 96-well 

PCR plate (containing lysis buffer), using a liquid handling platform. The amount of 
barcoded-oligodT in each well is calculated as follows: (number of cells to be 
processed/96)*0.575 µL; i.e. if processing a total of 3000 cells, aliquot 
(3000/96)*0.575 µL of barcoded oligodT following the layout below (Figure MS4): 

 
Figure MS4. Schematic representation of lysis buffer+barcoded oligodT stock plate preparation. 

 
Lysis buffer 1 cell Storage Cat. No./Supplier 
Triton 0.4%  0.95 µL -20 °C Sigma-Aldrich # T8787, 

resuspend in RNAse free water 
RNAse Inhibitor  0.05 µL -20 °C TAKARA #2313A 
dNTPs (10 mM) 0.5 µL -20 °C Life Technologies #R0192 
Protease (1.09 AU/mL in 
water) 

0.05 µL +4 °C Qiagen #19155; resuspend in  
UltraPure DNAse/RNAse-Free 
Distilled Water  

ERCC RNA spike-in mix 
(1:4e5) 

0.02 µL -80 °C 
(single use 
aliquot) 

Ambion #4456740 

TOTAL 1.57 µL   
Oligo-dT-ISPCR (10 µM) – 
barcoded, well-specific 0.5 µL -20 °C Custom HPLC primers, 

Biomers.net 
TOTAL 2.07 µL   

 
3. Aliquot the mixture of lysis buffer+barcoded oligodT into each well of a 384 well-

plate (FrameStar) following the layout below using a Biomek FxP Liquid Handler 



(Beckman Coulter) of similar liquid handling platform. Each barcode will be 
aliquoted four times per plate, once in each quadrant (Figure MS5). Cover the 
plates with a PCR film and keep them on ice/in the fridge until use. Alternatively, 
sets of 384 barcoded oligodTs might be used. 

 
Figure MS5. Schematic representation of lysis buffer+barcoded oligodT aliquoting into 384 well plates. 
 
4. Prepare the sorter for single-cell sorting. Use single cell purity mode and keep the 

event rate low (less than 1000/s).  
 
5. Perform an alignment test sort using a 384 well plate (Corning® 384 well 

microplate, CLS3702-100EA) and sort one fluorescent bead per well. Check under 
a fluorescent microscope that there is only one bead in each well and that the 
position of the bead is centered at the very bottom of the plate. If correct, alignment 
checks are now complete. 

 
6. Check sorter alignment: use a 384-well PCR plate (FrameStar, same model as the 

one in which single cells will be sorted) covered with a PCR film, and sort 50 cells 
in the four corners of the plate (positions 1-A, 1-P, 24-A and 24-P). Droplets should 
be positioned in the centre of the wells if the sorter is correctly aligned; if not, make 
necessary adjustments until drops are falling perfectly into each well.  After this 
initial check, remove the PCR film and sort 50 cells into the same four corners of 
the 384 plate: drops should now be deposited at the very bottom of each well with 
no traces of liquid been left in the sides of each well. 

 
7. Sort cells directly into a 384 well PCR plate (FrameStar) containing lysis 

buffer+barcoded oligodT-ISPCR, cover the plate with an aluminium PCR film 
(StarLab), spin down the plate and incubate 5 minutes at room temperature to 
allow for protease digestion. If sorting time is longer than 10 minutes, there is no 
need to incubate the plate further.  

 
8. Put the plate directly into dry ice and store at -80 °C up to 1-2 months. (Processing 

plates after 3 months of -80 °C storage has shown decreased yield and/or signs of 
RNA degradation).  

 
 
 

 



Heat inactivation, cDNA synthesis and amplification (RTPCR) – Timing: 6.5 hours; 
1.5 hours hands-on time 
 

9. Transport the plate(s) and TSO-LNA aliquot from -80 °C storage on dry ice to a 
‘pre-amplification’ dedicated workspace/clean room. 

 
10. Thaw the 5X Buffer, RT-PCR Grade Water and any mRNA targeting primers that 

you might add to the mix. These can be thawed at room temperature. Aliquot them 
into an RNase free tube to prepare a master mix for the retrotranscription (RT) step 
as per the table below. RNase inhibitor, TSO-LNA and SMARTScribe enzyme will 
be added to the mix during heat inactivation step. 

