Supporting Information for:

Tandem Peterson Olefination and Asymmetric Hydrogenation of β-Hydroxy Silanes.

Suppachai Krajangsri, ‡^a Haibo Wu, ‡^a Jianguo Liu, ‡^a Wangchuk Rabten,^a Thishana Singh^b and Pher G. Andersson^{*a}

[a] Department of Organic Chemistry, Stockholm University, 106 91, Stockholm, Sweden. (Pher.Andersson@su.se)[b] School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, Durban, 4000, South Africa

(‡ S.K, H.W and J.L contributed equally.)

Contents

1.General methods	S2
2. Procedure for synthesis of β -hydroxy silane	S3
3. Procedure for synthesis of Iridium complexes and intermediates	S7
4.General procedure for asymmetric hydrogenations	S21
5. 1 H and 13 C NMR spectroscopic data of the substrates	S25
6. 1 H and 13 C NMR spectroscopic data for the hydrogenated products	
7. ¹ H and ¹³ C NMR spectroscopic data of (S)-(+)-curmurene	S99
8. GC and SFC Chromatograms	S101
9. NMR spectra and chromatograms for the competition study	S114
10. Additional experiments for mechanistic study	S121
11. References	S123

1. General methods

All reactions were conducted under nitrogen atmosphere using magnetic stirring.

 CH_2Cl_2 was freshly distilled using CaH_2 under nitrogen atmosphere. THF was freshly distilled using sodium-benzophenone under nitrogen.

All reagents were used as supplied commercially without further purification. Chromatographic separations were performed on Kiesel gel 60 H silica gel (particle size: 0.063-0.100 mm) or Brockmann I, activated, basic Al_2O_3 (particle size: ~150 mesh). Thin layer chromatography (TLC) was performed on aluminium plates coated with Kieselgel 60 (0.20 mm, UV254) and visualized under ultraviolet light (v = 254 nm), or by staining with ethanolic phosphomolybdic acid and heating.

¹H NMR spectra were recorded on a Bruker 400 MHz or 500 MHz at 400/500 MHz in CDCl₃ and referenced internally to the residual CDCl₃ peak (7.26 ppm). ¹³C NMR spectra were recorded at 100/125 MHz in CDCl₃ and referenced to the central peak of CDCl₃ (77.0 ppm). Chemical shifts are reported in ppm (δ scale).

Enantiomeric excesses were determined by either using chiral HPLC with a diode array detector at 220 nm and 254 nm or using a chiral GC with an MS detector. (Refer to the individual compounds for specific chromatographic details.) Racemic compounds were used for comparison.

HRMS data were obtained using a Bruker MicroTOF-Q II instrument operation at ambient temperature.

Optical rotations were recorded on an Autopol IV polarimeter from Rudolp Research Analytical, equipped with a sodium lamp (589 nm) and a 10 cm cell.

IR spectra were recorded on a Perkin-Elmer Spectrum One spectrometer using samples that were prepared in $CHCl_3$.

2. Procedure for synthesis of β-hydroxy silane

To a solution of ketones in dry Et_2O , the TMSCH2MgCl¹ solution (1.5 equiv.) was slowly added under N₂ atmosphere at 0°C. The reaction mixture was allowed to stir overnight at room temperature. After completion, checking by TLC, the reaction was quenched with 10% NaHCO₃ at 0°C. The aqueous phase was extracted with ether. The combined organic phase was dried over Na₂SO₄. The crude product was purified by deactivated silica gel (10% Et3N/pentane) with 10-15% of EtOAc/Pentane (1% Et₃N) as eluent.

2-Phenyl-1-(trimethylsilyl)butan-2-ol

This compound has been reported.² Colorless oil, 1.43g, 86%yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.36 (m, 2H), 7.31 (tt, *J* = 8.4, 1.7 Hz, 2H), 7.24 – 7.18 (m, 1H), 1.98 – 1.78 (m, 2H), 1.65 (s, 1H), 1.34 (d, *J* = 4.6 Hz, 2H), 0.73 (t, *J* = 7.4 Hz, 3H), -0.17 (s, 9H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 147.62, 127.82, 126.12, 125.10, 77.37, 39.07, 33.08, 8.13, -0.02.

2-Phenyl-1-(trimethylsilyl)hexan-2-ol

Colorless oil, 1.29g, 84%yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.36 (m, 2H), 7.34 – 7.28 (m, 2H), 7.23 – 7.17 (m, 1H), 1.93 – 1.75 (m, 2H), 1.67 (s,

1H), 1.57 (S, 1H), 1.34 (d, J = 3.5 Hz, 2H), 1.30 – 1.19 (m, 3H), 1.04 – 0.93 (m, 1H), 0.83 (t, J = 7.2 Hz, 3H), -0.17 (s, 9H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 148.08, 127.88, 126.13, 125.02, 77.24, 46.50, 33.56, 26.01, 22.96, 14.01, 0.00.

IR (CHCl₃, neat, cm⁻¹): v = 3490, 2955, 1602, 1446, 1248, 1030, 961, 860, 839, 764. HRMS-ESI; m/z [M+Na⁺] = 273.1643, calcd. For C₁₅H₂₆NaOSi: 273.1645.

3-Methyl-2-phenyl-1-(trimethylsilyl)butan-2-ol

Colorless oil, 1.00 g, 85% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.34 (m, 2H), 7.33 –

7.27 (m, 2H), 7.23 – 7.17 (m, 1H), 1.98 (p, *J* = 6.8 Hz, 2H), 1.57 (d, *J* = 4.8 Hz, 2H), 1.35 (d, *J* = 8.6 Hz, 2H), 0.96 (d, *J* = 6.7 Hz, 3H), 0.69 (d, *J* = 6.8 Hz, 3H), - 0.24 (s, 9H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 146.89, 127.59, 126.06, 125.61, 79.15, 40.74, 29.85, 17.56, 16.75, -0.02.

IR (CHCl₃, neat, cm⁻¹): v = 3620, 2958, 1446, 1386, 1247, 1175, 935, 857, 836, 702. HRMS-ESI; m/z [M+Na⁺] = 259.1501, calcd. For C₁₄H2₄NaOSi: 259.1489.

1-Cyclohexyl-1-phenyl-2-(trimethylsilyl)ethan-1-ol

Colorless oil, 1.39 g, 95%yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.32 – 7.27 (m, 2H), 7.22 – 7.17 (m, 1H), 2.06 – 1.96 (m, 1H), 1.79

(dt, J = 12.9, 3.2 Hz, 1H), 1.72 – 1.50 (m, 5H), 1.46 – 0.81 (m, 8H), -0.23 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 146.95, 127.53, 125.99, 125.67, 79.12, 51.13, 29.57, 27.50, 26.72, 26.70, 26.69, 26.38, 0.04.

IR (CHCl₃, neat, cm⁻¹): v = 3612, 2929, 1446, 1247, 838, 802.

HRMS-ESI; m/z [M+Na⁺] = 299.1809, calcd. For C₁₇H₂₈NaOSi: 299.1802.

3,3-Dimethyl-2-phenyl-1-(trimethylsilyl)butan-2-ol

t-Bu Colorless oil, 1.27 g, 82% yield.

TMS ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.37 (m, 2H), 7.31 – 7.23 (m, 2H), 7.23 – 7.17 (m, 1H), 1.70 (s, 1H), 1.60 (d, *J* = 14.8 Hz,

1H), 1.33 (d, *J* = 14.8 Hz, 1H), 0.90 (s, 9H), -0.24 (d, *J* = 1.0 Hz, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 164.89, 146.75, 136.61, 121.50, 119.80, 38.91, 32.11, 7.97, -0.11.

IR (CHCl₃, neat, cm⁻¹): v = 3397, 2963, 1593, 1434, 1386, 1246, 1062, 969, 861, 841. HRMS-ESI; *m*/*z* [M-MeOH]⁺ = 206.1473, calcd. For C₁₃H₂₂Si: 206.1485.

2-(4-Fluorophenyl)-1-(trimethylsilyl)butan-2-ol

Colorless oil, 1.37 g, 86%yield.

F TMS ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.32 (m, 2H), 7.02 – 6.96 (m, 2H), 1.94 – 1.75 (m, 1H), 1.60 (s, 2H), 1.32 (d, J = 3.6 Hz, 2H), 0.72 (t, J = 7.4 Hz, 3H), -0.17 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 161.4 (d, *J* = 243.0 Hz), 143.39, 143.36, 126.80 (d, *J* = 7.8 Hz), 114.51 (d, *J* = 21.0 Hz), 77.16, 39.35, 33.24, 8.09, -0.00.

