Dose Optimization of Colistin Combinations against Carbapenem-Resistant Acinetobacter baumannii from Chinese Hospital-acquired Pneumonia Patients Using In Vitro PK/PD Model

Xingchen Bian^{1,2#}, Xiaofen Liu^{1#}, Yuancheng Chen^{1,3}, Daijie Chen⁴, Jian Li⁵, Jing Zhang^{1,3*}

¹ Institute of Antibiotics, Huashan Hospital, Fudan University & Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China;

² College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China;

³ Phase I Unit, Huashan Hospital, Fudan University, Shanghai, 200040, China;

⁴ Shanghai Jiaotong University, Shanghai, 200240, China;

⁵ Biomedicine Discovery Institute and Department of Microbiology, 19 Innovation Walk,

Monash University, Victoria 3800, Melbourne, Australia

*Corresponding author

[#]The authors contributed equally to the manuscript

Address correspondence to: 12 Wulumuqi Zhong Rd, Shanghai, 200040, China; Email: zhangj_fudan@aliyun.com; Phone: +86-21-52888190.

Key words: *Acinetobacter baumannii*, carbapenem resistance, colistin, meropenem, combination therapy, PK/PD modeling

Fig. S1 PCR results of *bla*OXA-23 and *bla*OXA-51 for MDR A. *baumannii* and ATCC19606

(A).

Fig. S2 Concentration-time curves of meropenem dosed at 2 g with 3-h infusion.

Fig. S3 Observed (symbols) and model fitted (lines) viable counts for the static time-kill experiments with meropenem or colistin alone and in combination against *A. baumannii* 050111(A), AB1845(B) and AB2092(C). CST, colistin; MEM, meropenem.

Fig. S4 Comparison of estimated parameters E_{max} and EC_{50} for the three strains in the static time-kill study. CST and MEM represent collistin and meropenem parameters in monotherapy; COMBc and COMBm represent collistin and meropenem parameters in the combination therapy (*: p < 0.05).

Fig. S5 Schematics of the *in vitro* PK/PD model. The volume of culture medium in central compartment was 200 mL. Bacterial solution was filtered by 0.45-µm membrane to prevent bacterial loss. The peristaltic pump was digitally controlled by a computer using WinLIN 3.2 software (Cole-Parmer Co. Ltd.). The flowing rate was regulated by section-divided modulation to mimic plasma drug concentrations in patients.

Fig. S6 Schematics of the pharmacokinetic/pharmacodynamic (PK/PD) model

characterizing the killing effect of colistin and meropenem.

Stuain	ATCC	ATCC	050111	020411	120211	070311	070411	080411	080511	AB	AB
Stram		19606								1845	2092
	CST	1	0.5	1	0.5	0.5	0.5	1	0.5	0.5	1
	MEM	0.5	128	32	32	32	64	32	32	32	128
	RIF	2	4	4	4	2	2	4	4	4	8
(mg/L)	FOF	64	128	64	128	128	128	128	128	128	>128
	MIN	<0.125	4	8	2	1	1	0.5	2	4	8

Table S1. MICs of ATCC19606 and clinical CRAB isolates

CST, colistin; MEM, meropenem; RIF, rifampicin; FOF, fosfomycin; MIN, minocycline; MIC, minimum inhibitory concentration.

CLSI breakpoints: CST, S: ≤2mg/L, R: ≥4mg/L, MEM, S: ≤2mg/L, I: 4mg/L, R: ≥8mg/L; MIN, S: ≤4mg/L, I: 8mg/L, R: ≥16mg/L.

Combination	Number of	Synergy rate		
Combination	Synergy Indifference Antagonism		(%)	
CST-MEM	4	5	0	44
CST-RIF	5	4	0	56
CST-FOF	1	8	0	11
CST-MIN	3	6	0	33

 Table S2. Synergistic effects of each combination against 9 clinical isolates.

CST, colistin; MEM, meropenem; RIF, rifampicin; FOF, fosfomycin; MIN, minocycline

Synergy rate (%) = No. of strains showing synergy / total number of strains

Time(h)	Predicted concentration	Measured concentration (n=3)		
T mie(n)	(mg/L)	(mg/L)		
0	0	0.04±0.05		
1	24.3	19.7±1.07		
2	30.6	28.1±1.39		
3	32.9	29.3±0.9		
3.5	17.2	14.0±0.76		
4	10.0	7.58±0.58		
4.5	6.5	4.56±0.4		
5	4.5	2.96±0.43		
6	2.4	1.36±0.11		

 Table S3. Observed and predicted concentrations of meropenem dosed at 2 g with 3-h

infusion

Doromotor	Explanation	A. baumannii	A. baumannii	A. baumannii
		050111	1845	2092
$k_{growth}(h^{-1})$	rate constant of bacterial net growth	0.692	0.986	0.984
<i>B_{max}</i> (log ₁₀ CFU/mL)	bacterial count in the stationary phase	9.27	8.84	8.81
$E_{max_CST}(h^{-1})$	maximum achievable kill rate constant by colistin	4.09	1.07	9.01
<i>EC</i> _{50_CST} (mg/L)	colistin concentration that results in 50% of E_{max}	0.489	0.0141	0.364
$E_{max_MEM}(h^{-1})$	maximum achievable kill rate constant by meropenem	0.014	0.719	0.16
EC50_MEM(mg/L)	meropenem concentration that results in 50% of E_{max}	4.00	7.01	2.40
γcst	hill factor for colistin	1.73	2.72	4.13
γмем	hill factor for meropenem	30.6	5.54	1.24×10 ⁻⁷
f	maximal adaptation factor	7.82	40.7	0.561
k	rate of adaptation	0.0667	0.575	1.70

Table S4. Parameter estimates for the static time-kill study

Int	parameter describing drug interaction	5.53	9.99	2.50
Fval(%)	residual error fraction	1.38	3.43	2.77

Donomotor	Tunlonation	Dose			
rarameter	Explanation	0.5 g	1 g or 2 g		
ke (h ⁻¹)	elimination rate constant	1.39	1.34		
$V_1(L)$	volume of central compartment	13.7	13.8		
$V_2(L)$	volume of peripheral compartment	5.49	5.97		
k_{10} (h ⁻¹)	speed constant from central compartment	0 506	0 323		
K ₁₂ (II)	to peripheral compartment	0.500	0.525		
kai (h ⁻¹)	speed constant from peripheral	1 26	0.750		
K ₂₁ (ii)	compartment to central compartment	1.20	0.750		

 Table S5. Pharmacokinetic parameters of meropenem