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SUPPLEMENTARY INFORMATION 

 

Supplementary Note 1: Challenges to generate an accurate gold standard 

 

While many areas of biological science, including RNA biology, currently lack a gold standard, 

some areas of biological science have developed successful benchmarking computational tools 

that produce an accurate gold standard. Examples of successful benchmarking studies include 

specific problems in DNA biology, such as variant calling 14,60 or genome assembly 37. These 

studies’ achievements can inaccurately portray benchmarking as a straightforward problem, 

where researchers first devote effort to generate the gold standard data sets, and then make 

reliable decisions based on uniform statistical methods. In contrast to DNA biology, many 

problems in RNA and protein biology involve extremely complex systems, making the definition 

and acquisition of gold standards extremely challenging or impossible.  

 

Scientific problems in RNA biology, one example of such a complex system, still center around 

determining differentially expressed genes from RNA-Seq data. Solving this problem involves 

multiple steps: (1) alignment of short reads to the reference genome and/or transcriptome; (2) 

gene and/or isoform quantification; (3) normalization of gene or isoform expression levels; and 

(4) differential expression analysis. Each step of the analysis has a major impact on the final set 

of differentially expressed genes and carries unique challenges, which we discuss below. The 

first step of differential expression analysis is the read alignment problem—to find the correct 

genomic location of tens of millions of sequencing reads derived from RNA transcripts. We 

currently lack experimental techniques capable of generating an accurate gold standard of true 



 
 

2 

 

read alignments. In fact, RNA biology is an area of study where one can realistically argue that 

simulated data is the only alternative available when preparing a gold standard 51.  

 

The second step of differential expression analysis is the transcriptome quantification problem—

to identify the gene and isoform from which each read was originated, and how to use those 

reads to quantify the expression levels of genes and RNA isoforms. True expression levels of 

isoform and genes are impossible to measure even in a simple bacterial organism, where RNA 

transcripts are not subject to alternative splicing. Human RNA transcripts undergo alternative 

splicing, which presents an even more substantial challenge to obtaining a gold standard. Lack of 

a gold standard for gene and isoform expression levels forces the biomedical community to adopt 

alternative technologies for obtaining a gold standard. Measurements of gene and isoform 

expression levels obtained by alternative technology should not be considered a true set, as they 

have their own inherent biases and limitations. For example, qPCR—widely considered the gold 

standard for gene expression profiling—has been shown to exhibit strong deviations of ~5-10% 

across various targets 17. 

 

The third step of differential expression analysis is the expression normalization problem—to 

remove the biases and the variance introduced by experimental issues, while preserving the true 

biological variation. Currently, we lack experimental techniques capable of estimating true 

biological variation and differentiating variation from technical noise. Current RNA-seq analysis 

methods typically standardize data between samples by scaling the number of reads in a given 

library to a common value across all sequenced libraries, which is an oversimplification for 

many biological applications 64. Lack of a gold standard prevents the biomedical research 
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community from assessing the performance of the tools that measure biological and technical 

variance 65.  

 

The final step of differential expression analysis is to determine differentially expressed (DE) 

genes. This problem involves running a large number of hypothesis tests in parallel, one for each 

gene or isoform. To properly benchmark this problem, one needs to vary multiple parameters, 

including the number of replicates, the number of DE genes, and the effect sizes. Nonetheless, 

the accurate gold standard cannot be obtained by current experimental procedures. The 

complexity of the differential expression analysis problem prevents the level of comprehension 

needed in a benchmarking study to evaluate all steps of RNA-Seq analysis. Instead, 

benchmarking studies separately evaluate each step of the problem 45.  

 

Lack of an accurate gold standard imposes a significant limitation on benchmarking studies. 

Researchers planning to perform the benchmarking study face a dilemma, where, on one hand, 

they do not have access to experimental techniques to generate accurate gold standard, and, on 

another hand, it is known that the extreme complexity of the problem cannot be captured by 

simulated data. One compromise is to enhance the simulated data with the real data or to adjust 

the real data to the needs of the benchmarking study using computational techniques. 
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Supplementary Note 2: An example of a log file for a software tool installation and running 

 

The log file includes any necessary dependencies and documents needed for the process of 

installing the software tools and corresponding dependencies. Include any errors that occurred 

while installing dependencies and the commands used to overcome these installation problems. 

The log file documents the type of files that needed in order to input data into the tools and the 

format of the output file. 

 

This is the possible structure of the log file: 

· Input 

· Output 

· Dependencies 

· Commands used to install the tool 

· Commands used to run the tool 

· Reason the tool is impossible to install. This should include the exact error message and 

document steps (if any) which were performed to resolve the problem. In case the 

software developers were contacted, their suggestions should be listed here. 
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Supplementary Table 1. Summary of error correction algorithm features. 

Software tool  Version   Underlying algorithm   Data structure   Types of reads accepted 

BLESS 1.02 k -mer spectrum  Bloom filter and hash table   SE/PE 

Fiona  0.2.8 k -mer spectrum  Partial suffix array  SE 

Pollux  1.0.2 k -mer spectrum  Hash table SE/PE 

BFC  1 k -mer spectrum  Bloom filter and hash table  SE/PE 

Lighter  1.1.1 k -mer spectrum  Bloom filter  SE/PE 

Musket  1.1 k-mer spectrum  Bloom filter and hash table  SE/PE 

Racer  1.0.1 k-mer spectrum  Hash table  SE/PE 

Reptile  1.1 k-mer spectrum  Hamming graph  SE 

Quake  0.3 k-mer spectrum  Bit array index  SE/PE 

SOAPdenovo2 Corrector  2.03 k-mer spectrum  Hash table  SE/PE 

ECHO  1.12 Multiple sequence alignment Hash table  SE/PE 

Coral  1.4.1 Multiple sequence alignment Hash table  SE/PE 

RECKONER  0.2.1 k-mer spectrum  Hash table  SE 

SGA  0.10.15 FM-index search  FM-index  SE/PE 

ShoRAH  1.1.0 clustering Not specified   SE 

KEC  1 k -mer spectrum  Hash table   SE 
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Supplementary Table 2. Summary of error correction algorithm features and publication details. 

