Supplementary Materials for

Functionalized spirolactones by photoinduced dearomatization of biaryl compounds

Hongji Li,^{ab†} Elena Subbotina,^{c†} Anon Bunrit,^a Feng Wang,^{*a} and Joseph S. M. Samec^{*c}

^a State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Dalian 116023, China. ^b University of Chinese Academy of Sciences, Beijing 100049, China. ^c Department of Organic Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden.[†] These authors contributed equally to this work.

Email: wangfeng@dicp.ac.cn

Email: joseph.samec@su.se

Table of Contents:

1	Checklist of characterization data of all compounds				
2	General	S8			
3	All starting acids and spiro products	S8			
4	The synthesis of 4'-hydroxy-2',6'-dimethyl-[1,1'-biphenyl]-2-carboxylic acid (3)	S9			
5	The synthesis of Methyl 2',6'-dimethyl-[1,1'-biphenyl]-2-carboxylate (24)	S9			
6	General procedure conditions A and B	S10			
7	Optimization of reaction condition	S11			
8	Attempts to use DDQ as a catalyst	S12			
9	Electrochemical measurements	S13			
10	Control experiments	S14			
11	Isotope labelling expetiments	S15			
12	Further transformations of spirolactone	S16			
13	General method A to synthesize starting biaryl acid 1	S16			
14	General method B to synthesize starting biaryl acid A13	S17			
15	General method C to synthesize starting hindered biaryl acid A6	S17			
16	Characterization data of all starting acids	S19			
17	Characterization data of all products	S26			
18	Spectra of all starting acids	S35			
19	Spectra of all products	S56			
20	References	S82			

1. Checklist of characterization data of all compounds:

Codo	Compound	Known/		¹ H- ¹³ C-		HRMS
Coue	Compound	Unknown	NMR	NMR		IIIIII
1	CO ₂ H	Known ¹	V	V	-	-
A2	CI CO ₂ H	Unknown	\checkmark	V	-	-
A3	O ₂ N CO ₂ H	Unknown	V	V	-	-
A4	CO ₂ H	Unknown	V	V	-	-
A5	MeO CO ₂ H	Unknown	\checkmark	\checkmark	-	-
A6	CO ₂ H OMe	Unknown	V		-	-
A7	CO ₂ H	Unknown	V	V	-	-
A8	CO ₂ H	Unknown	N		-	-

1.1 Checklist of characterization data of synthesized acids:

A9	O ₂ N CO ₂ H	Unknown	\checkmark	V	-	-
A10	CO ₂ H	Known ²	\checkmark	\checkmark	-	-
A11	CO ₂ H OMe	Unknown	\checkmark	\checkmark	_	-
A12	CO ₂ H	Unknown	\checkmark	\checkmark	_	_
A13	CO ₂ H OMe MeO	Known ³	\checkmark	\checkmark	-	-
A14	CO ₂ H OMe MeO	Unknown	\checkmark	\checkmark	_	-
A15	CO ₂ H OMe MeO MeO	Unknown	\checkmark	\checkmark	-	-
A16	CO ₂ H	Known ⁴	\checkmark	\checkmark	-	-

A17	CO ₂ H	Unknown	V	\checkmark	-	-
A18	CO ₂ H OMe	Known ⁵	V	V	-	-
A19	CO ₂ H	Known ⁶	V	V	-	-
A20	CO ₂ H OMe	Unknown	V		-	-
A21	OMe OMe	Unknown	\checkmark	\checkmark	-	-

1.2 Checklist of characterization data of all products:

Code	Compound	Known/ Unknown	¹ H- NMR	¹³ C- NMR	IR	HRMS
2		Unknown	\checkmark	\checkmark	V	V
3	CO ₂ H OH	Unknown	\checkmark	V		
4		Unknown	V	V	V	V

5		Unknown	V	\checkmark	\checkmark	V
6		Unknown	\checkmark	\checkmark	\checkmark	\checkmark
7	O O Me	Unknown	\checkmark	\checkmark	\checkmark	\checkmark
8	O MeO	Unknown	\checkmark	\checkmark	\checkmark	V
9		Unknown	\checkmark	\checkmark	-	\checkmark
10		Unknown	\checkmark	\checkmark	\checkmark	\checkmark
11		Unknown	\checkmark	\checkmark	\checkmark	\checkmark
12		Known ⁷	\checkmark	\checkmark	-	\checkmark
13	O O O O Me	Unknown	V			

14		Unknown	V	V	V	V
15	OMe O MeO	Unknown	\checkmark	V	V	V
16	OMe O MeO	Unknown	\checkmark	V	\checkmark	\checkmark
17	OMe O MeO MeO	Unknown	V	V	-	V
18		Unknown	V	V	V	V
19		Unknown	\checkmark	V	V	V
20		Unknown	V	V	V	V
21		Unknown	V	~	V	1

22		Unknown	\checkmark	\checkmark	\checkmark	\checkmark
23		Unknown	\checkmark	\checkmark	-	\checkmark
24	CO ₂ Me	Known ⁸	V		-	-

2. General

¹H-NMR spectra were recorded with a Bruker 400 (400 MHz) spectrometer as solutions in CDCl₃. Chemical shifts are expressed in parts per million (ppm, δ) and are referenced to CHCl₃ (δ = 7.26 ppm) as an internal standard. All coupling constants are absolute values and are expressed in Hz. The description of the signals include: s = singlet, d = doublet, t = triplet, m = multiplet and dd = doublet of doublets, at = apparent triplet. ¹³C -NMR spectra were recorded with a Bruker 400 (101 MHz) spectrometer as solutions in CDCl₃ with complete proton decoupling. Chemical shifts are expressed in parts per million (ppm, δ) and are referenced to CDCl₃ (δ = 77.0 ppm) as an internal standard. IR spectra were recorded by a Perkin Elmer FT-IR Spectrometer. High-Resolution Mass Spectra (HRMS) were performed with a micrOTOF (Bruker) spectrometer. The molecular fragments are quoted as the relation between mass and charge (m/z). The routine monitoring of reactions was performed by crude ¹H NMR and/or with silica gel pre-coated Al plate, which was analyzed with iodine and/or uv light. Solvents, reagents and chemicals were purchased from Aldrich. All reactions were executed with oven-dried glassware. The LED lamps (PR160 LED Photoredox Lights) are commercial products from Kessil, and the average intensity is 288 mW/cm² (measured from 1 cm distance). The range of LED lamp (λ_{max} = 440 nm) is from 410 nm to 480 nm, and the range of LED lamp (λ_{max} = 427 nm) is from 395 nm to 470 nm.

3. All starting acids and spiro products

4. The synthesis of 4'-hydroxy-2',6'-dimethyl-[1,1'-biphenyl]-2-carboxylic acid (3)

A 50 mL flask equipped with a stir bar was loaded with substrate **1** (1 mmol) and DDQ (1 mmol). After sealing the flask, the atmosphere was switched to argon, then acetonitrile (20 mL) with water (22 mmol) was added via syringe. The reaction mixture was irradiated at r.t. with 2 LED lamps (440 nm) for 15 h. After the completing of the reaction, reaction mixture was concentrated in vacuo and purified by flash chromatography over silica gel.

5. The synthesis of Methyl 2',6'-dimethyl-[1,1'-biphenyl]-2-carboxylate (24)

A 25 mL microwave vial (Biotage) equipped with a stir bar was loaded with substrate 1 (1 mmol), then the H_2SO_4 methanol solution (5%, 6 mL) was added. After sealing the vial, the reaction mixture was heated at 100 °C for 10 h. After the completing of the reaction, reaction mixture was concentrated in vacuo and purified by flash chromatography over silica gel.