 
RT 1 cell Storage Cat. No. 

Buffer 5X 1.00 µL -20 °C Clontech - Cat. No. 639537 (delivered 
with enzyme) 

RNase Inhibitor (wait 
until the 72C step to 
add it) 

0.125 µL -20 °C TAKARA - 2313A 

TSO-LNA (100 uM) - 
wait until 72C step to 
add it 

0.05 µL -80 °C 
Custom TSO-LNA oligo from Exiqon-
Qiagen (same as Picelli et al., 2013); 
avoid freeze/thaw cycles 

RT-PCR Grade Water Variable -20 °C Life Tech - AM9935 
mRNA primers 
(0.0175 µL of each 
primer from a 200 µM 
stock) 

Variable -20 °C 
Custom HPLC purified primers from 
biomers.net; resuspend in RNAse Free 
TE/water 

SMARTScribe 
enzyme- wait until 72C 
step to add it 

0.5 µL -20 °C Clontech - Cat. No. 639537 

TOTAL 
 2.80 µL   

TOTAL 
(cumulative) 4.87 µL   

 
11. Incubate the sample plate 15 minutes at 72 °C in a thermocycler (no RT mix has 

been added at this point). This step will inactivate the protease included in the lysis 
buffer so it doesn’t interfere with any subsequent enzymatic steps.  

 
12. During the heat inactivation, add the RNAse Inhibitor, TSO-LNA and RT enzyme to 

the RT master mix on ice/cold block. Vortex and spin down. 
 

13. Once the heat inactivation step is finished, take the plate out of the thermocycler, 
spin down and place into ice/cold rack. Aliquot 2.8 µL of RT mix into each well and 
carefully seal the plate with a PCR film (MicroAMp Clear Adhesive Film, Cat. No. 
4306311). Note: it is essential that this step is performed within 5-7 minutes to 
avoid RNA degradation. 

 
14. Spin down and run the following program in a thermocycler: 
 



Temperature Time Cycles 
42 C 90 min 1 
50 C 2 min 10 cycles 

  42 C 2 min 
70 C 15 min 1 
4 C HOLD - 

 
15. Fifteen minutes before the RT program finishes, start thawing reagents to prepare 

the PCR master mix.  
 

PCR 1 cell Storage Cat. No.  

2X Buffer 6.25 µL -20 °C Clontech Cat#638509 
(delivered with enzyme) 

ISPCR (10 µM) 0.0625 
µL -20 °C 

Custom HPLC oligo from 
biomers.net (same as Picelli et 
al., 2013) 

RT-PCR Water Variable -20 °C Life Technologies #AM9935 
SeqAMP Enzyme - wait until 
RT is about to finish to add 0.25 µL -20 °C Clontech Cat#638509  

cDNA primers - (0.0175 µL 
from each primer from 20 µM 
stock) 

Variable -20 °C Custom HPLC purified primers 
from biomers.net; resuspend in 
RNAse Free TE/water Genomic primers (0.05 µL 

from each primer from a 200 
µM stock) 

Variable -20 °C 

TOTAL 7.50 µL   
TOTAL (cumulative) 12.37 µL   

 
16. Once the RT program is finished, spin down the plate and add PCR master mix on 

ice/cold rack. Spin down the plate at 1000 g for 15 seconds. Take outside of the 
clean room workspace, place in a thermocycler and run the following program: 

 
Temperature Time Cycles 
98 C 3 min  1 
98 C  00:15 24 cycles 

(single 
HSPCs) 

67 C 00:20 
72 C  6 min 
72 C 5 min  1 
4 C HOLD  1 

 
Pooling and bead clean-up – Timing: 45 minutes  

 
17. Pool 1 µL of amplified cDNA+amplicon mix from each uniquely-barcoded well of 

the 384 well-plate into an eppendorf tube using a liquid handler platform. Four 
pools should be made from each 384-well plate, corresponding to 96 cells of each 
quadrant of uniquely-barcoded wells. Once pooled, perform bead purification. 
Aliquot 80 µL of pooled cDNA into a V-shaped 96 well plate (Cat. No. P-96-450V-
C, Axygen) and aliquot 48 µL pre-warmed Ampure XP beads (Beckman Coulter; 



Cat. No. A63881) into each well (0.6:1 beads to cDNA ratio). Incubate for 5 
minutes at room temperature. Note that whilst polyadenylated cDNA has been 
uniquely-barcoded, amplicons corresponding to each single cell don’t contain 
unique barcodes and therefore precaution should be taken to avoid cross-
contamination between wells at this stage. 

