Supplementary Information for

ORIGINAL ARTICLE

Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic

stroke agents

Jiabing Wang^{a,b†}, Lili Huang^{a,c†}, Chanchan Cheng^{a,†}, Ge Li^{a,†}, Jingwen Xie^a, Mengya Shen^a, Qian Chen^a, Wulan Li^{a,d}, Wenfei He^a, Peihong Qiu^{a,*}, Jianzhang Wu^{a,*}

^aChemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China

^bMunicipal Hospital Affiliated to Medical School of Taizhou University, Taizhou 318000, China ^cNingbo Medical Centre Lihuili Hospital, Ningbo 315041, China

^dCollege of Information Science and Computer Engineering, Wenzhou Medical University, Wenzhou 325035, China

[†]These authors made equal contributions to this work.

Running title: Chalcone analogues with novel dual antioxidant mechanisms as anti-ischemic stroke agents

*Correspondence authors.

E-mail addresses: wjzwzmc@126.com (Peihong Qiu); wjzwzmu@163.com (Jianzhang Wu).

Contents		
Figure S1	1b 's cytoprotection on PC12 cells in H ₂ O ₂ damage model	Page 2

Figure S2 The nucleus translocation of NRF2 caused by 33 Page 3

Figure S3-S43 LC–MS, ¹H NMR and ¹³C NMR spectra of compounds and original spectra of all compounds Page 4-44

Figure S1 1b's cytoprotection on PC12 cells in H_2O_2 damage model. (A) The structure of **1b**. (B) PC12 cells were pretreated for 1h with **1b** (10 µmol/L), then another 24 h exposure in H_2O_2 (450 µmol/L), finally determined by the MTT assay. The viability of untreated cells is defined as 100%.

Figure S2 The nucleus translocation of NRF2 caused by **33**. PC12 cells were incubated with **33**, **21** and **1b** at 10 µmol/L for 6 h, and then stained with NRF2 antibody and DAPI.

LC–MS, ¹H NMR and ¹³C NMR spectra of compounds and original spectra of all compounds

Figure S3 LC–MS and ¹H NMR spectra of compound 1.

Figure S4 LC–MS and ¹H NMR spectra of compound 2.

Figure S5 LC–MS and ¹H NMR spectra of compound 3.

Figure S6 LC–MS and ¹H NMR spectra of compound 4.

Figure S7 LC–MS and ¹H NMR spectra of compound 5.

Figure S8 LC–MS and ¹H NMR spectra of compound 6.

Figure S9 LC–MS and ¹H NMR spectra of compound 7.

Figure S10 LC–MS, ¹H NMR and ¹³C NMR spectra of compound 8.

Figure S11 LC–MS and ¹H NMR spectra of compound **9**.

Figure S12 LC–MS and ¹H NMR spectra of compound 10.

Figure S13 LC–MS, ¹H NMR and ¹³C HMR spectra of compound 11.

Figure S14 LC–MS, ¹H NMR and ¹³C NMR spectra of compound 12.

Figure S15 LC–MS and ¹H NMR spectra of compound 13.

Figure S16 LC–MS and ¹H NMR spectra of compound 14.

Figure S17 LC–MS, ¹H NMR and ¹³C NMR spectra of compound 15.

Figure S18 LC–MS and ¹H NMR spectra of compound 16.

Figure S19 LC–MS, ¹H NMR and ¹³C NMR spectra of compound 17.

Figure S20 LC–MS, ¹H NMR and ¹³C NMR spectra of compound 18.

Figure S21 LC–MS and ¹H NMR spectra of compound 19.

Figure S22 LC–MS and ¹H NMR spectra of compound 20.

Figure S23 LC–MS, ¹H NMR and ¹³C NMR spectra of compound 21.

Figure S24 LC–MS and ¹H NMR spectra of compound 22.

Figure S25 LC–MS, ¹H NMR and ¹³C NMR spectra of compound 23.

Figure S26 LC–MS and ¹H NMR spectra of compound 24.

Figure S27 LC–MS, ¹H NMR and ¹³C NMR spectra of compound 25.

Figure S28 LC–MS and ¹H NMR spectra of compound 26.

Figure S29 LC–MS, ¹H NMR and ¹³C NMR spectra of compound **27**.

Figure S30 LC–MS and ¹H NMR spectra of compound 28.

Figure S31 LC–MS, ¹H NMR and ¹³C NMR spectra of compound 29.

Figure S32 LC–MS, ¹H NMR and ¹³C NMR spectra of compound 30.

Figure S33 LC–MS, ¹H NMR and ¹³C NMR spectra of compound 31.

Figure S34 LC–MS and ¹H NMR spectra of compound 32.

Figure S35 LC–MS, ¹H NMR and ¹³C NMR spectra of compound 33.

Figure S36 LC–MS,¹H NMR and ¹³C NMR spectra of compound 34.

Figure S37 LC–MS, ¹H NMR and ¹³C NMR spectra of compound 35.

Figure S38 LC–MS, ¹H NMR and ¹³C NMR spectra of compound 36.

Figure S39 LC–MS, ¹H NMR and ¹³C NMR spectra of compound 37.

Figure S40 LC–MS and ¹H NMR spectra of compound 38.

Figure S41 LC–MS, ¹H NMR and ¹³C NMR spectra of compound **39**.

Figure S42 LC–MS and ¹H NMR spectra of compound 40.

Figure S43 LC–MS,¹H NMR and ¹³C NMR spectra of compound 41.