6. General procedure conditions A and B

General procedure condition A: A 2-5 mL microwave vial (Biotage) equipped with a stir bar was loaded with the corresponding biarylacid (0.1 mmol), catalyst, and additives. Solvent was added and the vial was sealed. The reaction mixture was irradiated at r.t. with 2 LED lamps (427 nm) for specified time. After the completing of the reaction, reaction mixture was concentrated in vacuo and purified by flash chromatography over silica gel.

Procedure for the reaction under oxygen atmosphere condition A: A 2-5 mL microwave vial (Biotage) equipped with a stir bar was loaded with the corresponding biarylacid (0.1 mmol), catalyst, and additives. Solvent was added, the vial was sealed and flashed with oxygen for 5 mins. The reaction mixture was irradiated at r.t. with 2 LED lamps (427 nm) for specified time. After the completing of the reaction, reaction mixture was concentrated in vacuo and purified by flash chromatography over silica gel.

General procedure condition B: A 2-5 mL microwave vial (Biotage) equipped with a stir bar was loaded with the corresponding biarylacid (0.1 mmol) and DDQ (0.6 mmol). After sealing the vial, the atmosphere was switched to argon, then acetonitrile (4 mL) with water (2.2 mmol) was added using needle. The reaction mixture was irradiated at r.t. with 2 LED lamps (440 nm) for specified time. After the completing of the reaction, reaction mixture was concentrated in vacuo and purified by flash chromatography over silica gel.

General procedure for determination of the NMR yields of the products: For NMR yields, after the solvent was removed from the reaction mixture, 1, 3, 5-trimethoxybenzene was added as the standard. Then DMSO-d₆ or CDCl₃ was added to the residue and proton spectra was used to quantify to yields of products.

7. Optimization of Reaction Condition

Supplementary Table 1 Optimization of Reaction Condition^a

	<[
		Me Me $Cat.1: R_1 = Ph,$ $Cat.2: R_1 = Me$ $R^2 cat.3: R_1 = Ph,$ R^2	$R_{2} = H; X=BF_{4}$ $R_{2} = H; X=CIO_{4}$ $R_{2} = {}^{t}Bu; X=BF_{4}$ N $TEMPO$ $DABCO$:N
Entry	catalyst	amount of	Additive (equiv)	solvent	Yield
		cat. (mol %)			2/3, %
1	cat.2	20	-	CH ₃ CN	trace/trace
2	cat.3	20	-	CH ₃ CN	5/trace
3	cat.1	20	-	DCE	trace/trace
4	cat.1	20	-	MeOH	10/trace
5	cat.1	20	Et ₃ N	Acetone	20/trace
6	cat.1	20	Ру	Acetone	26/trace
7	cat.1	20	DBU	Acetone	35/trace
8	cat.1	20	КОН	Acetone	55/trace
9	cat.1	0	DABCO (1)/TEMPO (1)	Acetone	trace/trace
10 ^b	cat.1	8	DABCO (1)/TEMPO (1)	Acetone	80/trace
11°	cat.1	8	DABCO (1)/TEMPO (1)	Acetone	trace/trace
12 ^d	cat.1	8	DABCO (1)/TEMPO (1)	Acetone	trace/trace
13 ^e	-	-	DDQ (3)	CH ₃ CN	49/21
14 ^e	-	-	DDQ (5)	CH ₃ CN	77/12
15 ^e	-	-	DDQ (6)	CH ₃ CN	89 (72)/6
16 ^f	-	-	DDQ (6)	CH ₃ CN	trace/trace
17 ^g	-	-	DDQ (6)	CH ₃ CN	26/trace

^a Reactions were carried out at 0.05 mmol scale, with each additive in solvent (1 mL) under two LED lamps ($\lambda_{max} = 427$ nm) for 12 h. Air atmosphere. Yields were obtained by NMR relative to 1,3,5-trimethoxybenzene internal standard. ^b Oxygen atmosphere, 4 h. ^c Argon atmosphere, 4 h. ^d Dark reaction, 4 h. ^e LED lamps ($\lambda_{max} = 440$ nm) 15 h. Argon atmosphere, with addition of 22 equiv H₂O. ^f Dark reaction under argon atmosphere for 15 h with addition of 22 equiv H₂O. ^g LED lamps ($\lambda_{max} = 440$ nm) for 15 h. Oxygen atmosphere. Without addition of H₂O.

8. Attempts to use DDQ as a catalyst

Supplementary Table 2 Attempts to use DDQ as a catalyst

			с + но-√_	COOH 3	
Entry	amount of DDQ	Additive (equiv)	solvent	Atmosphe	Yield
	(mol %)			re	2/3, %
1	20	NaNO ₂ (30%)	AcOH : CH ₃ CN	O ₂	2/21
			(1:10)		
2	20	NaNO ₂ (30%)	$AcOH:CH_2Cl_2\\$	O_2	3/33
			(1:10)		
3	20	NaNO ₂ (30%)	AcOH	O ₂	2/30
4	100	NaNO ₂ (30%)	$AcOH:CH_2Cl_2\\$	O_2	17/21
			(1:10)		
5	100	NaNO ₂ (200%)	$AcOH:CH_2Cl_2\\$	O_2	29/trace
			(1:10)		
6	20	Fe(NO ₃) ₃ (26%)	CH ₃ CN	O_2	29/15
7	120	Fe(NO ₃) ₃ (100%)	CH ₃ CN	Ar	6/trace
8	20	_t BuONO (40%)	CH ₃ CN	O_2	28/trace
9	20	_t BuONO (200%)	CH ₃ CN	O_2	28/trace
10	100	_t BuONO (200%)	CH ₃ CN	O ₂	26/trace

Reactions were carried out at 0.05 mmol scale, with each additive in solvent (1 mL) and 22 equiv H₂O under two LED lamps ($\lambda_{max} = 440$ nm) for 6-15 h. Yields were obtained by NMR relative to 1,3,5-trimethoxybenzene internal standard.

9. Electrochemical measurements

Electrochemical half peak redox potentials ($E_{p/2}$) were estimated from cyclic voltammograms. Measurements were performed in Ar-sparged acetonitrile with 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) as the electrolyte and a three electrode setup (working: glassy carbon, reference: saturated calomel electrode, counter: platinum). The potential was scanned from 0.5 V to a vertex potential of 2.8 V at a sweep rate of 20 mV/s. The half-wave potential for irreversible oxidation is estimated at $E_{p/2}$ the potential where the current is equal to one-half the peak current of the oxidation event.

Figure S1 Cyclic voltammograms for selected compounds. The $E_{p/2}$ values shown on each plot referenced to SCE.

10. Control experiments

11. Isotope labelling experiments

11.1 Control experiment with standard reaction condition B (H₂O)

Figure S2. a) GS-MS chromatogram of experiment with standard reaction condition B (H₂O). b) Mass peaks at t = 11.7 min; MS of spiro product found m/z 240 (¹⁶O).

11.2 Experiment using ¹⁸O₂ with reaction condition A

Figure S3. a) GS-MS chromatogram of experiment using ¹⁸O₂ with reaction condition A. b) Mass peaks at t = 11.7 min; MS of spiro products found m/z 242 : 240 (¹⁸O : ¹⁶O = 98 : 2).