 
18. Incubate mixture into a 96-well magnetic stand for 2 minutes. Once the liquid is 

clear of beads, remove the liquid.  
 
19. Wash the beads twice with 80 % EtOH (freshly prepared, dilute EtOH in PCR 

grade water). Add 100 µL of ethanol to each well, incubate for 30 seconds and 
remove. Repeat once more (2 times in total) and use P10 tips to remove any 
remaining ethanol. 

 
20. Leave the beads to air-dry for 3 minutes. Be careful not to overdry the beads at this 

point or it will be difficult to resuspend them. Resuspend the beads in 80 µL and 
repeat the bead purification step: add 48 µL of beads to the cleaned product, wash 
twice with ethanol and remove any remaning ethanol using P10 tips. 

 
21. Resuspend the beads into 21 µL of EB Buffer (Qiagen Cat No./ID: 19086) with the 

plate off the magnet. Incubate for 30 seconds and put the plate back onto the 
magnet. 

 
22. Incubate on the magnet until the liquid is clear of beads, then transfer 20 µL of 

purified cDNA library to a new plate for -20 °C storage or further processing. 
 

23. Check cDNA traces quality and size distributions using Bioanalyzer (Agilent), 
Fragment Analyzer Automated CE System (Advanced Analytical) or similar 
capillary arrays (Figure MS6). If primer dimers are detected at this stage (100-300 
bp peaks), libraries should be re-purified with Ampure XP beads.  

 
 

 
Figure MS6. Representative cDNA traces of pooled and bead-purified amplified cDNA libraries from 96 
HSPCs. 

 
Whole transcriptome library preparation – Timing: 45 minutes  

 
24. Library preparation is performed using a commercially available Nextera XT Kit 

(FC-131-1096, Illumina) with modifications in the indexing PCR step. First, prepare 
one tube for each bead-purified cDNA pool and add 10 µL of Tagmentation Buffer 
into each tube.  

 



25. Add 1 ng of purified cDNA from each pool, up to a total volume of 5 µL and 5 µL of 
Amplicon Tagmentation Mix (ATM). Incubate 6 minutes at 55 C (total volume 20 
µL).  

 
Reagents 1 reaction (µL) 
Tagmentation Buffer 10 
Bead purified cDNA (0.2 ng/uL) 5 
ATM (Amplicon Tagment Mix) 5 
TOTAL 20 

 
26.  Once the incubation is finished, add 5 µL of NT buffer to neutralize the 

tagmentation reaction. 
 

27. Prepare PCR master mix as outlined below. i7 index primers are commercially 
available (Illumina, Cat#FC-131-1001); P5_index primer is a custom indexing 
primer (see Key Resources). 

   Reagents 1 reaction (µL) 
 i7 index (2 µM) 5 µL 
 P5_index (10 µM) 1 µL 
 NPM (PCR master mix) 15 µL 
 Water 4 µL 
 TOTAL 25 µL 
 TOTAL (cumulative) 50 µL   

 
28. Incubate in a thermocycler and run the following PCR program: 
 

Temperature Time Cycles 
72 C 3 minutes 1 
95 C 30 seconds 1 
95 C 10 seconds 

14 cycles 55 C 30 seconds 
72 C 30 seconds 
72 C 5 minutes 1 
4 C HOLD 1 

 
29. Bead-purify tagmented libraries twice using Ampure XP beads. For the first bead 

purification step, use 34 µL of beads and 50 µL of library - resuspend in 34 µL of 
EB buffer (Qiagen) and use the product to perform a second bead purification 
using 20 µL of beads. Resuspend the final product in a total volume of 20 µL of EB 
buffer (Qiagen). 

 
30. Run libraries on D5000 TapeStation or similar capillary array. Library fragments 

should be from 300 bp to 800 bp on average (Figure MS7): 



 
Figure MS7. Representative traces of tagmented, amplified and bead-purified 3’-TARGETseq Nextera 

XT libraries. 
 