Software tool  Organism   Journal   Publication Year  

BLESS  Human, E. coli, S. aureus Bioinformatics  2014 

Fiona  Human, Drosophila sp., E. coli, C. elegans Bioinformatics  2014 

Pollux  Human, E. coli, S. aureus, mixed genome data BMC Bioinformatics  2015 

BFC  Human, C. elegans Bioinformatics  2015 

Lighter  Human, E. coli, C. elegans Genome Biology 2014 

Musket  Human, E. coli, C. elegans Bioinformatics  2012 

Racer  Human, Drosophila sp., E. coli, C. elegans, other bacteria Bioinformatics  2013 

Reptile  Human, Acinetobacter sp., E. coli Bioinformatics  2010 

Quake  Human, E. coli Genome Biology 2010 

SOAPdenovo2 Corrector  Human, PhiX174, Drosophila sp., Saccharomyces cerevisiae Giga Science 2012 

ECHO  Human Genome Research  2012 

Coral  Human, E. coli, S. aureus Bioinformatics  2011 

RECKONER  Human, S. cerevisiae, C. elegans, M. acuminata Bioinformatics  2017 

SGA  Human, C. elegans, E. coli Genome Research  2012 

ShoRAH  RNA viral population BMC Bioinformatics  2011 

KEC  RNA viral population BMC Bioinformatics  2012 
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Supplementary Table 3. Summary of error correction algorithm programming language and comparable software tools. 

Software tool Programming language  Programs compared to in the publication 

BLESS  C++ SGA, QuorUM, Lighter, BFC, DecGPU, ECHO, HiTEC, Musket, Quake, Reptile  

Fiona  C++ Allpaths-LG,Coral,H-Shrec,ECHO,HiTEC,Quake  

Pollux  C Quake, SGA, BLESS, Musket, RACER  

BFC  C BLESS, Bloocoo, fermi2, Lighter, Musket, and SGA 

Lighter  C++ Quake, Musket, Bless, Soapec 

Musket  C++ SGA, Quake  

Racer  C++ Coral, HITEC, Quake, Reptile, SHREC  

Reptile  C++ SHREC  

Quake  C++, R SOAPdenovo,EULER, SHREC  

SOAPdenovo2 Corrector  C/C++ SOAPdevnovo1, ALLPATHS-LG  

ECHO  Python SA, SHREC  

Coral  C COMPASS 3.0, HHalign 1.5.1.1 and PSI-BLAST  

RECKONER  C++ Ace, BFC, BLESS, Blue, Karect, Lighter, Musket, Pollux, RACER, Trowel  

SGA  C++ Velvet, ABySS, SOAPdenovo, Quake, HiTEC  

ShoRAH  C++, Python, Perl No comparison included 

KEC  Java ShoRAH  
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Supplementary Table 4. Summary of published URLs for each software tool webpage. 

Software tool  Tool webpage  

BLESS   https://sourceforge.net/p/bless-ec/wiki/Home/  

Fiona   https://github.com/seqan/seqan/tree/master/apps/fiona  

Pollux   https://github.com/emarinier/pollux  

BFC   https://github.com/lh3/bfc  

Lighter   https://github.com/mourisl/Lighter  

Musket   http://musket.sourceforge.net/homepage.htm  

Racer   http://www.csd.uwo.ca/~ilie/RACER/  

Reptile   http://aluru-sun.ece.iastate.edu/doku.php?id=reptile  

Quake   http://www.cbcb.umd.edu/software/quake  

SOAPdenovo2 Corrector   http://soap.genomics.org.cn/about.html  

ECHO   http://uc-echo.sourceforge.net/  

Coral   https://www.cs.helsinki.fi/u/lmsalmel/coral/  

RECKONER   https://github.com/refresh-bio/RECKONER  

SGA   https://github.com/jts/sga  

ShoRAH   https://github.com/cbg-ethz/shorah  

KEC   http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm  
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Supplementary Table 5. Summary of software dependencies and other features. 

Software tool  Software dependencies  Default k-mer size  Read 
trimming  

BLESS  MPICH 3.1.3, OpenMPI 1.8.4, Boost library, google spareshash, klib, KMC, 
murmurhash3, zlib, pigz  N/A  YES  

Fiona  N/A  N/A  YES  

Pollux  64 bit Unix-based OS 31 YES  

BFC  N/A  N/A NO  

Lighter  N/A  N/A  NO  

Musket  N/A  N/A  NO  

Racer  OpenMP  N/A  NO  

Reptile  Perl, GNU make, C++ compiler  24 NO  

Quake  N/A  15 YES  

SOAPdenovo2 Corrector  GCC 4.4.5 or later  N/A  N/A  

ECHO  GCC 4.1 or later, Python 2.6, numpy, scipy  1/6 of read length  YES  

Coral  N/A  N/A  YES  

RECKONER  KMC2, KMC tools  N/A  NO  

SGA  Google sparse hash library, bamtools, zlib, jemalloc (optional), pysam, ruffus  31 NO  

ShoRAH  Biopython, NumPy, Perl, zlib, pkg-config, GNU scientific library N/A  YES  

KEC  FAMS; ClustalW2 or Muscle (optional)  25 NO  

 