11.3 Experiment using H₂¹⁸O with reaction condition B

Figure S4. a) GS-MS chromatogram of experiment using $H_2^{18}O$ with reaction condition B. b) Mass peaks at t = 11.7 min; MS of spiro products found *m/z* 242 : 240 (^{18}O : ^{16}O = 93 : 7).

12. Further transformations of spirolactone

Figure S5. Further transformations of spirolactone. These reactions were run on 0.1 mmol scale.

13. General method A to synthesize starting biaryl acid 1

A 250 mL flask (Biotage) equipped with a stir bar was loaded with 2-iodobenzoic acid (2480 mg, 10 mmol, 1.0 equiv.), boronic acid (1580 mg, 10.5 mmol. 1.05 equiv.), NaOH (1200 mg, 30 mmol, 3.0 equiv.), Pd(OAc)₂ (11.2 mg, 0.5 mol%), and water (100mL). After sealing the vial and flashed with argon, the reaction mixture was heated at 80 °C for 24 h. After completion monitored by TLC, the reaction mixture was then cooled down to room temperature. Water was added and the reaction mixture was extracted with CH_2Cl_2 (3×20 mL). The organic layer was separated, washed with brine, dried over sodium sulfate, concentrated, and purified by silica gel column chromatography to provide biaryl acid 1 (1700 mg, 75%).

14. General method B to synthesize starting biaryl acid A13

A 25 mL microwave vial (Biotage) equipped with a stir bar was loaded with methyl 2-iodobenzoate (500 mg, 1.9 mmol, 1.0 equiv.), boronic acid (520 mg, 2.9 mmol. 1.5 equiv.), K_2CO_3 (790 mg, 5.7 mmol, 3.0 equiv.), Pd(PPh_3)_4 (110 mg, 5 mol%), and solvents (toluene: EtOH, 6+3 mL, 2:1). After sealing the vial and flashed with argon, the reaction mixture was heated at 110 °C for 12 h. After completion monitored by TLC, the reaction mixture was then cooled down to room temperature. Water was added and the reaction mixture was extracted by CH_2Cl_2 (3×20 mL). The organic layer was separated, washed with brine, dried over sodium sulfate, concentrated, and purified by silica gel column chromatography to provide biaryl ester which was used directly for the next synthetic step without further purification.

A mixture of ester suspended in methanol (30 mL), water (10 mL) and LiOH·H₂O (1.196 g, 28.5 mmol, 15.0 equiv.) was refluxed for 6 hr. After completion monitored by TLC, the resulting mixture was then acidified with 30 ml of 30 % aq. solution of HCl, and extracted with CH_2Cl_2 (3×20 mL). The organic layer was separated, washed with brine, dried over sodium sulfate, concentrated, and purified by silica gel column chromatography to provide biaryl acid **A13** (319 mg, 65% overall yield).

15. General method C to synthesize starting hindered biaryl acid A6

An oven dried 25 mL microwave vial (Biotage) equipped with a stir bar was loaded with methyl 2-iodo-3methoxybenzoate (500 mg, 1.7 mmol, 1.0 equiv.), boronic acid (513 mg, 3.4 mmol. 2.0 equiv.), anhydrous K_3PO_4 (1.453 g, 6.8 mmol, 4.0 equiv.), Pd(OAc)₂ (19 mg, 5.0 mol%), ligand (SPhos, 2-Dicyclohexylphosphino-2',6'-dimethoxybipheny) (70 mg, 10 mol%), and dry toluene (10 mL). After sealing the vial and flashed with argon, the reaction mixture was heated at 110 °C for 24 h. After completion monitored by TLC, the reaction mixture was then cooled down to room temperature. Water was added and the reaction mixture was extracted by CH_2Cl_2 (3×20 mL). The organic layer was separated, washed with brine, dried over sodium sulfate, concentrated, and purified by silica gel column chromatography to provide biaryl ester which was used directly for the next synthetic step without further purification.

A mixture of ester suspended in methanol (30 mL), water (10 mL) and LiOH·H₂O (1.070 g, 25.5 mmol, 15.0 equiv.) was refluxed for 6 hr. After completion monitored by TLC, the resulting mixture was then acidified with 30 ml of 30 % aq. solution of HCl, and extracted with CH_2Cl_2 (3×20 mL). The organic layer was separated, washed with brine, dried over sodium sulfate, concentrated, and purified by silica gel column chromatography to provide biaryl acid **A6** (152 mg, 35% overall yield).

16. Characterization data of all starting acids

2',6'-dimethyl-[1,1'-biphenyl]-2-carboxylic acid (1)¹

Using the general method A, acid 1 was obtained in 170 mg (75%) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ = 11.15 (s, 1H), 8.12 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.63 (td, *J* = 7.5, 1.4 Hz, 1H), 7.46 (td, *J* = 7.6, 1.3 Hz, 1H), 7.23 - 7.13 (m, 2H), 7.13 - 7.05 (m, 2H), 1.96 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ = 171.8, 142.8, 140.8, 135.1, 133.0, 131.2, 130.8, 128.8, 127.1, 126.9, 20.5. **4-chloro-2',6'-dimethyl-[1,1'-biphenyl]-2-carboxylic acid (A2)**

Using the general method B, acid A2 was obtained in 285 mg (65%) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ = 10.98 (s, 1H), 8.10 (d, *J* = 2.3 Hz, 1H), 7.60 (dd, *J* = 8.2, 2.3 Hz, 1H), 7.19 (dd, *J* = 8.2, 6.8 Hz, 1H), 7.11 (dd, *J* = 11.0, 7.9 Hz, 3H), 1.95 (s, 6H).

 13 C NMR (101 MHz, CDCl₃) δ = 170.6, 141.3, 139.5, 135.1, 133.1, 132.3, 131.2, 130.3, 127.3, 127.1, 20.5.

2',6'-dimethyl-4-nitro-[1,1'-biphenyl]-2-carboxylic acid (A3)

Using the general method B, acid A3 was obtained in 313 mg (60%) as a light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ = 10.50 (s, 1H), 8.96 (d, *J* = 2.4 Hz, 1H), 8.48 (dd, *J* = 8.4, 2.5 Hz, 1H), 7.41

(d, *J* = 8.4 Hz, 1H), 7.25 – 7.19 (m, 1H), 7.17 – 7.08 (m, 2H), 1.95 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 169.8, 169.8, 149.7, 146.9, 138.6, 134.4, 132.6, 130.4, 127.9, 127.3, 126.4, 20.5.

2',4,6'-trimethyl-[1,1'-biphenyl]-2-carboxylic acid (A4)

Using the general method B, acid A4 was obtained in 313 mg (68%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.91 – 7.87 (m, 1H), 7.40 (ddd, *J* = 7.8, 2.0, 0.9 Hz, 1H), 7.14 (dd, *J* = 8.4, 6.6 Hz, 1H), 7.06 (d, *J* = 7.8 Hz, 2H), 7.01 (d, *J* = 7.7 Hz, 1H), 2.45 (s, 3H), 1.95 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 171.1, 141.2, 139.2, 136.8, 135.7, 133.3, 131.4, 130.5, 129.6, 126.9, 126.7, 21.0, 20.6.

