RNA-seq reveals the involvement of key genes for aerobic adaptation in rice

Amol S. Phule^{ab}, Kalyani M. Barbadikar^a, Sheshu Madhav Maganti^a, P. Seguttuvel^a, D. Subrahmanyam^a, M.B.B. Prasad Babu^a and Polumetla A. Kumar^{a*}

^a Biotechnology Division, ICAR-Indian Institute of Rice Research, Hyderabad 30, India

^b Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University,

Hyderabad 30, India

*Correspondence: Polumetla Ananda Kumar

ICAR- Indian Institute of Rice Research Rajendranagar, Hyderabad-500030 Telangana, India E-mail: polumetla@hotmail.com

Fig. S1. GO enrichment analysis for DETs in shoot (BAS vs. CAS) and in root (BAR vs. CAR) under aerobic conditions. The categories of biological processes (BP) most significant followed by molecular function (MF) and cellular component GO terms in (a) shoot and (b) root are shown from top to bottom.

Metabolism_overview.svg mapping: Osa_RAPDB_mappin mapped: 395 of 441 data point visible: 44 data points data: BA_vs_CA_shoot.bt

(a) BAS vs. C

Transcripts highlighted in insight involved in secondary metabolism processes are shown in the main panel in dark green, while putatively associated transcripts are shown in light green. Blue denotes up-regulation and red down-regulation.

Fig. S3. Heatmaps representation of differentially expressed TFs (mentioned on the right side) (a) in shoot (BAS, CAS, BFS, CFS) and (b) in root (BAR, CAR, BFR, CFR) under aerobic and anaerobic conditions. The color scale at the top shows expression values in read count. Red represents high levels of expression and blue indicates low levels (* symbol denotes exclusively expressed TFs in shoot and root of aerobic adapted cultivar CR Dhan 202 under aerobic condition).

Fig. S4. Heatmaps representation of differentially expressed transporters (mentioned on the right side) (a) in shoot (BAS, CAS, BFS, CFS) and (b) in root (BAR, CAR, BFR, CFR) under aerobic and anaerobic conditions. The color scale at the top shows expression values in read count. Red represents high levels of expression and blue indicates low levels (* symbol denotes exclusively expressed transporters in shoot and root of aerobic adapted cultivar CR Dhan 202 under aerobic condition).

Fig. S5. Validation of the expression of representative transcripts from RNA-seq using qRT-PCR in (a) shoot (BAS vs. CAS) and in (b) root (BAR vs. CAR) under aerobic conditions.

Fig. S6. Workflow/ summary of RNA-seq data analysis in shoot and root under aerobic and anaerobic conditions.

BAS - BPT 5204 Aerobic Shoot, CAS - CR Dhan 202 Aerobic Shoot, BAR - BPT 5204 Aerobic Root, CAR - CR Dhan 202 Aerobic Root, BFS - BPT 5204 Anaerobic Shoot, CFS - CR Dhan 202 Anaerobic Shoot, BFR - BPT 5204 Anaerobic Root and CFR - CR Dhan 202 Anaerobic Root

Table S1. Differentially expressed transcripts (DETs) in shoot (BAS vs. CAS) (BAF vs.CFS) and root (BAR vs. CAR) (BFR vs. CFR) under aerobic and anaerobic conditions(Please see the supplementary excel file).

Term	Database	ID	Input number	Background number	P- Value	Corrected P-Value	
BAS vs. CAS							
Fatty acid degradation	KEGG PATHWAY	osa00071	5	38	0.0001 98021	0.0066088 24	
Glyoxylate and dicarboxylate metabolism	KEGG PATHWAY	osa00630	6	63	0.0002 31889	0.0066088 24	
Galactose metabolism	KEGG PATHWAY	osa00052	4	48	0.0041 34657	0.0657114 73	
Tryptophan metabolism	KEGG PATHWAY	osa00380	3	24	0.0046 11331	0.0657114 73	
Thiamine metabolism	KEGG PATHWAY	osa00730	2	9	0.0080 52586	0.0799734 96	
Fatty acid metabolism	KEGG PATHWAY	osa01212	4	60	0.0086 32145	0.0799734 96	
Metabolic pathways	KEGG PATHWAY	osa01100	30	1492	0.0098 21307	0.0799734 96	
Plant-pathogen interaction	KEGG PATHWAY	osa04626	5	105	0.0127 65287	0.0898485 42	
Peroxisome	KEGG PATHWAY	osa04146	4	70	0.0141 86612	0.0898485 42	
BFS vs. CFS							
Metabolic pathways	KEGG PATHWAY	osa01100	63	1492	1.8433 4E-06	0.0011981 68	
Biosynthesis of secondary metabolites	KEGG PATHWAY	osa01110	39	800	9.8663 E-06	0.0032065 48	
Fatty acid degradation	KEGG PATHWAY	osa00071	6	38	0.0003 80693	0.0189637 75	
alpha-Linolenic acid metabolism	KEGG PATHWAY	osa00592	6	39	0.0004 31204	0.0189637 75	
Terpenoid backbone biosynthesis	KEGG PATHWAY	osa00900	6	40	0.0004 86793	0.0197759 58	
Cutin, suberine and wax biosynthesis	KEGG PATHWAY	osa00073	4	16	0.0008 45517	0.0289255 91	
Plant-pathogen interaction	KEGG PATHWAY	osa04626	9	105	0.0009 40201	0.0305565 34	
Photosynthesis - antenna proteins	KEGG PATHWAY	osa00196	4	17	0.0010 26452	0.0317711 34	
Thiamine metabolism	KEGG PATHWAY	osa00730	3	9	0.0020 04785	0.0328503 76	
BAR vs. CAR							
Biosynthesis of secondary metabolites	KEGG PATHWAY	osa01110	71	800	8.0196 4E-08	7.29787E- 06	
Metabolic pathways KEGG		osa01100	103	1492	8.5882	0.0003101	