31. Quantify tagmented and barcoded libraries using Qubit (ThermoFisher, Cat. No. 
32854) and pool equimolar concentrations of each tagmented library. Quantify the 
final pool and sequence on a NextSeq/HiSeq platform using custom P5_SEQ 
sequencing primer for Read1 (See Key Resources). Index read and Read2 use 
standard sequencing primers provided within the commercially-available 
sequencing cartridge. If using the NextSeq platform, load a 3 pM library diluted in 
1.3 mL of HT1 Buffer (Illumina) and 900 nM of P5_SEQ primer in a total volume of 
3 mL of HT1 buffer. 

 
Single cell genotyping library preparation for NGS – Timing: 5 hours – 2 hours 
hands on time 
 

32. Take one aliquot of the unpurified cDNA-amplicon mix, dilute 1:2 with PCR Grade 
water and use as an input for the first barcoding PCR (PCR1). Perform an 
individual PCR reaction for each sample in a 384 well-plate (FrameStar 384, Cat. 
No. 4ti-0384/C). During this PCR reaction, target-specific primers attached to 
universal tags (CS1/CS2 adaptors) will be added to each amplicon from each 
sample, in order to prepare a targeted sequencing library. Targets with similar 
amplification efficiencies might be amplified simultaneously in the same reaction 
for the same single cell. Note: while oligodT-primed mRNA molecules carry a cell-
specific barcode, gDNA and cDNA pre-amplified amplicons will not have a cell-
specific barcode and, therefore, amplicons corresponding to each cell should be 
kept in individual wells of the 384 well-plate, taking precautions to avoid cross-well 
contamination. 

 
33. Prepare PCR Mix and aliquot in the 384 well-plate using a Biomek FxP Liquid 

Handler (Beckman Coulter) of similar liquid handling platform: 
 

PCR1 BARCODING with 
target-specific primers 1 Reaction Storage Cat. No. 

KAPA 2G Ready Mix 3.125 µL -20 °C KAPA 2G Robust HS 
PCR Kit #KK5517 

Primer F1+R1 (20 uM) 0.375 µL -20 °C Custom primers 
(Invitrogen) cartridge 
purification, 
resuspend in TE 

Primer F2+R2 (20 uM) 0.375 µL -20 °C 
Primer F3+R3 (20 uM) 0.375 µL -20 °C 
Primer FX+RX… … … 



RT-PCR Grade Water Variable -20 °C 

UltraPure 
DNAse/RNAse-Free 
Distilled Water, (Life 
Technologies, 
#10977035) 

cDNA aliquot 1.5 µL -20 °C  
TOTAL 6.25 µL   

 
34. Incubate in a thermocycler and run the following PCR program: 

 
 

PCR1 PROGRAM 

Temperature  Time 
(min:sec) Cycles 

95 C 03:00 1 
95 C 00:15 

20 60 C 00:20 
72 C 01:00 
72 C 05:00 1 
4 C HOLD   

 
35. Use 2.5 µL of PCR1 product as an input for the next reaction (PCR2). During this 

step, sample-specific barcodes are attached to previously tagged amplicons using 
the Access Array™ Barcode Library for Illumina® Sequencers (384, Single 
Direction, Fluidigm). Barcode each sample in individual reactions.  

 
36. Aliquot the barcodes (Access Array™ Barcode Library for Illumina® Sequencers) 

into a 384 well plate, and aliquot the PCR1 product into the same plate using a 
liquid handling platform. 

 
37. Prepare the PCR master mix and aliquot.  

 
 

PCR2 BARCODING with 
Illumina compatible primers 1 Reaction Storage Cat. No.  

FastStart High Fidelity 10X 
Reaction Buffer 1 µL -20 °C 

FastStart High 
Fidelity PCR 
System  
REF:04738292001 

MgCl2 (25 mM) 1.8 µL -20 °C 
DMSO 0.5 µL -20 °C 
dNTP Mix (10 mM) 0.2 µL -20 °C 
FastStart High Fidelity 
Enzyme (5U/µL) 0.1 µL -20 °C 

RT-PCR Grade Water 

1.90 µL -20 °C 

UltraPure 
DNAse/RNAse-
Free Distilled 
Water, (Life 
Technologies, 
#10977035) 



Single-direction barcodes (2 
uM, Fluidigm) 2.0 µL -20 °C 

Access Array™ 
Barcode Library for 
Illumina® 
Sequencers-384, 
Single Direction, 
Fluidigm (Cat. No. 
100-4876) 