4-methoxy-2',6'-dimethyl-[1,1'-biphenyl]-2-carboxylic acid (A5)

Using the general method B, acid A5 was obtained in 287 mg (55%) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ = 10.54 (s, 1H), 7.63 (d, *J* = 2.8 Hz, 1H), 7.21 – 7.13 (m, 2H), 7.09 (dq, *J* = 7.2, 0.7 Hz, 2H), 7.06 (d, *J* = 8.4 Hz, 1H), 3.91 (s, 3H), 1.97 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ = 170.8, 158.4, 140.4, 135.8, 135.0, 131.9, 129.5, 127.0, 126.9, 119.8, 115.2, 55.5, 20.6.

6-methoxy-2',6'-dimethyl-[1,1'-biphenyl]-2-carboxylic acid (A6)

Using the general method C, acid A6 was obtained in 152 mg (35%) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ = 7.67 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.44 (t, *J* = 8.1 Hz, 1H), 7.24 – 7.14 (m, 2H), 7.10 (d, *J* = 7.2 Hz, 2H), 3.75 (s, 3H), 1.95 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ = 170.8, 158.4, 140.4, 135.8, 135.0, 131.9, 129.6, 127.0, 126.9, 119.8, 115.2, 55.5, 20.6.

2-(2,6-dimethylphenyl)nicotinic acid (A7)

Using the general method C, acid A7 was obtained in 200 mg (38%) as a yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 2.0 Hz, 1H), 8.47 (d, *J* = 2.0 Hz, 1H), 8.41 (dd, *J* = 4.9, 2.0 Hz, 2H), 7.15 (dd, *J* = 7.6, 4.9 Hz, 2H), 4.22 (s, 6H).

 13 C NMR (101 MHz, CDCl₃) δ = 164.6, 161.2, 151.8, 143.1, 127.3, 118.4, 112.4, 54.8.

2',3',5',6'-tetramethyl-[1,1'-biphenyl]-2-carboxylic acid (A8)

Using the general method B, acid **A8** was obtained in 340 mg (70%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ = 10.43 (s, 1H), 8.15 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.62 (td, *J* = 7.5, 1.4 Hz, 1H), 7.47 (td, *J* = 7.6, 1.3 Hz, 1H), 7.14 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.01 (s, 1H), 2.28 (s, 6H), 1.83 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.9, 144.0, 140.4, 133.2, 132.9, 131.3, 131.2, 130.6, 128.9, 126.9, 20.1, 17.0.

2',3',5',6'-tetramethyl-4-nitro-[1,1'-biphenyl]-2-carboxylic acid (A9)

Using the general method B, acid A19 was obtained in 322 mg (56%) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ = 8.96 (d, *J* = 2.5 Hz, 1H), 8.45 (dd, *J* = 8.4, 2.5 Hz, 1H), 7.36 (d, *J* = 8.4 Hz, 1H), 7.05 (s, 1H), 2.28 (s, 6H), 1.80 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ = 167.8, 150.9, 146.8, 138.5, 133.7, 132.8, 131.4, 130.6, 130.5, 127.0, 126.3, 20.0, 17.0.

2-(anthracen-9-yl)benzoic acid (A10)²

Using the general method C, acid A10 was obtained in 227 mg (40%) as a light yellow solid.

¹H NMR (400 MHz, CDCl₃) δ = 8.50 (s, 1H), 8.23 (ddd, *J* = 7.9, 1.5, 0.5 Hz, 1H), 8.05 (ddt, *J* = 8.5, 1.3, 0.7 Hz, 2H), 7.73 (td, *J* = 7.5, 1.5 Hz, 1H), 7.67 – 7.57 (m, 1H), 7.45 (ddd, *J* = 8.5, 6.4, 1.2 Hz, 2H), 7.42 – 7.39 (m, 2H), 7.37 (ddd, *J* = 7.6, 1.4, 0.5 Hz, 1H), 7.32 (dd, *J* = 6.4, 1.3 Hz, 1H), 7.30 (dd, *J* = 6.4, 1.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ = 168.8, 140.5, 135.8, 133.0, 132.7, 131.4, 131.1, 130.5, 129.9, 128.4, 128.0, 126.6, 126.1, 125.4, 125.0.

2-(anthracen-9-yl)-3-methoxybenzoic acid (A11)

Using the general method C, acid **A11** was obtained in 157 mg (28%) as a light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ = 8.49 (s, 1H), 8.08 – 8.02 (m, 2H), 7.83 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.63 (s, 1H), 7.47 – 7.41 (m, 4H), 7.36 – 7.28 (m, 5H), 3.57 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 169.0, 158.4, 132.2, 131.6, 131.3, 130.2, 129.2, 128.7, 128.5, 126.5, 125.8, 125.3, 124.9, 123.2, 115.4, 56.2.

1-(anthracen-9-yl)-2-naphthoic acid (A12)

Using the general method C, acid A12 was obtained in 144 mg (22%) as a yellow solid.

¹H NMR (400 MHz, CDCl₃) $\delta = 8.60$ (s, 1H), 8.26 (d, J = 8.7 Hz, 1H), 8.15 – 8.07 (m, 3H), 8.02 (d, J = 8.2 Hz, 1H), 7.56 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.45 (ddd, J = 8.5, 5.4, 2.2 Hz, 2H), 7.27 – 7.15 (m, 5H), 6.95 (dd, J = 8.6, 1.0 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ = 169.8, 139.9, 135.4, 133.4, 133.1, 131.2, 130.7, 128.5, 128.4, 128.2, 128.1, 127.9, 127.0, 126.9, 26.5, 126.1, 125.7, 125.1.

2',6'-dimethoxy-[1,1'-biphenyl]-2-carboxylic acid (A13)³

Using the general method B, acid A13 was obtained in 384 mg (78%) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ = 8.03 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.58 (td, *J* = 7.5, 1.5 Hz, 1H), 7.41 (td, *J* = 7.6, 1.3 Hz, 1H), 7.36 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.33 – 7.26 (m, 1H), 6.64 (d, *J* = 8.4 Hz, 2H), 3.71 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 172.4, 157.0, 135.3, 132.7, 131.8, 130.7, 130.2, 128.9, 127.0, 118.6, 104.2, 55.8.

2',6'-dimethoxy-4-methyl-[1,1'-biphenyl]-2-carboxylic acid (A14)

Using the general method B, acid **A14** was obtained in 415 mg (70%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ = 11.01 (s, 1H), 7.87 – 7.81 (m, 1H), 7.40 (ddd, *J* = 7.8, 1.9, 0.8 Hz, 1H), 7.32 – 7.26 (m, 1H), 7.25 (d, *J* = 7.8 Hz, 1H), 6.64 (d, *J* = 8.4 Hz, 2H), 3.71 (s, 6H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 172.6, 157.1, 136.8, 132.8, 132.5, 132.2, 130.8, 130.4, 128.7, 118.5, 104.2, 104.2, 55.8, 21.1.

2',6,6'-trimethoxy-[1,1'-biphenyl]-2-carboxylic acid (A15)

Using the general method C, acid A15 was obtained in 148 mg (30%) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ = 10.21 (s, 2H), 7.62 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.41 (t, *J* = 8.0 Hz, 1H), 7.32 (t, *J* = 8.4 Hz, 1H), 7.18 (dd, *J* = 8.3, 1.2 Hz, 1H), 6.65 (d, *J* = 8.4 Hz, 2H), 3.76 (s, 3H), 3.71 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.9, 157.7, 157.6, 132.0, 129.1, 128.2, 124.6, 122.5, 115.2, 114.1, 104.3, 56.3, 55.9.