Table S2. Top ten KEGG pathway enrichment analysis of the DETs of shoot and root under aerobic and anaerobic conditions.

	PATHWAY				4E-06	02		
Glycolysis / Gluconeogenesis	KEGG PATHWAY	osa00010	19	125	1.0223 1E-05	0.0003101 02		
Biosynthesis of amino acids	KEGG PATHWAY	osa01230	22	193	0.0001 15963	0.0026381 61		
Phenylalanine, tyrosine and tryptophan biosynthesis	KEGG PATHWAY	osa00400	8	39	0.0007 0072	0.0127530 99		
Phenylpropanoid biosynthesis	KEGG PATHWAY	osa00940	14	113	0.0009 35942	0.0141951 17		
Carbon metabolism	KEGG PATHWAY	osa01200	22	235	0.0013 48053	0.0175246 93		
Arginine and proline metabolism	KEGG PATHWAY	osa00330	7	35	0.0017 06147	0.0194074 26		
Starch and sucrose metabolism	KEGG PATHWAY	osa00500	16	156	0.0025 53126	0.0258149 36		
BFR vs. CFR	BFR vs. CFR							
Arachidonic acid metabolism	KEGG PATHWAY	osa00590	2	10	0.0106 99255	0.1599869 91		
Plant hormone signal transduction	KEGG PATHWAY	osa04075	7	177	0.0119 14325	0.1599869 91		
Biosynthesis of secondary metabolites	KEGG PATHWAY	osa01110	19	800	0.0140 62773	0.1599869 91		
Pyruvate metabolism	KEGG PATHWAY	osa00620	4	72	0.0187 45371	0.1599869 91		
Phenylpropanoid biosynthesis	KEGG PATHWAY	osa00940	5	113	0.0210 12259	0.1599869 91		
Linoleic acid metabolism	KEGG PATHWAY	osa00591	2	15	0.0211 03488	0.1599869 91		
Carbon fixation in photosynthetic organisms	KEGG PATHWAY	osa00710	4	75	0.0212 89591	0.1599869 91		
Starch and sucrose metabolism	KEGG PATHWAY	osa00500	6	156	0.0216 93151	0.1599869 91		
Glycolysis / Gluconeogenesis	KEGG PATHWAY	osa00010	5	125	0.0302 87904	0.1623538		

Table S3. Details of uniquely expressed root related transcripts under aerobic conditions in the root of two cultivars.

Phenotype	Gene id	BAR	CAR	Gene	Gene description		
		read	read	name			
	•	count	count				
Root development relat	ed genes						
Crown root formation	Os01G0149800	52.8	490.9	MT2A	Metallothionein-like protein 2A		
	Os05G0111300	150.1	657.7	MT2C	Metallothionein-like protein 2C		
	Os01G0974200	1144	3471.7	-	Metallothionein-like protein 2B		
Genes related to physiological functions of root							
Root hair development	Os10G0555900	6.5	34.6	EXPB3	Expansin-B3		
Genes related to physiological functions of root							
P uptake	Os08G0564000	1.6	42.6	PHT1;6	Inorganic phosphate transporter 1-6		
K and Na uptake	Os01G0307500	1.9	32.5	HKT8	Cation transporter HKT8		
Genes related to utilization of water and micronutrients							
Water acquisition	Os04G0521100	2.6	22.5	<i>PIP2;3</i>	Probable aquaporin PIP2-3		

Table S4. Details of alternative splicing (AS) events of differentially expressed transcripts (DETs) in shoot (BAS vs. CAS, BFS vs. CFS) and in root (BAR vs. CAR, BFR vs. CFR) under aerobic and anaerobic conditions.

Alternative Splicing (AS)	In sl	noot	In root		
Event	Aerobic (BAS vs. CAS)	Anaerobic (BFS vs. CFS)	Aerobic (BAR vs. CAR)	Anaerobic (BFR vs. CFR)	
Retained intron (RI)	380	370	299	297	
Alternative 3' splice site (A3'SS)	170	159	138	139	
Alternative 5' splice site (A5'SS)	61	63	61	49	
Skipped exon (SE)	47	46	42	42	
Mutual exclusive exons (MXE)	1	1	1	0	

Table S5. Details of primers used for shoot (a) and root (b) RNA-seq data validation through qRT-PCR.