IR (CHCl₃, neat, cm⁻¹): v = 3483, 2966, 1603, 1508, 1248, 1159, 912, 836. HRMS-ESI; m/z [M+Na⁺] = 263.1235, calcd. For C₁₃H₂₁FNaOSi: 263.1238.

OH

OH

2-(3-Chlorophenyl)-1-(trimethylsilyl)butan-2-ol

Colorless oil, 1.34 g, 88%yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.38 (m, 1H), 7.28 – 7.23 (m, 2H), 7.23 – 7.16 (m, 2H), 1.93 – 1.75 (m, 2H), 1.63

(s, 1H), 1.31 (d, *J* = 1.0 Hz, 2H), 0.73 (t, *J* = 7.4 Hz, 3H), -0.15 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 149.99, 133.94, 129.13, 126.26, 125.59, 123.40, 77.17, 39.14, 33.09, 8.06, 0.01.

IR (CHCl₃, neat, cm⁻¹): v = 3606, 2965, 1596, 1419, 1248, 1095, 840, 776. HRMS-ESI; m/z [M+Na⁺] = 279.0951, calcd. For C₁₃H₂₁ClNaOSi: 279.0942.

2-(3-Bromophenyl)-1-(trimethylsilyl)butan-2-ol

Colorless oil, 0.62 g, 88% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 (t, J = 1.8 Hz, 1H), 7.36 – 7.29 (m, 2H), 7.18 (t, J = 7.8 Hz, 1H), 1.94 – 1.75 (m,

2H), 1.63 (s, 1H), 1.31 (d, J = 0.9 Hz, 2H), 0.73 (t, J = 7.4 Hz, 3H), -0.15 (s, 9H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 150.28, 129.47, 129.24, 128.52, 123.87, 122.32, 77.18, 39.17, 33.15, 8.09, 0.04.

IR (CHCl₃, neat, cm⁻¹): v = 3481, 2965, 1564, 1416, 1248, 1095, 958, 859, 840, 780. HRMS-ESI; m/z [M+Na⁺] = 323.0439, calcd. For C₁₃H₂₁BrNaOSi: 323.0437.

OH TMS

2-(4-Bromophenyl)-1-(trimethylsilyl)butan-2-ol Colorless oil, 1.29 g, 89% yield. ¹H NMR (400 MHz, Chloroform-d) δ 7.46 – 7.41 (m, 2H), 7.30 – 7.25 (m, 2H), 1.83 (dq, J = 9.8, 6.8 Hz, 2H), 1.60 (s, 1H), 1.31 (d, J = 2.7 Hz, 2H), 0.71 (t, J = 7.4 Hz, 3H), -0.15 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 146.79, 130.88, 127.12, 120.01, 77.21, 39.26, 33.04, 8.07, 0.07.

IR (CHCl₃, neat, cm⁻¹): v = 3601, 2965, 1487, 1394, 1248, 1009, 910, 860, 839, 691. HRMS-ESI; m/z [M+Na⁺] = 323.0440, calcd. For C₁₃H₂₁BrNaOSi: 323.0437.

OH F₂C

2-(4-(Trifluoromethyl)phenyl)-1-(trimethylsilyl)butan-2-ol Colorless oil, 1.28 g, 89% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.55 (m, 2H), 7.54 TMS -7.49 (m, 2H), 1.95 - 1.79 (m, 2H), 1.34 (d, J = 2.3 Hz, 2H), 0.72 (t, J = 7.4 Hz, 3H), -0.16 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 151.85, 128.52 (q, J = 32.3 Hz), 125.65, (d, J = 8.0 Hz), 124.84 (g, J = 3.8 Hz). 122.99, 77.39, 39.35, 33.17, 8.01, 0.00.

IR (CHCl₃, neat, cm⁻¹): v = 3490, 2966, 1618, 1410, 1326, 1127, 913, 839, 692.

HRMS-ESI; m/z [M⁺+Na] = 291.1399, calcd. For C₁₄H₂₂FNaOSi: 291.1387.

Color less oil, 1.17 g, 76% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.27 (m, 2H), 6.88 – 6.82 (m, 2H), 3.80 (s, 3H), 1.94 – 1.74 (m, 2H), 1.61

2-(4-Methoxyphenyl)-1-(trimethylsilyl)butan-2-ol

(s, 1H), 1.31 (d, J = 4.1 Hz, 2H), 0.73 (t, J = 7.4 Hz, 3H), -0.16 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 157.93, 139.90, 126.24, 113.12, 77.13, 55.15, 33.05, 8.19, 0.04.

IR (CHCl₃, neat, cm⁻¹): v = 3515, 2953, 1610, 1510, 1247, 1037, 912, 834, 691. HRMS-ESI; m/z [M+Na⁺] = 275.1450, calcd. For C₁₄H₂₄NaO₂Si: 275.1438.

1,2-Diphenyl-3-(trimethylsilyl)propan-2-ol

White solid, 0.72 g, 51% yiled.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.25 (m, 4H), 7.24 – 7.15 (m, 4H), 6.94 – 6.88 (m, 2H), 3.25 – 3.00 (m, 2H), 1.81 (s, 1H), 1.52

- 1.26 (m, 2H), -0.21 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 147.43, 136.61, 130.64, 128.00, 127.79, 126.59, 126.29, 125.29, 76.87, 53.39, 32.57, 0.01.

HRMS-ESI; m/z [M+Na⁺] = 307.1482, calcd. For C₁₈H₂₄NaOSi: 307.1489.

Methyl 4-(2-hydroxy-1-(trimethylsilyl) butan-2-yl) benzoate

White solid, 524 mg, 71% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 – 7.96 (m, 2H),

7.50 - 7.44 (m, 2H), 3.90 (s, 3H), 1.97 - 1.77 (m, 2H), 1.40 -

1.26 (m, 2H), 0.71 (t, J = 7.4 Hz, 3H), -0.18 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 167.07, 153.07, 129.26, 128.05, 125.29, 51.96, 39.36, 33.08, 8.01, 0.02.

HRMS-ESI; m/z [M+Na⁺] = 303.1391, calcd. For C₁₅H₂₄NaO₃Si: 303.1387.

Ethyl (*E*)-3-(3-(2-hydroxy-1-(trimethylsilyl) butan-2-yl)phenyl)acrylate

Colorless oil, 0.774 g, 77%yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (d, *J* = 16.0

Hz, 1H), 7.59 – 7.56 (m, 1H), 7.40 (td, *J* = 8.5, 8.0, 3.0 Hz, 2H), 7.36 – 7.30 (m, 1H), 6.46 (d, *J* = 16.0 Hz, 1H), 1.87 (tq, *J* = 14.0, 7.3 Hz, 2H), 1.34 (t, *J* = 7.1 Hz, 5H), 0.73 (t, *J* = 7.4 Hz, 3H), -0.17 (s, 9H).

 13 C NMR (101 MHz, CDCl₃) δ 167.05, 148.48, 145.01, 134.03, 128.47, 127.29, 125.91, 125.07, 118.06, 77.27, 60.45, 39.23, 33.18, 14.33, 8.11, 0.03.

HRMS-ESI; m/z [M+Na⁺] = 343.1697, calcd. For C₁₈H₂₈NaO₃Si: 343.1700.

6-Methyl-2-(p-tolyl)-1-(trimethylsilyl)hept-5-en-2-ol Colorless oil, 99% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 – 7.24 (m, 2H),

7.14 - 7.09 (m, 2H), 5.12 - 5.04 (m, 1H), 2.33 (s, 3H), 1.98 -

1.79 (m, 4H), 1.65 (s, 3H), 1.47 (s, 3H), 1.31 (s, 2H), -0.18 (s, 9H).¹³C NMR (101 MHz, CDCl₃) δ 145.06, 135.70, 132.27, 128.72, 125.13, 124.50, 46.41, 33.99, 25.88, 23.13, 21.11, 17.83, 0.22.

HRMS-ESI; m/z [M+Na⁺] = 313.1944, calcd. For C₁₈H₂₈NaO₃Si: 313.1958.