2-(naphthalen-1-yl)benzoic acid (A16)⁴

Using the general method B, acid A16 was obtained in 379 mg (80%) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ = 9.59 (s, 1H), 8.06 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.91 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 8.3 Hz, 1H), 7.63 (td, *J* = 7.5, 1.4 Hz, 1H), 7.56 – 7.44 (m, 4H), 7.42 – 7.33 (m, 2H), 7.33 – 7.27 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ = 172.1, 141.9, 139.2, 133.2, 132.2, 132.1, 131.9, 130.8, 130.1, 128.1, 127.6, 127.5, 125.9, 125.5, 125.5, 125.0.

3-methyl-2-(naphthalen-1-yl)benzoic acid (A17)

Using the general method C, acid A17 was obtained in 257 mg (45%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ = 10.08 (s, 1H), 7.94 – 7.88 (m, 2H), 7.86 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.49 (dddd, *J* = 16.1, 8.1, 6.5, 1.1 Hz, 3H), 7.42 (t, *J* = 7.7 Hz, 1H), 7.35 (ddd, *J* = 8.0, 6.6, 1.3 Hz, 1H), 7.32 – 7.26 (m, 2H), 7.20 (dd, *J* = 7.0, 1.2 Hz, 1H), 1.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 171.2, 140.9, 138.6, 137.8, 134.1, 133.4, 131.9, 130.4, 128.4, 128.2, 127.5, 127.4, 126.0, 125.8, 125.6, 125.3, 125.3, 20.3.

3-methoxy-2-(naphthalen-1-yl)benzoic acid (A18)⁵

Using the general method C, acid A18 was obtained in 187 mg (33%) as a light yellow solid.

¹H NMR (400 MHz, CDCl₃) δ = 9.84 (s, 1H), 7.91 – 7.84 (m, 2H), 7.62 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.52 –

7.48 (m, 2H), 7.46 (d, *J* = 4.7 Hz, 2H), 7.37 – 7.34 (m, 2H), 7.25 (dd, *J* = 7.0, 1.2 Hz, 1H), 7.21 (dd, *J* = 8.3, 1.2 Hz, 1H), 3.65 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ = 170.8, 157.8, 134.6, 133.2, 132.4, 131.9, 130.3, 128.8, 128.2, 127.7, 126.6, 125.7, 125.5, 125.4, 125.2, 122.6, 114.8, 56.1.

[1,1'-binaphthalene]-2-carboxylic acid (A19)⁶

Using the general method C, acid A19 was obtained in 315 mg (56%) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.7 Hz, 1H), 8.00 (d, J = 8.7 Hz, 1H), 7.98 – 7.93 (m, 3H), 7.56 (ddd, J = 8.1, 6.5, 1.3 Hz, 2H), 7.47 (ddd, J = 8.1, 6.7, 1.2 Hz, 1H), 7.36 – 7.32 (m, 1H), 7.31 (dd, J = 8.6, 1.3 Hz, 1H), 7.28 – 7.22 (m, 2H), 7.18 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ = 171.1, 141.1, 136.5, 135.2, 133.3, 133.2, 132.9, 128.2, 128.2, 128.1, 127.9, 127.8, 127.0, 126.7, 126.2, 126.1, 125.9, 125.7, 125.2.

6-methoxy-2'-methyl-[1,1'-biphenyl]-2-carboxylic acid (A20)

Using the general method B, acid A20 was obtained in 282 mg (68%) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ = 7.59 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.42 (t, *J* = 8.1 Hz, 1H), 7.28 - 7.24 (m, 2H), 7.16 (dd, *J* = 8.3, 1.1 Hz, 1H), 7.03 (dd, *J* = 7.2, 1.2 Hz, 1H), 3.76 (s, 3H), 2.07 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ = 171.7, 157.1, 136.6, 136.2, 131.7, 131.1, 129.2, 128.9, 128.3, 127.4, 125.2, 122.3, 114.6, 56.0, 19.8.

2'-isopropyl-6-methoxy-[1,1'-biphenyl]-2-carboxylic acid (A21)

Using the general method B, acid A21 was obtained in 259 mg (56%) as a light yellow solid.

¹H NMR (400 MHz, CDCl₃) δ = 7.59 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.42 (t, *J* = 8.0 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.18 (ddd, *J* = 7.5, 4.9, 3.6 Hz, 1H), 7.14 (dd, *J* = 8.3, 1.1 Hz, 1H), 6.98 (dt, *J* = 7.5, 1.0 Hz, 1H), 3.74 (s, 3H), 2.59 (p, *J* = 6.9 Hz, 1H), 1.15 (d, *J* = 6.9 Hz, 3H), 1.08 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 171.8, 157.3, 147.2, 134.8, 131.8, 129.0, 128.2, 127.8, 125.0, 124.9, 122.2,

114.2, 55.7, 30.7, 23.8, 23.7.

17. Characterization data of all products

2,6-dimethyl-3'H-spiro[cyclohexane-1,1'-isobenzofuran]-2,5-diene-3',4-dione (2)

¹H NMR (400 MHz, CDCl₃) δ = 8.01 (d, *J* = 7.6 Hz, 1H), 7.73 (t, *J* = 8.1 Hz, 1H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.21 (d, *J* = 7.7 Hz, 1H), 6.28 (s, 2H), 1.66 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ = 184.9, 169.8, 154.5, 148.0, 135.4, 130.6, 128.2, 126.3, 126.1, 121.4, 85.0, 17.1.

IR (cm⁻¹) v 2978, 1482, 1270, 1245, 1210, 760, 730

HRMS (ESI) calcd. for C₁₅H₁₂NaO₃ [M+Na] *m/z* 263.0684 found *m/z* 263.0679.

4'-hydroxy-2',6'-dimethyl-[1,1'-biphenyl]-2-carboxylic acid (3)

¹H NMR (400 MHz, CDCl₃) δ = 8.04 (d, *J* = 7.8 Hz, 1H), 7.56 (t, *J* = 8.2 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 6.58 (s, 2H), 1.89 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ = 170.6, 155.0, 142.1, 136.8, 132.7, 132.2, 131.4, 130.7, 126.9, 114.1, 20.7. HRMS (ESI) calcd. for C₁₅H₁₃O₃ [M-H] *m/z* 241.0863 found *m/z* 241.0870.

5'-chloro-2,6-dimethyl-3'H-spiro[cyclohexane-1,1'-isobenzofuran]-2,5-diene-3',4-dione (4)

¹H NMR (400 MHz, CDCl₃) δ = 7.97 (s, 1H), 7.69 (d, *J* = 8.2 Hz, 1H), 7.16 (d, *J* = 8.2 Hz, 1H), 6.29 (s, 2H), 1.68 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ = 184.6, 168.3, 153.8, 146.2, 137.0, 135.7, 128.5, 127.9, 126.2, 122.7, 84.9, 17.1.

IR (cm⁻¹) v 1710, 1674, 1637, 1594, 1460, 1093, 1066, 1007, 945, 833, 782, 754

HRMS (ESI) calcd. for C₁₅H₁₂ClO₃ [M+H] *m/z* 275.0469 found *m/z* 275.0464.

2,6-dimethyl-5'-nitro-3'H-spiro[cyclohexane-1,1'-isobenzofuran]-2,5-diene-3',4-dione (5)

¹H NMR (400 MHz, CDCl₃) δ = 8.84 (s, 1H), 8.60 (d, *J* = 8.4 Hz, 1H), 7.43 (d, *J* = 7.8 Hz, 1H), 6.35 (s, 2H), 1.70 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ = 184.2, 167.2, 153.3, 152.7, 149.9, 130.2, 129.0, 127.9, 123.0, 121.9, 85.2, 17.2.