PCR1 barcoding aliquot 2.5 µL -20 °C  
TOTAL 10 µL   

 
38. Incubate in a thermocycler and run the following PCR program: 
 

PCR2 PROGRAM 

Temperature  Time 
(min:sec) Cycles 

95 C 10:00 1 
95 C 00:15 

10 60 C 00:30 
72 C 01:00 
72 C 03:00 1 
4 C HOLD   

 
39.  Pool amplicons from each barcoded library using a liquid handling platform and 

use Ampure XP beads to clean-up pooled libraries (0.8:1 beads to cDNA ratio). 
Quantify libraries using Qubit (ThermoFisher; Cat No. 32854) and check library 
size distribution and specific amplification of targeted amplicons on D1000 
TapeStation or similar capillary array (Figure MS8). Note: barcodes and adaptors 
add 103 bp extra to the original PCR product.  

 

 
Figure MS8. Representative distributions of targeted amplicon libraries from genomic JAK2 and mRNA 
SF3B1 amplicons in a multiplexed reaction. 

 
40. Libraries are ready for sequencing using custom sequencing primers targeted to 

CS1/CS2 tags (500 nM of CS1-seq and CS2-seq primers in a total volume of 700 
µL for R1 and R2; 500 nM of CS1rc-seq and CS2rc-seq primers in a total volume 
of 700 µL for Index Read when using the MiSeq platform, Illumina).  Note: 
CS1/CS2 and CS1rc/CS2rc sequencing primers contain LNA modifications (see 
Key Resources), as compared to CS1/CS2 tags used for PCR1 target-specific 
primers. 



Primer design and validation technical note.  
 
Pre-amplification (RTPCR) primer design 
 
Primers should be designed taking into account the following considerations: 

 
• Design genomic primers binding to at least one intronic region so they are 

compatible with parallel cDNA amplification. 
• Primers for gDNA amplification should be checked for specificity against genomic 

and transcriptome references (so they are compatible with parallel cDNA 
amplification) using Primer BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-
blast/) or similar tools. 

• Design mRNA/cDNA primers ideally in the exon before and the exon after your 
mutation/region of interest. An example of JAK2 primer design can be found below 
(Figure MS9). 
 

 

 
Figure MS9. Schematic representation of mRNA and gDNA JAK2 primer design. 

 
 

• Primers for mRNA/cDNA amplification should be checked for specificity against 
transcriptome references using Primer BLAST or similar tools. 

• Design amplicons ideally ranging from 250 bp to 700 bp long. We have tested 
amplicons up to 1 kb, which worked optimally. In the rare event in which exons are 
longer than 1 kb, the preferred option is to design a unique primer pair spanning 
the mutation of interest.  

• In the event that mutations of interest are in terminal exons or 3’-UTR regions, 
design two forward primers (mRNA and gDNA specific) and one unique reverse 
primer, which will amplify both types of amplicons. An example of ASXL1 primer 
design can be found below (Figure MS10). 

 

 
 

Figure MS10. Schematic representation of mRNA and gDNA ASXL1 primer design. 
 

 
cDNA primers used in the PCR step contain the same primer sequence used for mRNA 
primers in the RT step, but are attached to ISPCR adaptors (ISPCR adaptor sequence: 
5’- AAGCAGTGGTATCAACGCAGAGT-3’) in the 5’-end of each primer. This increases 
amplification efficiency of cDNA targets. Importantly, in the specific case of terminal exons 
where a common primer is used to amplify both cDNA and gDNA molecules, cDNA 
primers used in the PCR step should not be attached to ISPCR adaptors, as this will 
create concatemers that will disrupt the successful generation of cDNA libraries. 
 
 
 



Pre-amplification primer validation 
 
Primers used for gDNA and mRNA/cDNA pre-amplification should be validated for 
specificity using bulk gDNA and bulk cDNA, respectively. If primers are not specific or 
they present low amplification efficiencies, they should be redesigned. 
 
Primer multiplexing strategies for pre-amplification should be validated for the generation 
of excessive primer dimers and concatemers in a minimum of 8 single cell samples. 
Examples of a good and bad library (primers generating concatemers) are shown below 
(Figure MS11). Figure MS11a represents a good quality cDNA library; Figure MS11b 
represents a good quality library despite high primer dimer concentration and Figure 
MS11c represents a bad quality cDNA library in which primers are interfering with cDNA 
amplification.  