(+) curmuene

(S)-(+)-curcumene

Colorless oil, 76% yield. $[\alpha]_D^{24.0} =+ 41 (c \ 0.83, CHCl_3) \text{ (Lit.}^{56}: [\alpha]_D^{20.0} =+48 (c. 1.19, CHCl_3)) \\ ^1\text{H NMR (400 MHz, CDCl_3) } \delta \ 7.18 - 7.05 (m, 4H), 5.17 - 5.06 (m, 1H), 2.76 - 2.59 (m, 1H), 2.35 (s, 3H), 1.97 - 1.82 (m, 2H), 1.70 (s, 3H), 1.67 - 1.57 (m, 2H), 1.56 (s, 3H), 1.25 (dd, <math>J = 6.9, 1.2 \text{ Hz}, 3H$). $^{13}\text{C NMR} (101 \text{ MHz}, CDCl_3) \delta \ 145.06, 135.70, 132.27, 128.72, 125.13, 124.50, 46.41, 33.99, 25.88, 23.13, 21.11, 17.83.$

Preparation of Ethyl (E)-3-(3-propionylphenyl)acrylate

3-Bromo propiopheone (20 mmol) was placed in 100 mL round bottom flask, dissolved in DMF 40 mL. Following by addition of ethyl acrylate (24 mmol), 5 mol% of $Pd(PPh_3)_4$ and triethylamine 24 mmol. The reaction mixture was heated to 110 °C and was allowed to run for 16 h. The reaction mixture was allowed to cool down

then was diluted with EtOAc. The mixture was added water. The aqoues phase was extracted with EtOAc. The combined organic phase was washed water several times, dried over Na₂SO₄. Removing the solvent under vecum. The crude mixture was purification by column chromatography to yield the desired product. NMR spectra are match with the literature. (Peacock, L. R.; Chapman, R. S. L.; Sedgwick, A. C.; Bull, S. D.; Mahon, M. F.; Amans, D. Org. Lett., 2015, 17, 994.)

3. Procedure for synthesis of Iridium complexes and intermediates

General procedure for the preparation of amides: To a solution of the corresponding acyl chloride (10 mmol) in CH₂Cl₂ (80 mL) was added in one portion the corresponding hydroxyl amino acid (10 mmol). A solution of triethylamine (3.5 mL, 25 mmol) in CH₂Cl₂ (20 mL) was added at 0°C over 30 min. The resulting mixture was stirred at room temperature for 3 h. The solvent was removed in vacuo and the residue purified by chromatography to afford the corresponding amides.

Methyl (furan-2-carbonyl)-L-serinate

Methyl (furan-2-carbony)-2 sector Colorless oil, 2.04g, 96% yield. $[\alpha]_D^{22.0} =+ 48.00 (c 0.3, CHCl_3)$ ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 (dd, *J* = 1.7, 0.8 Hz, 1H), 6 48 (dd, *J* = 3.5, 1.8 Hz, 1H), 1H), 7.31 (d, J = 7.3 Hz, 1H), 7.12 (dd, J = 3.5, 0.7 Hz, 1H), 6.48 (dd, J = 3.5, 1.8 Hz, 1H), 4.80 (dt, J = 7.4, 3.6 Hz, 1H), 4.02 (ddd, J = 30.6, 11.3, 3.6 Hz, 2H), 3.79 (s, 3H), 2.91 (br, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 170.89, 158.60, 147.25, 144.63, 115.25, 112.33, 63.30, 54.54, 52.94.

HRMS-ESI; m/z [M+Na⁺] = 236.0534, calcd. For C₉H₁₁NNaO₅: 236.0529.

Methyl (furan-3-carbonyl)-L-serinate

Colorless oil, 1.98g, 93% yield. [α]_D^{22.0} =+ 48.33 (*c* 0.3, CHCl₃) ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (d, *J* = 0.9 Hz, 1H),

7.43 (t, J = 1.7 Hz, 1H), 6.86 (d, J = 6.9 Hz, 1H), 6.68 (dd, J = 1.8, 0.6 Hz, 1H), 4.82 (dt, J = 7.3, 3.6 Hz, 1H), 4.06 – 3.94 (m, 2H), 3.80 (s, 3H), 2.95 (t, J = 6.0 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 171.18, 163.04, 145.52, 144.05, 121.94, 108.47, 63.50, 54.81, 53.02.

HRMS-ESI; m/z [M+Na⁺] = 236.0534, calcd. For C₉H₁₁NNaO₅: 236.0529.

MeOOC HO

Methyl (5-methylfuran-2-carbonyl)-L-serinate Colorless oil, 2.11g, 93% yield. $[\alpha]_D^{22.0} = +56.00 (c 0.3, CHCl_3)$

¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 (d, J = 2.0 Hz, 1H), 6.73 (d, J = 6.3 Hz, 1H), 6.52 (d, J = 2.0 Hz, 1H), 4.79 (dt, J = 7.3, 3.7 Hz, 1H), 4.07 - 3.94 (m, 2H), 3.80 (s, 3H), 3.02 (t, J = 6.0 Hz, 1H), 2.57 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.33, 164.28, 157.66, 140.63, 115.04, 108.66, 63.68, 54.80, 52.97, 13.71.

HRMS-ESI; m/z [M+Na⁺] = 250.0695, calcd. For C₁₀H₁₃NNaO₅: 250.0686.

Methyl (2-methylfuran-3-carbonyl)-L-serinate

Colorless oil, 2.04g, 90% yield. $[\alpha]_D^{22.0} =+ 42.00 (c \ 0.3, CHCl_3)$ ¹H NMR (400 MHz, Chloroform-*d*) δ 7.19 (d, *J* = 7.3 Hz, 1H), 7.02 (d, J = 3.4 Hz, 1H), 4.80 (dt, J = 7.5, 3.7 Hz, 1H), 4.05 (ddd,

J = 11.1, 6.1, 3.9 Hz, 2H), 3.79 (s, 3H), 3.11 (t, J = 5.9 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.04, 158.73, 155.37, 145.62, 116.58, 108.78, 63.48, 54.52, 52.91, 13.93.

HRMS-ESI; m/z [M+Na⁺] = 250.0691, calcd. For C₁₀H₁₃NNaO₅: 250.0686.

Methyl (2,5-dimethylfuran-3-carbonyl)-L-serinate Colorless oil, 2.05g, 85% yield.

 $[\alpha]_{D}^{22.0} = +40.67 (c \ 0.3, CHCl_3)$

¹H NMR (400 MHz, Chloroform-*d*) δ 6.64 (s, 1H), 6.09 (s, 1H), 4.80 - 4.74 (m, 1H), 4.06 - 3.90 (m, 2H), 3.79 (s, 3H), 2.51 (s,

3H), 2.23 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.34, 164.56, 155.95, 150.30, 115.51, 104.29, 63.74, 54.79, 52.92, 13.63, 13.34.

HRMS-ESI; m/z [M+Na⁺] = 264.0843, calcd. For C₁₁H₁₅NNaO₅: 264.0842.

Methyl (thiophene-2-carbonyl)-*L*-serinate Colorless oil, 2.10g, 92% yield. $[\alpha]_D^{22.0} =+ 53.00 (c \ 0.3, CHCl_3)$

NMR (400 MHz, Chloroform-*d*) δ 7.59 (dd, *J* = 3.7, 1.0 Hz, 1H), 7.50 (dd, J = 5.0, 1.0 Hz, 1H), 7.10 - 7.01 (m, 2H), 4.83 (dt, J = 7.2, 3.6 Hz, 1H), 4.11 – 3.97 (m, 2H), 3.80 (s, 3H), 2.96 (t, J = 5.3 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 171.12, 162.28, 138.00, 130.95, 129.02, 127.90, 63.46, 55.19, 53.03.

HRMS-ESI; m/z [M+Na⁺] = 252.0302, calcd. For C₉H₁₁NNaO₄S: 252.0301.

Methyl (thiophene-3-carbonyl)-L-serinate

Colorless oil, 2.01g, 87% yield. $[\alpha]_D^{22.0} =+ 45.00 (c \ 0.3, CHCl_3)$ ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 (dd, *J* = 3.0, 1.3 Hz,

1H), 7.42 (dd, J = 5.1, 1.3 Hz, 1H), 7.30 (dd, J = 5.1, 3.0 Hz, 1H), 7.11 (d, J = 7.3 Hz, 1H), 4.81 (dt, J = 7.3, 3.6 Hz, 1H), 4.09 – 3.93 (m, 2H), 3.78 (s, 3H), 3.30 (t, J = 6.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.24, 163.40, 136.50, 129.37, 126.74, 126.30, 63.35, 55.04, 52.95.