IR (cm⁻¹) v 1675, 1640, 1614, 1536, 1435, 1384, 1108, 1004, 950, 907, 813, 747, 662 HRMS (ESI) calcd. for C₁₅H₁₂NO₅ [M+H] *m/z* 286.0710 found *m/z* 286.0706.

2,5',6-trimethyl-3'H-spiro[cyclohexane-1,1'-isobenzofuran]-2,5-diene-3',4-dione (6)

¹H NMR (400 MHz, CDCl₃) δ = 7.79 (s, 1H), 7.53 (d, *J* = 7.8 Hz, 1H), 7.08 (d, *J* = 7.9 Hz, 1H), 6.26 (s, 2H), 2.52 (s, 3H), 1.66 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ = 185.0, 170.1, 154.8, 145.4, 141.2, 136.5, 128.1, 126.3, 121.1, 84.9, 21.4, 17.2.

IR (cm⁻¹) v 1711, 1673, 1642, 1595, 1489, 1285, 1162, 1081, 1036, 1001, 946, 888, 837, 790, 705 HRMS (ESI) calcd. for C₁₆H₁₄NaO₃ [M+Na] *m/z* 277.0835 found *m/z* 277.0834.

5'-methoxy-2,6-dimethyl-3'H-spiro[cyclohexane-1,1'-isobenzofuran]-2,5-diene-3',4-dione (7)

¹H NMR (500 MHz, CDCl₃) δ = 7.43 (d, *J* = 2.2 Hz, 1H), 7.28 (dd, *J* = 8.5, 2.3 Hz, 1H), 7.10 (d, *J* = 8.5 Hz, 1H), 6.28 (s, 2H), 3.95 (s, 3H), 1.69 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ = 184.9, 169.9, 161.7, 154.7, 139.9, 128.1, 127.6, 124.1, 122.3, 108.1, 84.8, 55.9, 17.1.

IR (cm-1) v 2970, 1738, 1711, 1674, 1641, 1490, 1435, 1283, 1079, 1036, 1000, 948, 903, 838, 773, 681 HRMS (ESI) calcd. for C₁₆H₁₄NaO₄ [M+Na] *m/z* 293.0784 found *m/z* 293.0778. 7'-methoxy-2,6-dimethyl-3'H-spiro[cyclohexane-1,1'-isobenzofuran]-2,5-diene-3',4-dione (8)

¹H NMR (400 MHz, CDCl₃) δ = 7.64 – 7.55 (m, 2H), 7.13 (d, *J* = 8.9 Hz, 1H), 6.28 (s, 2H), 3.77 (s, 3H), 1.66 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ = 185.3, 169.9, 154.3, 152.0, 134.4, 132.5, 128.9, 128.4, 117.6, 116.4, 83.5, 55.9, 17.2.

IR (cm-1) v 2970, 1738, 1555, 1490, 1435, 1301, 1284, 1046, 970, 939, 770, 757

HRMS (ESI) calcd. for C₁₆H₁₄NaO₃₄ [M+Na] *m/z* 293.0784 found *m/z* 293.0783.

2,6-dimethyl-5'H-spiro[cyclohexane-1,7'-furo[3,4-b]pyridine]-2,5-diene-4,5'-dione (9)

¹H NMR (400 MHz, CDCl₃) δ = 8.92 (d, *J* = 6.4 Hz, 1H), 8.33 (d, *J* = 7.8 Hz, 1H), 7.60 (dd, *J* = 7.8, 4.8 Hz, 1H), 6.37 (s, 2H), 1.66 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ = 184.7, 167.8, 166.9, 156.5, 151.5, 134.7, 129.8, 124.9, 120.5, 86.0, 17.2. HRMS (ESI) calcd. for C₁₄H₁₁NaO₃ [M+Na] *m/z* 264.0631 found *m/z* 264.0635.

2,3,5,6-tetramethyl-3'*H*-spiro[cyclohexane-1,1'-isobenzofuran]-2,5-diene-3',4-dione (10)

¹H NMR (400 MHz, CDCl₃) δ = 7.99 (d, *J* = 7.5 Hz, 1H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.10 (d, *J* = 7.6 Hz, 1H), 1.99 (s, 6H), 1.56 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ = 184.6, 170.5, 149.2, 146.2, 135.0, 133.1, 130.0, 126.9, 126.0, 121.4, 85.7, 14.0, 11.9.

IR (cm-1) v 2978, 2960, 1652, 1626, 1482, 1270, 1212, 1041, 760, 730

HRMS (ESI) calcd. for C₁₇H₁₆NaO₃ [M+Na] *m/z* 291.0992 found *m/z* 291.0984.

2,3,5,6-tetramethyl-5'-nitro-3'H-spiro[cyclohexane-1,1'-isobenzofuran]-2,5-diene-3',4-dione (11)

¹H NMR (400 MHz, CDCl₃) δ = 8.82 (s, 1H), 8.53 (d, *J* = 10.5 Hz, 1H), 7.32 (d, *J* = 8.4 Hz, 1H), 2.02 (s, 6H), 1.60 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ = 184.0, 167.8, 154.6, 149.6, 144.3, 134.3, 129.9, 128.6, 122.9, 121.6, 85.9, 14.0, 12.0.

IR (cm-1) v 1769, 1731, 1687, 1652, 1625, 1543, 1481, 1311, 1270, 1247, 1152, 1112, 1099, 1070, 1041, 988, 966, 923, 843, 806, 791, 760, 701, 668

HRMS (ESI) calcd. for C₁₇H₁₅NNaO₅ [M+Na] *m/z* 336.0842 found *m/z* 336.0845.

3'H,10H-spiro[anthracene-9,1'-isobenzofuran]-3',10-dione (12)⁷

¹H NMR (400 MHz, CDCl₃) δ = 8.43 – 8.38 (m, 2H), 8.05 (ddd, *J* = 7.4, 3.4, 2.1 Hz, 1H), 7.62 – 7.55 (m, 4H), 7.55 – 7.49 (m, 2H), 7.27 – 7.21 (m, 2H), 6.91 (ddd, *J* = 7.9, 3.4, 2.2 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ = 182.8, 170.6, 154.0, 139.7, 135.4, 134.1, 130.5, 129.6, 129.4, 127.9, 126.2, 125.9, 123.7, 122.4, 83.1.

HRMS (ESI) calcd. for C₂₁H₁₂NaO₃ [M+Na] *m/z* 335.0679 found *m/z* 335.0678.

7'-methoxy-3'H,10H-spiro[anthracene-9,1'-isobenzofuran]-3',10-dione (13)

¹H NMR (400 MHz, CDCl₃) δ = 8.36 (d, *J* = 9.0 Hz, 2H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.56 (dd, *J* = 13.9, 10.2 Hz, 5H), 7.31 (s, 2H), 6.94 (d, *J* = 8.0 Hz, 1H), 3.46 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ = 183.3, 170.8, 153.3, 141.2, 138.4, 133.3, 131.9, 131.5, 129.1, 127.1, 125.4, 117.4, 116.6, 82.1, 55.4.

IR (cm-1) v 2978, 1731, 1723, 1686, 1652, 1624, 1483, 1270, 1112, 1098, 1041, 760

HRMS (ESI) calcd. for C₂₂H₁₄NaO₄ [M+Na] *m/z* 365.0784 found *m/z* 365.0786.