S.	Gene	Gene	Locus	Primer sequence 5' to 3'	Amplicon	Tm
NO	symbol	description	information	(lorward/reverse)	length (bp)	(0C)
(a) F	or shoot					
1	OsBURP3	BURP domain-	LOC_Os01g53240	CCAAGCGCAGCTCAATCTTTGC	110	62
		containing protein 3		TGGCTTCCTACTGAAGCGATCA AC		
2	OsCML15	Probable	LOC_Os05g31620	AAGGTGAGGGCGTTCTTCTC	91	62
		calcium- binding protein CML15		ACCAGTCCACGTTCATCGC		
3	OsGLK1	Probable	LOC_Os06g24070	GCTTCAACTCCAGGTTCAACCA	93	62
		factor GLK1		AGTCCAAGAGGCAAAGGCAAC C		
4	OsHOX12	Homeobox-	LOC_Os03g10210	AGCAAGCTCATGGAGGAGGAG	131	62
		leucine zipper		TTC	-	
		protein HOX12		CG		
5	OsMADS8	MADS-box	LOC_Os09g32948	TCACTGATCTCCAGAGGAGGGA	98	62
		transcription		AC		
6	$O_{\rm S}MT2\Lambda$	Matallothionain	LOC 0:01:05650	Tectecteteteteteceateae	140	62
0	USIMI 2A	-like protein 2A	LOC_0501g05050	TCTCCCCCCTACATCTTCCATCC	149	02
				TC		
7	OsPIP1;3	Aquaporin PIP	LOC_Os02g57720	ACCGAGTTGATGCTGCAAGATG	73	62
		1;3		ATCACCAGACGGTAATAACAC ACG		
8	OsRAB21	Water stress-	LOC_Os11g26790	AGCTCAAGCTCGTCTGAGGATG	80	62
		protein Rab21		GGGAGCTTCTCCTTGATCTTCT CC		
9	OsRAB16	Dehydrin Deh 1 (D	LOC_Os11g26780	TTCGCACGTGTTGGGTTGTACC	65	62
	Б	Kablob		ACACACACACCATACAAAGCTT GC		
10	OsTPR	TPR Domain	LOC_Os03g19560	ACAAGCTACCCAATGCAATCCC	122	62
		protein		GACTTGCCTGGACTGCTTTCTC		
11	Putative	Putative	LOC_Os05g11810	TCGTGGGAAGTTGAAGCCACTT	141	62
		uncharacterized		G TCTCCCCTTCCTTACAACCTTC	-	
	protein			C		
(a) F	or root	•		•		
1	HLH	Helix-loop-	LOC_Os03g51580	TCCCAGAACCAGGAACACATCC	114	62
		helix DNA- binding		CGACGCCTTGTCCATCTTCTTG		
		domain				

		containing protein				
2	OsBK11	Brassinoster oid insensitive1- associated receptor kinase 1	LOC_Os11g31540	CATTAGCACCCTGCGAAATCTG AG TCGTCAGGCTGCCCAAAGATTG	80	62
3	OsDREB1F	Dehydration -responsive element- binding protein 1F	LOC_Os01g73770	TTCGTCCTCGTCGGTGT GCGTCTCCCCGGAATTTCTT	110	62
4	OsMT2A	Metallothion ein-like protein 2A	LOC_Os01g05650	TGCTCGTGTGTGTGTGCGATCAG TCTCCGGGTACATCTTGCATCC TC	149	62
5	OsNAC71	NAC domain- containing protein 71	LOC_Os11g08210	TTAACGGAACGTGACGCCTCTG ACGATCGACCTGACAGTGGTTA G	63	62
6	OsNAS1	Nicotianami ne synthase 1	LOC_Os03g19427	TGCTGCATTTGCGAAGCTAAGG ACTGTACGTCCCAAACAACACG	76	62
7	OsPHO1;2	Phosphate transporter PHO1;2	LOC_Os02g56510	TAAGCCACAGCAGCCCAGAAA C AGTGCCCGTGAACAAACCTACG	64	62
8	OsPHT1;6	Inorganic phosphate transporter 1;6	LOC_Os08g45000	TGCAAACTGTACTGTAGCGCTG TC TGGCGGTTTCTTCGATCGATCT TC	124	62
9	OsPIP1;3	Aquaporin PIP 1;3	LOC_Os02g57720	ACCGAGTTGATGCTGCAAGATG ATCACCAGACGGTAATAACAC ACG	73	62
10	OsRAB21	Water stress- inducible protein Rab21	LOC_Os11g26790	AGCTCAAGCTCGTCTGAGGATG GGGAGCTTCTCCTTGATCTTCT CC	80	62
11	OsYSL2	Metal- nicotianami ne transporter YSL2	LOC_Os02g43370	ACTTGCTTCCACTCAGAAAGGC GTTGCAGTCCCACTTGGATAGG	67	62