HRMS-ESI; m/z [M+Na⁺] = 252.0308, calcd. For C₉H₁₁NNaO₄S: 252.0301.

Methyl (2-methylfuran-3-carbonyl)-L-serinate

Colorless oil, 2.08 g, 86% yield.

 $[\alpha]_{D}^{22.0} = +34.67 (c \ 0.3, CHCl_{3})$

¹H NMR (400 MHz, Chloroform-*d*) δ 7.20 (d, *J* = 5.4 Hz, 1H), 7.03 (d, *J* = 5.4 Hz, 1H), 6.80 (d, J = 6.8 Hz, 1H), 4.82 (dt, J = 7.2, 3.6 Hz, 1H), 4.09 - 3.96 (m, 2H), 3.81 (s, 3H), 2.80 (t, J = 5.9 Hz, 1H), 2.71 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.24, 164.74, 145.73, 131.05, 126.76, 122.15, 63.75, 55.02, 53.00, 15.09.

HRMS-ESI; m/z [M+Na⁺] = 266.0468, calcd. For C₁₀H₁₃NNaO₄S: 266.0457.

General procedure for the preparation of oxazoline esters:

To a solution of the corresponding amide (10 mmol) in CH₂Cl₂ (40 mL) was added dropwise diethylaminosulfur trifluoride (1.45 mL, 11 mmol) at -78°C. This solution was then stirred at this temperature for 1 h. Anhydrous K₂CO₃ (2.07 g, 15 mmol) was added in one portion and the reaction mixture allowed to warm to room temperature. After 2 h, saturated NaHCO₃ (aq) (50 mL) was added and the organic layer separated, dried over Na₂SO₄, filtered and the solvent removed in vacuum. The residue was purified by chromatography to give the desired oxazoline esters.

Methyl (S)-2-(furan-2-yl)-4,5-dihydrooxazole-4-carboxylate Colorless oil, 87% yield. $[\alpha]_D^{22.0} =+ 144.00 (c \ 0.3, CHCl_3)$

¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 (dd, *J* = 1.7, 0.7 Hz, 1H), 7.04 – 6.99 (m, 1H), 6.49 (dd, J = 3.5, 1.8 Hz, 1H), 4.93 (dd, J = 10.4, 7.9 Hz, 1H), 4.66 (dd, J = 8.6, 8.0 Hz, 1H), 4.56 (dd, J = 10.4, 8.7 Hz, 1H), 3.79 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.39, 158.50, 145.84, 142.31, 115.69, 111.79, 69.80, 68.56.52.87.

HRMS-ESI; m/z [M+Na⁺] = 218.0428, calcd. For C₉H₉NNaO₄: 218.0424.

Methyl (S)-2-(furan-3-yl)-4,5-dihydrooxazole-4-carboxylate Colorless oil, 93% yield. $[\alpha]_D^{22.0} =+ 146.33 (c \ 0.3, CHCl_3)$

¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (s, 1H), 7.42 (t, *J* = 1.7 Hz, 1H), 6.79 (d, J = 1.5 Hz, 1H), 4.87 (dd, J = 10.5, 7.9 Hz, 1H), 4.60 (t, J = 8.3 Hz,

1H), 4.50 (dd, J = 10.5, 8.7 Hz, 1H), 3.79 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.59, 161.68, 145.62, 143.90, 115.00, 109.61, 69.30, 68.44, 52.82.

HRMS-ESI; m/z [M+Na⁺] = 218.0426, calcd. For C₉H₉NNaO₄: 218.0424.

Methyl (S)-2-(5-methylfuran-2-yl)-4,5-dihydrooxazole-4carboxylate

Colorless oil, 85% yield. $[\alpha]_{D}^{22.0} = +136.00 (c 0.3, CHCl_3)$

¹H NMR (400 MHz, Chloroform-*d*) δ 6.91 (d, J = 3.3 Hz, 1H), 6.11 – 6.07 (m, 1H), 4.90 (dd, J = 10.4, 7.9 Hz, 1H), 4.63 (t, J = 8.2 Hz, 1H), 4.53 (dd, J = 10.4, 8.6 Hz, 1H), 3.79 (s, 3H), 2.36 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.57, 158.62, 156.73, 140.62, 117.07, 108.22, 69.70, 68.54, 52.83, 13.99.

HRMS-ESI; m/z [M+Na⁺] = 232.0585, calcd. For C₁₀H₁₁NNaO₄: 232.0580.

Methyl (S)-2-(2-methylfuran-3-yl)-4,5-dihydrooxazole-4carboxylate Colorless oil, 92% yield. $[\alpha]_{\rm D}^{22.0} =+ 138.33 (c \ 0.3, CHCl_3)$

¹H NMR (400 MHz, Chloroform-*d*) δ 7.19 (d, *J* = 7.3 Hz, 1H), 7.02 (d, *J* = 3.4 Hz, 1H), 4.80 (dt, *J* = 7.5, 3.7 Hz, 1H), 4.05 (ddd, *J* = 11.1, 6.1, 3.9 Hz, 2H), 3.79 (s, 3H), 3.11 (t, *J* = 5.9 Hz, 1H), 2.33 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.04, 158.73, 155.37, 145.62, 116.58, 108.78, 63.48, 54.52, 52.91, 13.93.

HRMS-ESI; m/z [M+H⁺] = 210.0765, calcd. For C₁₀H₁₂NO₄: 210.0761.

Methyl (S)-2-(2,5-dimethylfuran-3-yl)-4,5dihydrooxazole-4-carboxylate Colorless oil, 94% yield. $[\alpha]_{D}^{22.0} =+ 140.00 (c 0.3, CHCl_3)$

¹H NMR (400 MHz, Chloroform-*d*) δ 6.25 (s, 1H), 4.84 (dd, J = 10.4, 7.7 Hz, 1H), 4.61 – 4.53 (m, 1H), 4.48 (dd, J = 10.4, 8.6 Hz, 1H), 3.79 (s, 3H), 2.49 (s, 3H), 2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.03, 163.00, 154.79, 150.42, 109.97, 106.27, 69.13, 68.26, 52.70, 13.81, 13.28.

HRMS-ESI; m/z [M+H⁺] = 224.0920, calcd. For C₁₁H₁₄NO₄: 224.0917.

Methyl (S)-2-(thiophen-2-yl)-4,5-dihydrooxazole-4carboxylate

Colorless oil, 86% yield.

 $[\alpha]_D^{22.0} = + 134.00 (c 0.3, CHCl_3)$

¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (dd, *J* = 3.7, 1.0 Hz, 1H), 7.48 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.08 (dd, *J* = 5.0, 3.7 Hz, 1H), 4.92 (dd, *J* = 10.4, 7.8 Hz, 1H), 4.68 (t, *J* = 8.2 Hz, 1H), 4.58 (dd, *J* = 10.4, 8.6 Hz, 1H), 3.81 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.56, 162.11, 131.46, 130.80, 129.38, 127.79, 70.04, 68.77, 52.87.

HRMS-ESI; m/z [M+Na⁺] = 234.0916, calcd. For C₉H₉NNaO₃S: 234.0195.

Methyl (S)-2-(thiophen-3-yl)-4,5-dihydrooxazole-4carboxylate

Colorless oil, 91% yield.

 $[\alpha]_D^{22.0} = + 128.33 (c \ 0.3, CHCl_3)$

¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (dd, *J* = 3.0, 1.1 Hz, 1H), 7.57 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.34 (dd, *J* = 5.1, 3.0 Hz, 1H), 4.94 (dd, *J* = 10.5, 7.9 Hz, 1H), 4.67 (dd, *J* = 8.6, 7.9 Hz, 1H), 4.57 (dd, *J* = 10.5, 8.7 Hz, 1H), 3.83 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.70, 162.67, 129.90, 129.20, 127.51, 126.37, 69.46, 68.66, 52.85.

HRMS-ESI; m/z [M+H⁺] = 212.0372, calcd. For C₉H₁₀NO₃S: 212.0376.

Methyl (S)-2-(2-methylthiophen-3-yl)-4,5-dihydrooxazole-4-carboxylate

Colorless oil, 89% yield.