3'H,10H-spiro[anthracene-9,1'-naphtho[1,2-c]furan]-3',10-dione (14)

¹H NMR (400 MHz, CDCl₃) δ = 8.51 (d, *J* = 7.4 Hz, 2H), 8.11 (dd, *J* = 18.8, 8.5 Hz, 2H), 7.99 (d, *J* = 8.3 Hz, 1H), 7.63 - 7.52 (m, 3H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.29 (t, *J* = 7.1 Hz, 1H), 7.16 (d, *J* = 8.1 Hz, 1H), 6.98 (d, *J* = 7.9 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ = 182.4, 170.5, 150.9, 138.8, 137.0, 134.3, 131.9, 130.9, 129.9, 129.4, 129.2, 128.3, 128.0, 127.3, 125.8, 123.9, 123.8, 120.1, 82.7.

IR (cm-1) v 1714, 1668, 1627, 1597, 1589, 1520, 1460, 1320, 1304, 1275, 1173, 1096, 977, 928, 786, 756, 715, 680

HRMS (ESI) calcd. for C₂₅H₁₄NaO₃ [M+Na] *m/z* 385.0835 found *m/z* 385.0836.

2,6-dimethoxy-3'H-spiro[cyclohexane-1,1'-isobenzofuran]-2,5-diene-3',4-dione (15)

¹H NMR (400 MHz, CDCl₃) δ = 7.97 (d, *J* = 7.4 Hz, 1H), 7.70 (t, *J* = 7.5 Hz, 1H), 7.63 (t, *J* = 7.0 Hz, 1H), 7.28 (d, *J* = 7.6 Hz, 1H), 5.64 (s, 2H), 3.61 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ = 186.2, 169.6, 165.9, 146.8, 134.8, 130.4, 126.4, 126.1, 120.8, 102.2, 80.7, 56.6.

IR (cm⁻¹) v 3005, 1710, 1666, 1567, 1504, 1417, 1359, 1275, 1261, 1084, 961, 870, 750, 764 HRMS (ESI) calcd. for C₁₅H₁₂NaO₅ [M+Na] *m/z* 295.0577 found *m/z* 295.0575.

2,6-dimethoxy-5'-methyl-3'H-spiro[cyclohexane-1,1'-isobenzofuran]-2,5-diene-3',4-dione (16)

¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.50 (d, *J* = 7.9 Hz, 1H), 7.16 (d, *J* = 7.8 Hz, 1H), 5.63 (s, 2H), 3.62 (d, *J* = 2.4 Hz, 6H), 2.51 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 186.24, 169.74, 166.14, 144.22, 140.90, 135.82, 126.61, 126.16, 120.53, 102.11, 80.58, 56.53, 21.33.

IR (cm⁻¹) v 2990, 2970, 2707, 1738, 1314, 1564, 1500, 1364, 1275, 1261, 1092, 897, 764, 750 HRMS (ESI) calcd. for C₁₆H₁₄NaO₅ [M+Na] *m/z* 309.0733 found *m/z* 309.0748.

2,6,7'-trimethoxy-3'H-spiro[cyclohexane-1,1'-isobenzofuran]-2,5-diene-3',4-dione (17)

¹H NMR (400 MHz, CDCl₃) δ = 7.61 (t, *J* = 7.7 Hz, 1H), 7.56 (d, *J* = 7.0 Hz, 1H), 7.15 (d, *J* = 7.9 Hz, 1H), 5.67 (s, 2H), 3.83 (s, 3H), 3.65 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ = 186.7, 169.6, 164.8, 154.0, 133.6, 128.8, 117.4, 115.9, 102.6, 79.6, 56.5, 55.9.

HRMS (ESI) calcd. for C₁₆H₁₄NaO₆ [M+Na] *m/z* 325.0683 found *m/z* 325.0691.

3H,4'H-spiro[isobenzofuran-1,1'-naphthalene]-3,4'-dione (18)

¹H NMR (400 MHz, CDCl₃) δ = 8.23 (dd, *J* = 6.2, 3.1 Hz, 1H), 8.05 (d, *J* = 6.1 Hz, 1H), 7.67 – 7.59 (m, 2H), 7.53 (dd, *J* = 5.9, 3.4 Hz, 2H), 7.10 (d, *J* = 6.5 Hz, 1H), 7.05 – 7.01 (m, 1H), 6.72 (dd, *J* = 68.3, 10.1 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ = 183.6, 169.8, 150.2, 144.7, 138.9, 135.3, 133.6, 130.2, 130.1, 130.0, 129.5, 127.1, 126.5, 126.5, 125.0, 122.6, 81.6.

IR (cm⁻¹) v 2970, 2948, 2707, 1738, 1673, 1599, 1500, 1456, 1276, 1261, 974, 940, 764, 750 HRMS (ESI) calcd. for C₁₇H₁₀NaO₃ [M+Na] *m/z* 285.0522 found *m/z* 285.0533.

7-methyl-3*H*,4'*H*-spiro[isobenzofuran-1,1'-naphthalene]-3,4'-dione (19)

¹H NMR (400 MHz, CDCl₃) $\delta = 8.27 - 8.21$ (m, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.60 - 7.49 (m, 3H), 7.42 (d, J = 7.5 Hz, 1H), 6.95 (dd, J = 5.7, 3.4 Hz, 1H), 6.76 - 6.65 (m, 2H), 1.87 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ = 183.5, 169.8, 147.4, 142.7, 137.6, 136.9, 133.8, 133.6, 131.1, 131.0, 130.8, 129.6, 127.0, 126.9, 125.8, 124.0, 80.9, 16.5.

IR (cm⁻¹) v 2978, 1653, 1625, 1482, 1270, 1095, 1070, 1041, 988, 966, 921, 760, 731, 701

HRMS (ESI) calcd. for C₁₈H₁₂NaO₃ [M+Na] *m/z* 299.0679 found *m/z* 299.0682.

7-methoxy-3H,4'H-spiro[isobenzofuran-1,1'-naphthalene]-3,4'-dione (20)

¹H NMR (400 MHz, CDCl₃) $\delta = 8.19$ (dd, J = 5.9, 3.3 Hz, 1H), 7.59 (dt, J = 15.3, 7.6 Hz, 2H), 7.54 – 7.44 (m, 2H), 7.05 (t, J = 7.2 Hz, 2H), 6.65 (dd, J = 32.9, 10.1 Hz, 2H), 3.60 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 184.1$, 169.9, 154.01, 142.8, 137.9, 136.9, 132.9, 132.4, 131.0, 130.5, 129.1, 126.9, 126.6, 125.8, 117.7, 116.5, 80.4, 55.7. IR (cm⁻¹) v 2978, 1731, 1686, 1652, 1625, 1485, 1265, 1114, 1099, 925, 760 HRMS (ESI) calcd. for C₁₈H₁₂NaO₄ [M+Na] *m/z* 315.0628 found *m/z* 315.0640.

3'H,4H-spiro[naphthalene-1,1'-naphtho[1,2-c]furan]-3',4-dione (21)

¹H NMR (400 MHz, CDCl₃) δ = 8.33 (d, *J* = 6.3 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 8.03 (d, *J* = 8.4 Hz, 2H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.56 (d, *J* = 7.4 Hz, 1H), 7.43 (d, *J* = 8.1 Hz, 2H), 7.38 (d, *J* = 7.3 Hz, 1H), 6.95 (d, *J* = 8.6 Hz, 1H), 6.79 (q, *J* = 10.1 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ = 183.6, 169.9, 148.0, 144.2, 138.4, 136.8, 133.8, 132.2, 131.1, 130.6, 129.8, 129.5, 129.4, 128.5, 127.4, 127.1, 126.1, 123.9, 123.2, 120.6, 80.9.