 

 
Figure MS11. Representative cDNA libraries from single HSPCs produced using different primer multiplex combinations. 

 
When primer combinations generate concatemers or greatly decrease cDNA yield, such 
as the case presented in Figure MS11c, each primer pair should be tested individually in 
single cells and those pairs originating concatemers should be redesigned. Alternatively, 
when mRNA primer pairs generate concatemers, mRNA primer concentration might be 
decreased, down to a minimum 35 nM in the RT mix. gDNA primer concentration should 
not be decreased. 

 
Custom barcoding primer design (PCR1 barcoding primers)  

 
Specific primers for gDNA and cDNA used during PCR1-barcoding should be designed 
nested from the original RT+PCR amplicon (pre-amplification primers) to increase specific 
amplification and PCR efficiency. Specificity should be checked against transcriptome 
references for both types of molecules, and they should be validated using bulk genomic 
DNA and cDNA, respectively. Primers are tagged to CS1/CS2 universal adaptors in the 
5’end (Forward adaptor, CS1: ACACTGACGACATGGTTCTACA; Reverse adaptor, CS2: 
TACGGTAGCAGAGACTTGGTCT), which will be used to add cell-specific barcodes 
during PCR2 step.  
 
PCR1 primers should be different for each type of molecule (gDNA or cDNA), so that 
independent mutational readouts can be obtained from each, bioinformatically extracting 
reads matching each primer sequence. In the specific case of terminal exons, whilst one 
unique reverse primer was used during RT-PCR steps, two reverse primers should be 



used for PCR1 barcoding, and therefore gDNA and mRNA amplicons should be barcoded 
in different reactions in such case. 
 
When sequencing using a sequencing platform with 300 cycles configuration (150 bp R1 
and 150 bp R2), primers should be designed taking into account the relative distance of 
the mutation to start of the primer, so that the mutation is well covered during sequencing. 
Sequencing configurations with shorter reads are not recommended.  
 
Custom barcoding primer validation 
 
Primers used for gDNA and cDNA PCR1-barcoding should be validated for specificity and 
amplification efficiency in pre-amplified single cell samples. To do that, PCR1 should be 
performed individually for each target using 35 cycles of PCR amplification, and specific 
amplification should be checked on a Fragment Analyzer platform (Agilent) or similar 
capillary array (Figure MS12). Amplification efficiency might be derived from the 
quantification of specific product obtained in each case. Alternatively, specificity and 
amplification efficiency might be assessed with qPCR. If primers are not specific, they 
should be redesigned.  

 
Figure MS12. Representative example of Fragment Analyzer results for three different PCR1 primer pairs. 

 
Example of primers used for JAK2-V617F amplification 
 
Primer Name Primer sequence Step Type Purification 

mJAK2_F TAAATGCTGTCCCCCAAAGC RT mRNA HPLC 

mJAK2_R CCATGCCAACTGTTTAGCAAC RT mRNA HPLC 

gJAK2_F ccaaagcacattgtatcctcatct PCR gDNA HPLC 

gJAK2_R cactgacacctagctgtgatcct PCR gDNA HPLC 

ISPCR_mJAK2_F AAGCAGTGGTATCAACGCAGAGTTAAATGCTGTCCCCCAAAGC PCR cDNA HPLC 

ISPCR_mJAK2_R AAGCAGTGGTATCAACGCAGAGTCCATGCCAACTGTTTAGCAAC PCR cDNA HPLC 

mJAK2_PCR1_F ACACTGACGACATGGTTCTACATCTGGATAAAGCACACAGAAACT PCR1 cDNA Desalted 

mJAK2_PCR1_R TACGGTAGCAGAGACTTGGTCTTCCAAATTTTACAAACTCCTGAACC PCR1 cDNA Desalted 

gJAK2_PCR1_F ACACTGACGACATGGTTCTACAttatggacaacagtcaaacaacaa PCR1 gDNA Desalted 

gJAK2_PCR1_R TACGGTAGCAGAGACTTGGTCTaaaggcattagaaagcctgtagt PCR1 gDNA Desalted 

 

ISPCR adaptor is labelled in orange; CS1/CS2 adaptors are labelled in 
blue 
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