 $[\alpha]_{D}^{22.0} = +118.67 (c \ 0.3, CHCl_{3})$

¹H NMR (400 MHz, Chloroform-*d*) δ 7.20 (d, J = 5.4 Hz, 1H), 7.03 (d, J = 5.4 Hz, 1H), 6.80 (d, J = 6.8 Hz, 1H), 4.82 (dt, J = 7.2, 3.6 Hz, 1H), 4.09 - 3.96 (m, 2H), 3.81 (s, 3H), 2.80 (t, J = 5.9 Hz, 1H), 2.71 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.24, 164.74, 145.73, 131.05, 126.76, 122.15, 63.75, 55.02, 53.00, 15.09.

HRMS-ESI; m/z [M+Na⁺] = 248.0364, calcd. For C₁₀H₁₁NNaO₃S: 248.0352.

General procedure for the reduction of the oxazoline esters with Grignard reagents: To a solution of the corresponding oxazoline ester (10 mmol) in THF/diethyl ether 1:1 (50 mL) was added dropwise a solution of the Grignard reagent in THF (22 mmol) at 0°C. The mixture was then stirred for 3 h, allowed to warm to room temperature and stirred overnight. The reaction was quenched with saturated NH₄Cl aq. (50 mL) and followed by the addition of additional diethyl ether (40 mL) and water (40 mL). The organic layer was separated, washed with water, dried over Na₂SO₄, filtered and the solvent removed in vacuo. The residue was purified by chromatography to give the desired tertiary oxazoline alcohols.

(*S*)-(2-(Furan-2-yl)-4,5-dihydrooxazol-4-yl) diphenylmethanol White solid, 87% yield. $[\alpha]_{2^{2.0}}^{22.0} = -74.00 (c \ 0.3, CHCl_3)$

¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 – 7.61 (m, 2H), 7.54 – 7.50 (m, 1H), 7.48 – 7.42 (m, 2H), 7.32 (dt, J = 11.7, 7.7 Hz, 4H), 7.25 – 7.17 (m, 2H), 6.97 (d, J = 3.4 Hz, 1H), 6.47 (dd, J = 3.4, 1.7 Hz, 1H), 5.52 (t, J = 9.5 Hz, 1H), 4.29 -4.14 (m, 2H), 2.63 (br, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 158.88, 145.79, 145.63, 144.22, 142.72, 128.48, 128.45, 127.26, 127.04, 125.75, 115.42, 111.73, 78.23, 73.22, 69.41. HRMS-ESI; m/z [M+Na⁺] = 342.1101, calcd. For C₂₀H₁₇NNaO₃: 342.1101.

(*S*)-(2-(Furan-3-yl)-4,5-dihydrooxazol-4-yl) diphenylmethanol Ph White solid, 90% yield. $[\alpha]_{2^{2.0}}^{2^{2.0}} = -47.00 (c \ 0.3, CHCl_3)$

¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (d, J = 0.5 Hz, 1H), 7.69 - 7.62 (m, 2H), 7.49 - 7.44 (m, 2H), 7.40 (t, J = 1.7 Hz, 1H), 7.37 - 7.28 (m, 4H), 7.28 – 7.18 (m, 2H), 6.74 (dd, J = 1.9, 0.7 Hz, 1H), 5.44 (t, J = 9.4 Hz, 1H), 4.22 – 4.11 (m, 2H), 2.66 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 162.07, 146.05, 145.49, 144.24, 143.70, 128.46, 128.35, 127.23, 127.06, 127.04, 125.82, 115.47, 109.80, 78.26, 73.07, 69.04. HRMS-ESI; m/z [M+H⁺] = 320.1278, calcd. For C₂₀H₁₈NO₃: 320.1281.

(S)-(2-(5-methylfuran-2-yl)-4,5-dihydrooxazol-4**yl)diphenylmethanol** White solid, 83% yield.

 $[\alpha]_{D}^{22.0} = -95.33 (c \ 0.3, CHCl_{3})$

¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 – 7.63 (m, 2H), 7.46 (dd, J = 5.2, 3.4 Hz, 2H), 7.37 – 7.26 (m, 4H), 7.26 – 7.17 (m, 2H), 6.88 (d, J = 3.3 Hz, 1H), 6.08 (dd, J = 3.3, 0.9 Hz, 1H), 5.50 (t, J = 9.4 Hz, 1H), 4.19 (m, 2H), 2.64 (s, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.98, 156.36, 145.94, 144.29, 141.07, 128.45, 128.40, 127.22, 127.09, 127.00, 125.75, 116.82, 108.19, 78.25, 73.24, 69.20, 14.03. HRMS-ESI; m/z [M+H⁺] = 334.1440, calcd. For C₂₁H₂₀NO₃: 334.1438.

Ph (S)-(2-(2-methylfuran-3-yl)-4,5-dihydrooxazol-4-yl)diphenylmethanol OH White solid, 92% yield.

 $[\alpha]_{D}^{22.0} = -41.67 (c \ 0.3, CHCl_{3})$

¹H NMR (400 MHz, Chloroform-d) δ 7.65 (d, J = 7.8 Hz, 2H), 7.46 (d, J = 7.8 Hz, 2H), 7.38 - 7.28 (m, 4H), 7.25 - 7.19 (m, 3H), 6.62 (d, J = 1.8 Hz, 1H), 5.40 (t, J = 9.4 Hz, 1H), 4.21 – 4.11 (m, 2H), 2.63 (s, 1H), 2.51 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.14, 156.39, 146.22, 144.36, 140.64, 128.41, 128.23, 127.21, 127.13, 127.01, 125.91, 110.80, 109.97, 78.29, 73.02, 68.87, 13.86. HRMS-ESI; m/z [M+H⁺] = 334.1447, calcd. For C₂₁H₂₀NO₃: 334.1438.

Ph (S)-(2-(2,5-dimethylfuran-3-yl)-4,5-dihydrooxazol-4-yl)diphenylmethanol OH White foam, 95% yield. $[\alpha]_D^{22.0} = -43.33$ (c 0.3, CHCl₃)

¹H NMR (400 MHz, Chloroform-d) δ 7.67 – 7.62 (m, 2H), 7.48 – 7.42 (m, 2H), 7.35 – 7.27 (m, 4H), 7.25 – 7.18 (m, 2H), 6.19 (d, J = 0.8 Hz, 1H), 5.38 (t, J = 9.3 Hz, 1H), 4.17 -4.10 (m, 2H), 2.62 (s, 1H), 2.45 (s, 3H), 2.22 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.43, 154.64, 150.27, 146.30, 144.39, 128.40, 128.22, 127.20, 127.09, 126.98, 125.92, 110.38, 106.38, 78.28, 72.96, 68.80, 13.81, 13.32. HRMS-ESI; m/z [M+H⁺] = 348.1600, calcd. For C₂₂H₂₂NO₃: 348.1594.

Ph (S)-diphenyl(2-(thiophen-2-yl)-4,5-dihydrooxazol-4-Ph yl)methanol OH White solid, 86% yield.

 $[\alpha]_{D}^{22.0} = -71.33 (c \ 0.3, CHCl_{3})$

¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 (d, J = 7.4 Hz, 2H), 7.62 (dd, J = 3.6, 0.8 Hz, 1H), 7.51 – 7.41 (m, 3H), 7.33 (dt, J = 14.0, 7.6 Hz, 4H), 7.28 – 7.19 (m, 2H), 7.06 (dd, J = 4.9, 3.8 Hz, 1H), 5.47 (t, J = 9.4 Hz, 1H), 4.30 – 4.18 (m, 2H), 2.68 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 162.32, 145.95, 144.26, 131.11, 130.34, 130.06, 128.45, 128.31, 127.70, 127.22, 127.18, 127.05, 125.88, 78.33, 73.48, 69.73. HRMS-ESI; m/z [M+H⁺] = 336.1058, calcd. For C₂₀H₁₈NO₂S: 336.1053.

$\begin{array}{ll} \textbf{(S)-diphenyl(2-(thiophen-3-yl)-4,5-dihydrooxazol-4-yl)methanol}\\ \textbf{OH} & \textbf{White solid, 90\% yield.}\\ [\alpha]_{D}^{22.0} = -\ 62.67\ (c\ 0.3,\ CHCl_3) \end{array}$

¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (dd, *J* = 3.0, 1.1 Hz, 1H), 7.70 – 7.64 (m, 2H), 7.52 – 7.44 (m, 3H), 7.38 – 7.19 (m, 7H), 5.47 (t, *J* = 9.4 Hz, 1H), 4.27 – 4.15 (m, 2H), 2.62 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 163.07, 146.13, 144.26, 129.83, 129.55, 128.46, 128.33, 127.69, 127.21, 127.10, 127.04, 126.13, 125.85, 78.32, 73.27, 69.20. HRMS-ESI; m/z [M+H⁺] = 336.1043, calcd. For C₂₀H₁₈NO₂S: 336.1053.