IR (cm⁻¹) v 2978, 2960, 1731, 1687, 1653, 1625, 1484, 1303, 1270, 1099, 1041, 925, 760, 729, 713 HRMS (ESI) calcd. for C₂₁H₁₂NaO₃ [M+Na] *m/z* 335.0679 found *m/z* 335.0681.

7'-methoxy-2-methyl-3'H-spiro[cyclohexane-1,1'-isobenzofuran]-2,5-diene-3',4-dione (22)

¹H NMR (400 MHz, CDCl₃) δ = 7.65 – 7.55 (m, 2H), 7.14 (d, *J* = 7.5 Hz, 1H), 6.52 (d, *J* = 9.9 Hz, 1H), 6.40 (d, *J* = 11.6 Hz, 1H), 6.31 (s, 1H), 3.78 (s, 3H), 1.67 (d, *J* = 1.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ = 185.4, 169.4, 154.5, 151.9, 142.6, 133.8, 132.6, 130.2, 128.9, 128.0, 117.8, 116.3, 81.2, 55.8, 17.2.

IR (cm⁻¹) v 2978, 1731, 1684, 1485, 1265, 1246, 1114, 1098, 1039, 925, 760

HRMS (ESI) calcd. for C₁₅H₁₂NaO₄ [M+Na] *m/z* 279.0628 found *m/z* 279.0634.

2-isopropyl-7'-methoxy-3'H-spiro[cyclohexane-1,1'-isobenzofuran]-2,5-diene-3',4-dione (23)

¹H NMR (400 MHz, CDCl₃) δ = 7.65 – 7.56 (m, 2H), 7.13 (d, *J* = 8.8 Hz, 1H), 6.48 (d, *J* = 9.8 Hz, 1H), 6.43 – 6.34 (m, 2H), 3.78 (s, 1H), 1.97 – 1.84 (m, 1H), 1.16 (d, *J* = 6.8 Hz, 3H), 0.77 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 185.9, 169.8, 162.2, 142.9, 133.4, 132.7, 129.7, 128.3, 126.7, 117.9, 116.2, 81.4, 55.7, 28.2, 23.5, 23.0.

HRMS (ESI) calcd. for C₁₇H₁₆NaO₄ [M+Na] *m/z* 307.0941 found *m/z* 307.0943.

Methyl 2',6'-dimethyl-[1,1'-biphenyl]-2-carboxylate (24)⁸

¹H NMR (400 MHz, CDCl₃) δ = 8.04 (ddd, *J* = 7.9, 1.5, 0.5 Hz, 1H), 7.60 (td, *J* = 7.5, 1.5 Hz, 1H), 7.46 (td, *J* = 7.6, 1.3 Hz, 1H), 7.21 – 7.15 (m, 2H), 7.11 (dq, *J* = 7.1, 0.7 Hz, 2H), 3.64 (s, 3H), 1.97 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 167.4, 142.2, 141.0, 135.2, 132.1, 130.6, 130.3, 130.2, 127.0, 126.9, 126.9, 51.8, 20.54.

4-(methoxyimino)-2,6-dimethyl-3'H-spiro[cyclohexane-1,1'-isobenzofuran]-2,5-dien-3'-one

¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.6 Hz, 1H), 7.67 (t, *J* = 7.4 Hz, 1H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.18 (d, *J* = 7.6 Hz, 1H), 6.93 (s, 1H), 6.30 (s, 1H), 3.99 (s, 3H), 1.56 (s, 3H), 1.52 (s, 3H).

¹³C NMR (101 MHz, CDCl3) δ 170.3, 149.8, 147.7, 143.1, 138.6, 134.9, 129.9, 126.3, 125.58, 123.2, 121.8, 115.5, 87.0, 62.3, 17.3, 16.8.

4a',6'-dimethyl-1',4',4a',8a'-tetrahydro-3H,8'H-spiro[isobenzofuran-1,5'-[1,4]ethanonaphthalene]-3,8'-dione

¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.6 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 1H), 7.04 (d, *J* = 7.8 Hz, 1H), 6.52 (t, *J* = 7.2 Hz, 1H), 5.92 (t, *J* = 7.2 Hz, 1H), 5.84 (s, 1H), 3.03 – 2.95 (m, 1H), 2.92 (s, 1H), 2.53 (d, *J* = 2.7 Hz, 1H), 1.80 (dd, *J* = 12.6, 9.8 Hz, 1H), 1.67 – 1.54 (m, 4H), 1.32 (dd, *J* = 17.2, 7.8 Hz, 1H), 1.06 – 0.98 (m, 1H), 0.67 (s, 3H).

¹³C NMR (101 MHz, CDCl3) δ 199.5, 168.9, 159.1, 151.1, 135.3, 133.6, 131.2, 128.6, 128.3, 124.5, 124.0, 122.2, 90.5, 57.9, 41.6, 38.2, 36.2, 23.6, 21.9, 21.8, 17.3.

2,2'',6,6''-tetramethyl-3,3''-bispiro[cyclohexane-1,1'-isobenzofuran]-2,2'',5,5''-tetraene-3',3''',4,4''-tetraone

¹H NMR (400 MHz, CDCl₃) δ 8.03 (dt, *J* = 7.5, 1.0 Hz, 1H), 7.71 (m, 2H), 7.21 (dt, *J* = 7.6, 1.0 Hz, 1H), 6.42 (q, *J* = 1.4 Hz, 1H), 1.82 (s, 3H), 1.67 (d, *J* = 1.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl3) δ 177.4, 169.3, 154.6, 152.3, 147.2, 135.63, 130.9, 126.7, 126.6, 126.5, 126.1, 121.5, 85.9, 18.8, 17.1.

HRMS (ESI) calcd. for C₁₅H₁₂BrO₃ [M+H] *m/z* 319.9968 found *m/z* 319.9964.

S35

S36

S37

0

19. Spectra of all products

S64

S71

S76

S77

S78

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

20. References

¹ Huang, Y.; Chan, G. H.; Chiba, S. Angew. Chem. Int. Ed. 2017, 56, 6544.

- ⁴ Pi, JJ.; Lu, XY.; Liu, JH.; Lu, X.; Xiao, B.; Fu, Y.; Guimond, N. J. Org. Chem., **2018**, 83 (10), 5791.
- ⁵ Richtzenhain, H. Chem. Ber., **1948**, 81, 92.
- ⁶ Caille, J; Boukattaya, F.; Boeda, F.; Pearson-Long, M. S. M.; Ammar, H.; Bertus, P. Org. Biomol. Chem., **2018**, *16*, 1519.
- ⁷ Yamato, T; Sakaue, N. J. Chem. Res. (S), 1997, 440.
- ⁸ Terao, Y.; Wakui, H.; Nomoto, M.; Satoh, T.; Miura, M.; Nomura, M J. Org. Chem., 2003, 68 (13), 5236.

² Clar, E.; Stewart, D. G. J. Am. Chem. Soc., 1952, 74 (24), 6235.

³ Tetsutaro, H.; Takatsugu, S.; Noriyuki, H.; Nobuyuki, K.; Sotaro, M. *Bull. Chem. Soc. Jpn.*, **1993**, *66* (10), 3034.