(S)-(2-(2-methylthiophen-3-yl)-4,5-dihydrooxazol-4yl)diphenylmethanol

White solid, 87% yield.

 $[\alpha]_{\rm D}^{22.0} = -56.00 \ (c \ 0.3, \ {\rm CHCl}_3)$

¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 – 7.63 (m, 2H), 7.47 (dd, *J* = 8.5, 0.9 Hz, 2H), 7.36 – 7.29 (m, 5H), 7.26 – 7.19 (m, 2H), 6.98 (d, *J* = 5.4 Hz, 1H), 5.43 (t, *J* = 9.4 Hz, 1H), 4.24 – 4.11 (m, 2H), 2.66 (s, 3H), 2.60 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 163.85, 146.25, 145.65, 144.34, 129.00, 128.42, 128.20, 127.28, 127.13, 127.03, 125.98, 125.02, 121.51, 78.34, 73.30, 68.69, 15.57. HRMS-ESI; m/z [M+H⁺] = 350.1214, calcd. For C₂₁H₂₀NO₂S: 350.1209.

General procedure for the preparation of the phosphite-oxazoline ligands:

To a solution of PCl₃ (0.3 mL, 2.5 mmol) and pyridine (0.5 mL, 5.8 mmol) in toluene (5 mL) was added the solution of Binol (172 mg, 0.6 mmol) and pyridine (0.5 mL, 5.8 mmol) in toluene (5 mL) at 0 °C under argon, the resulting mixture was stirred at 0 °C for 30 min and then stirred overnight at 80 °C. The reaction was cooled to room temperature and the pyridine salt was removed by filtration under argon, evaporation of the solvent gave the phosphorochloridite as a white foam, which was used directly for next step without purification. The corresponding phosphorochloridite was dissolved in toluene (5 mL) and pyridine (0.5 mL, 5.8 mmol) was added. The corresponding hydroxyl-oxazoline compound (0.5 mmol) was azeotropically dried with toluene and then dissolved in toluene (5.0 mL) to which pyridine (0.5 mL, 5.8 mmol) was added. The oxazoline solution was transferred slowly at 0 °C to the solution of phosphorochloridite. The reaction mixture was stirred overnight at 80 °C, and the pyridine salts were removed by filtration. Evaporation of the solvent gave a white foam, which was purified by flash chromatography on neutral alumina eluting with 1 % triethylamine in toluene to produce the corresponding ligand.

(4*S*)-4-((((11b*S*)-dinaphtho[2,1-*d*:1',2'*f*][1,3,2]dioxaphosphepin-4-yl)oxy) diphenylmethyl)-2-(furan-2-yl)-4,5-dihydrooxazole Pale yellow solid, 0.199 g, 63% yield. $[α]_D^{22.0} = + 79.00 (c 0.1, CHCl_3)$ ³¹P NMR (162 MHz, Toluene-*d*₈) δ 150.79. ¹H NMR (400 MHz, Toluene-*d*₈) δ 7.88 (d, *J* = 7.5 Hz,

2H), 7.74 (q, J = 8.8 Hz, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.54 – 7.39 (m, 3H), 7.31 – 7.15 (m, 6H), 7.14 – 6.94 (m, 3H), 6.94 – 6.80 (m, 7H), 5.79 (dd, J = 3.4, 1.7 Hz, 1H), 5.31 (t, J = 9.3 Hz, 1H), 4.37 (t, J = 8.6 Hz, 1H), 3.86 (t, J = 9.4 Hz, 1H).

¹³C NMR (100 MHz, Toluene-*d*₈): δ 159.37, 149.44, 149.39, 148.51, 148.49, 145.30, 144.47, 144.02, 143.60, 133.40-122.27 (other aromatic carbons), 115.31, 111.54, 86.03 (d, *J* = 7.9 Hz), 73.45, 69.26.

HRMS-ESI; m/z [M+Na⁺] = 656.1590, calcd. For C₄₀H₂₈NNaO₅P: 656.1597.

(4*S*)-4-((((11b*S*)-dinaphtho[2,1-*d*:1',2'*f*][1,3,2]dioxaphosphepin-4-yl)oxy) diphenylmethyl)-2-(furan-3-yl)-4,5-dihydrooxazole White solid, 0.208 g, 66% yield $[α]_{D}^{22.0} = +197.00 (c 0.1, CHCl_3)$ ³¹P NMR (162 MHz, Toluene-*d*₈) δ 150.77. ¹H NMR (400 MHz, Toluene-*d*₈) δ 7.88 (d, *J* = 7.7 Hz,

2H), 7.77 (s, 1H), 7.70 (q, *J* = 8.8 Hz, 2H), 7.65 (d, *J* = 8.1 Hz, 1H), 7.54 – 7.41 (m, 3H), 7.29 (d, *J* = 8.5 Hz, 1H), 7.21 (t, *J* = 8.1 Hz, 5H), 7.14 – 6.94 (m, 3H), 6.91 – 6.80 (m, 5H), 6.70 (dt, *J* = 3.4, 1.6 Hz, 2H), 5.28 (t, *J* = 9.3 Hz, 1H), 4.34 (t, *J* = 8.6 Hz, 1H), 3.83 (dd, *J* = 10.0, 8.8 Hz, 1H).

¹³C NMR (100 MHz, Toluene-*d₈*) δ 162.45, 149.41, 149.36, 148.52, 145.22, 144.52, 143.78, 133.40-122.27 (other aromatic carbons), 116.72, 110.19, 86.00 (d, *J* = 7.6 Hz), 73.15, 69.03.

HRMS-ESI; m/z [M+Na⁺] = 656.1591, calcd. For C₄₀H₂₈NNaO₅P: 656.1597.

(4S)-4-((((11bS)-dinaphtho[2,1-d:1',2'f][1,3,2]dioxaphosphepin-4-yl)oxy) diphenylmethyl)-2-(5-methylfuran-2-yl)-4,5dihydrooxazole Pale yellow solid, 0.171 g, 53% yield.

 $[\alpha]_{D}^{22.0} = +35.00 (c \ 0.1, CHCl_{3})$

 31 P NMR (162 MHz, Toluene-*d*₈) δ 150.76.

¹H NMR (400 MHz, Toluene- d_8) δ 7.90 (d, J = 7.7 Hz, 1H), 7.76 (dd, J = 27.3, 8.8 Hz, 1H), 7.65 (d, J = 8.1 Hz, 1H), 7.53 – 7.40 (m, 1H), 7.26 (d, J = 8.4 Hz, 1H), 7.19 (dd, J = 12.4, 5.5 Hz, 2H), 7.13 – 6.92 (m, 7H), 6.90 – 6.78 (m, 5H), 5.54 (dd, J = 3.3, 0.9 Hz, 1H), 5.34 (t, J = 9.3 Hz, 1H), 4.39 (t, J = 8.6 Hz, 1H), 3.89 (t, J = 9.3 Hz, 1H), 1.71 (s, 3H). ¹³C NMR (100 MHz, Toluene- d_8) δ 159.44, 155.99, 149.49, 149.44, 148.55, 148.53, 144.57, 142.46, 137.79, 133.39-122.30 (other aromatic carbons), 116.68, 108.17, 86.06(d, J=7.8 Hz), 73.53, 69.10, 13.27.

HRMS-ESI; m/z [M+H⁺] = 648.1933, calcd. For C₄₁H₃₁NO₅P: 648.1934.

(4*S*)-4-((((11b*S*)-dinaphtho[2,1-*d*:1',2'*f*][1,3,2]dioxaphosphepin-4-yl)oxy) diphenylmethyl)-2-(2-methylfuran-3-yl)-4,5dihydrooxazole White solid, 0.213 g, 66% yield. $[\alpha]_{\rm D}^{22.0} = + 144.00 (c 0.1, CHCl_3)$ ³¹P NMR (162 MHz, Toluene-*d*₈) δ 150.53.

¹H NMR (400 MHz, Toluene- d_8) δ 7.90 (d, J = 7.5 Hz, 2H), 7.71 (q, J = 8.8 Hz, 2H), 7.65 (d, J = 8.1 Hz, 1H), 7.55 – 7.39 (m, 3H), 7.32 – 7.18 (m, 6H), 7.15 – 6.98 (m, 3H), 6.92

- 6.79 (m, 5H), 6.72 (dd, J = 4.5, 1.9 Hz, 2H), 5.29 (t, J = 9.3 Hz, 1H), 4.33 (t, J = 8.6 Hz, 1H), 3.83 (t, J = 9.4 Hz, 1H), 2.51 (s, 3H).

¹³C NMR (100 MHz, Toluene-*d*₈) δ 163.52, 156.94, 149.46, 149.41, 148.53, 144.63, 140.64, 133.41-122.29 (other aromatic carbons) 110.91, 86.04(d, *J*=7.7 Hz), 73.24, 68.62, 13.75.

HRMS-ESI; m/z [M+H⁺] = 648.1926, calcd. For C₄₁H₃₁NO₅P: 648.1934.

(4*S*)-2-(2,5-dimethylfuran-3-yl)-4-((((11b*S*)dinaphtho[2,1-*d*:1',2'-*f*][1,3,2]dioxaphosphepin-4yl)oxy)diphenylmethyl)-4,5-dihydrooxazole Pale yellow solid, 0.237 g, 72% yield. $[\alpha]_{D}^{22.0} = + 130.00 (c 0.1, CHCl_3)$ ³¹P NMR (162 MHz, Toluene-*d*₈) δ 150.50. ¹H NMR (400 MHz, Toluene-*d*₈) δ 7.92 (d, *J* = 7.5 Hz,

2H), 7.74 (s, 2H), 7.65 (d, *J* = 8.1 Hz, 1H), 7.54 – 7.40 (m, 3H), 7.29 – 7.17 (m, 6H), 7.13 – 6.99 (m, 3H), 6.91 – 6.77 (m, 5H), 6.38 (s, 1H), 5.30 (t, *J* = 9.4 Hz, 1H), 4.34 (t, *J* = 8.6 Hz, 1H), 3.84 (dd, *J* = 10.0, 8.7 Hz, 1H), 2.54 (s, 3H), 1.75 (s, 3H).

¹³C NMR (100 MHz, Toluene-*d*₈) 163.84, 155.18, 150.18, 149.52, 149.47, 148.60, 144.72, 133.42-122.31 (other aromatic carbons), 111.37, 106.84, 86.07(d, *J*=7.5 Hz), 73.19, 68.57, 13.83, 12.85.

HRMS-ESI; m/z [M+H⁺] = 662.2093, calcd. For C₄₂H₃₃NO₅P: 662.2091.

(4S)-4-((((11bS)-dinaphtho[2,1-d:1',2'f][1,3,2]dioxaphosphepin-4-yl)oxy) diphenylmethyl)-2-(thiophen-2-yl)-4,5dihydrooxazole Pale yellow solid, 0.201 g, 62% yield.

 $[\alpha]_{D}^{22.0} = + 117.00 (c \ 0.1, CHCl_{3})$

 31 P NMR (162 MHz, Toluene- d_8) δ 150.89.

¹H NMR (400 MHz, Toluene- d_8) δ 7.88 (d, J = 7.6 Hz, 2H), 7.76 – 7.70 (m, 2H), 7.67 – 7.60 (m, 2H), 7.53 – 7.39 (m, 3H), 7.30 – 7.15 (m, 6H), 7.13 – 6.94 (m, 11H), 6.92 – 6.76 (m, 5H), 6.64 (dd, J = 5.0, 1.0 Hz, 1H), 6.45 (dd, J = 4.9, 3.8 Hz, 1H), 5.32 (dd, J = 9.7, 8.8 Hz, 1H), 4.41 (t, J = 8.5 Hz, 1H), 3.89 (dd, J = 9.9, 8.8 Hz, 1H).

¹³C NMR (100 MHz, Toluene-*d*₈) δ 162.86, 149.41, 149.36, 148.50, 148.48, 144.44, 133.37-122.26 (other aromatic carbons), 86.06(d, *J*=7.6 Hz), 73.49, 69.70. HRMS-ESI; *m*/*z* [M+H⁺] = 650.1547, calcd. For C₄₀H₂₉NO₄PS: 650.1549.

(4*S*)-4-((((11b*S*)-dinaphtho[2,1-*d*:1',2'*f*][1,3,2]dioxaphosphepin-4-yl)oxy) diphenylmethyl)-2-(thiophen-3-yl)-4,5dihydrooxazole Pale yellow solid, 0.223 g, 69% yield.

 $[\alpha]_{D}^{22.0} = +71.00 (c \ 0.1, CHCl_{3})$

³¹P NMR (162 MHz, Toluene- d_8) δ 150.87.

¹H NMR (400 MHz, Toluene- d_8) δ 7.88 (d, J = 7.5 Hz, 2H), 7.76 – 7.62 (m, 4H), 7.55 (dd, J = 5.1, 1.0 Hz, 1H), 7.52 – 7.38 (m, 3H), 7.22 (ddd, J = 15.6, 8.1, 3.5 Hz, 6H), 7.14

- 6.95 (m, 3H), 6.93 - 6.77 (m, 5H), 6.54 (dd, *J* = 5.1, 3.0 Hz, 1H), 5.31 (dd, *J* = 9.9, 8.8 Hz, 1H), 4.37 (t, *J* = 8.7 Hz, 1H), 3.87 (dd, *J* = 10.1, 8.7 Hz, 1H).

¹³C NMR (100 MHz, Toluene-*d*₈) δ 163.48, 149.40, 149.35, 148.52, 148.50, 144.54, 143.86, 137.79, 133.40-122.24 (other aromatic carbons), 86.03 (d, *J* = 7.6 Hz), 73.31, 69.19.

HRMS-ESI; m/z [M+H⁺] = 650.1541, calcd. For C₄₀H₂₉NO₄PS: 650.1549.

(4S)-4-((((11bS)-dinaphtho[2,1-d:1',2'f][1,3,2]dioxaphosphepin-4-yl)oxy) diphenylmethyl)-2-(2-methylthiophen-3-yl)-4,5dihydrooxazole Pale yellow solid, 0.251 mg, 76% yield.

 $[\alpha]_{D}^{22.0} = + 110.00 (c \ 0.1, \ CHCl_{3})$

¹P NMR (162 MHz, Toluene-
$$d_8$$
) δ 150.43.

¹H NMR (400 MHz, Toluene- d_8) δ 7.90 (d, J = 7.4 Hz, 2H), 7.74 – 7.60 (m, 3H), 7.54 – 7.39 (m, 4H), 7.22 (dt, J = 8.5, 7.4 Hz, 6H), 7.15 – 6.94 (m, 3H), 6.91 – 6.77 (m, 5H), 6.44 (d, J = 5.4 Hz, 1H), 5.29 (t, J = 9.5 Hz, 1H), 4.33 (t, J = 8.7 Hz, 1H), 3.82 (dd, J = 10.1, 8.7 Hz, 1H), 2.71 (s, 3H).

¹³C NMR (100 MHz, Toluene- d_8) δ 164.13, 149.42, 149.37, 148.50, 146.28, 144.63, 137.79, 133.40-121.35 (other aromatic carbons), 86.02 (d, *J* = 7.6 Hz), 73.56, 68.34, 15.70, 15.67.

HRMS-ESI; m/z [M+H⁺] = 664.1713, calcd. For C₄₁H₃₁NO₄PS: 664.1706.

Typical procedure for the preparation of [Ir(cod)(L)]-BArF.

The corresponding ligand (0.116 mmol) was dissolved in CH_2Cl_2 (2 mL) and $[Ir(COD)CI]_2$ (38 mg, 0.058 mmol) was added. The reaction was refluxed at 50 °C for 1 h. After 5 min at room temperature, NaBArF (114 mg, 0.128 mmol) and water (2 mL) were added and the reaction mixture was stirred vigorously for 30 min at room temperature. The phases were separated and the aqueous phase was extracted twice with CH_2Cl_2 . The combined organic phases were filtered through a Celite plug, dried with Na_2SO_4 and the solvent was evaporated to give the product as an orange solid.

[Ir(cod)(L1a)]BArF.

Orange solid, 0.198 g, 95% yield. $[\alpha]_D^{22.0} = + 60.00 (c \ 0.1, CHCl_3)$ ³¹P NMR (CDCl₃, 162 MHz): δ 113.12. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (t, *J* = 8.2 Hz, 2H), 7.97 (dd, *J* = 8.5, 3.5 Hz, 2H), 7.80 - 7.68 (m, 11H), 7.62 -

7.47 (m, 9H), 7.36(m, 5H), 7.17 (m, 4H), 7.07 (d, *J* = 8.8 Hz, 1H), 6.90 (dd, *J* = 6.1, 2.5 Hz, 2H), 6.21 – 6.18 (m, 1H), 5.93 (t, *J* = 10.7 Hz, 1H), 5.51 – 5.40 (m, 1H), 5.36 – 5.30 (m, 1H), 4.46 (t, *J* = 9.8 Hz, 1H), 4.32 – 4.23 (m, 1H), 3.97 – 3.86 (m, 1H), 3.36 – 3.29 (m, 1H), 2.37 (s, 3H), 2.21 – 1.78 (m, 6H), 1.67 – 1.47 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 162.41, 161.84 (q, J = 49.8 Hz), 149.44, 146.49, 146.41, 146.27, 146.15, 144.00, 139.41, 139.33, 138.67, 134.95, 132.70-119.40 (other aromatic carbons), 117.61, 113.49, 103.72, 103.55, 102.12, 101.96, 88.32, 71.29,

70.31, 63.36, 61.04, 33.05 (d, *J* = 3.8 Hz), 31.40 (d, *J* = 3.6 Hz), 28.29 (d, *J* = 2.6 Hz), 27.74 (d, *J* = 1.8 Hz).

HRMS-ESI; $m/z [C_{48}H_{40}IrNO_5P]^{+} = 934.2269$, calcd. For $[C_{48}H_{40}IrNO_5P]^{+} : 934.2271$.

[Ir(cod)(L1a)]BArF. Orange solid, 0.179 g, 86% yield. $[\alpha]_D^{22.0} = +53.00 (c 0.1, CHCl_3)$ ³¹P NMR (CDCl₃, 162 MHz): δ 113.70. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.63 (d, *J* = 0.5 Hz, 1H), 8.10 - 8.02 (m, 2H), 7.97 (dd, *J* = 8.6, 3.3 Hz, 2H), 7.75 (dd, *J*

= 12.2, 4.8 Hz, 10H), 7.64 – 7.50 (m, 9H), 7.47 – 7.33 (m, 5H), 7.21 – 7.13 (m, 5H), 7.05 (dd, *J* = 8.8, 0.8 Hz, 1H), 6.93 – 6.84 (m, 2H), 5.91 (dd, *J* = 11.9, 10.1 Hz, 1H), 5.36 – 5.24 (m, 1H), 5.02 – 4.88 (m, 1H), 5.01 – 4.91 (m, 1H), 4.43 (t, *J* = 10.0 Hz, 1H), 4.28 (dd, *J* = 12.0, 10.0 Hz, 1H), 3.91 (dt, *J* = 9.9, 3.4 Hz, 1H), 3.43 – 3.32 (m, 1H), 2.16 – 1.92 (m, 3H), 1.77 (dt, *J* = 22.9, 11.8 Hz, 4H), 1.54 – 1.41 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 167.62, 161.83 (q, J = 49.9 Hz), 149.46, 146.36, 144.99, 143.84, 143.80, 139.14, 139.06, 134.96, 132.02-119.23 (other aromatic carbons), 117.65, 117.61, 117.58, 111.92, 110.66, 102.88, 102.72, 101.07, 100.90, 88.27, 88.24, 71.38, 69.87, 64.68, 62.06, 33.49 (d, J = 3.9 Hz), 31.22 (d, J = 3.9 Hz), 28.14 (d, J = 2.9 Hz), 27.64 (d, J = 2.7 Hz).

HRMS-ESI; $m/z [C_{48}H_{40}IrNO_5P]^{+} = 934.2291$, calcd. For $[C_{48}H_{40}IrNO_5P]^{+} : 934.2271$.

[Ir(cod)(L1a)]BArF.

Orange solid, 0.192 g, 92% yield. $[\alpha]_D^{22.0} = + 48.00 (c \ 0.1, CHCl_3)$ ³¹P NMR (CDCl₃, 162 MHz): δ 113.12. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (t, *J* = 8.2 Hz, 2H), 7.97 (dd, *J* = 8.5, 3.5 Hz, 2H), 7.80 - 7.68 (m, 11H), 7.62 -

7.47 (m, 9H), 7.36 (m, 5H), 7.17 (m, 4H), 7.07 (d, J = 8.8 Hz, 1H), 6.90 (dd, J = 6.1, 2.5 Hz, 2H), 6.21 – 6.18 (m, 1H), 5.93 (t, J = 10.7 Hz, 1H), 5.51 – 5.40 (m, 1H), 5.36 – 5.30 (m, 1H), 4.46 (t, J = 9.8 Hz, 1H), 4.32 – 4.23 (m, 1H), 3.97 – 3.86 (m, 1H), 3.36 – 3.29 (m, 1H), 2.37 (s, 3H), 2.21 – 1.78 (m, 6H), 1.67 – 1.47 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 162.27, 161.85 (q, J = 49.8 Hz), 146.61, 146.53, 146.36, 146.24, 144.08, 144.05, 139.58, 139.50, 137.11, 134.97-117.60 (other aromatic carbons), 110.57, 103.38, 103.20, 102.46, 102.30, 88.31, 71.06, 70.30, 63.14, 61.05, 34.23 (d, J = 4.0 Hz), 30.61 (d, J = 3.5 Hz), 28.16 (d, J = 2.3 Hz), 27.49 (d, J = 2.8 Hz), 14.30.

HRMS-ESI; $m/z [C_{49}H_{42}IrNO_5P]^+ = 948.2444$, calcd. For $[C_{49}H_{42}IrNO_5P]^+ : 948.2428$.

[lr(cod)(L1a)]BArF.

Orange solid, 0.196 g, 94% yield. $[\alpha]_D^{22.0} = +58.00 (c \ 0.1, CHCl_3)$ ³¹P NMR (CDCl₃, 162 MHz): δ 113.56. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (t, *J* = 9.0 Hz, 2H), 7.97 (dd, *J* = 8.6, 2.4 Hz, 2H), 7.83 (d, *J* = 2.0 Hz, 1H), 7.78 –

7.69 (m, 10H), 7.61 – 7.48 (m, 9H), 7.43 – 7.34 (m, 4H), 7.21 – 7.14 (m, 4H), 7.10 (d, J = 8.8 Hz, 1H), 6.92 – 6.86 (m, 2H), 5.89 (dd, J = 12.2, 9.8 Hz, 1H), 5.34 – 5.25 (m, 1H),

4.97 – 4.87 (m, 1H), 4.51 (t, J = 9.8 Hz, 1H), 4.30 (dd, J = 12.2, 9.9 Hz, 1H), 3.94 – 3.86 (m, 1H), 3.40 - 3.32 (m, 1H), 2.49 (s, 3H), 2.15 - 1.93 (m, 3H), 1.87 - 1.63 (m, 4H), 1.52 – 1.40 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 162.26, 161.85 (q, J = 49.8 Hz), 146.61, 146.53, 146.37, 146.25, 144.09, 144.05, 139.58, 139.50, 137.12, 134.96, 132.71-119.50 (other aromatic carbons), 117.61, 117.57, 110.57, 103.38, 103.21, 102.47, 102.31, 88.29, 71.07, 70.31, 63.15, 61.05, 34.24 (d, J = 4.1 Hz), 30.62 (d, J = 3.2 Hz), 28.16 (d, J = 2.3 Hz), 27.49 (d, J = 2.5 Hz), 14.30.

HRMS-ESI; $m/z [C_{49}H_{42}IrNO_5P]^+ = 948.2443$, calcd. For $[C_{49}H_{42}IrNO_5P]^+ : 948.2428$.

[Ir(cod)(L1a)]BArF.

Orange solid, 0.205 g, 97% yield.

 $[\alpha]_D^{22.0} = +57.00 (c \ 0.1, CHCl_3)^{31}$ P NMR (CDCl₃, 162 MHz): δ 113.42.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 – 7.96 (m, 4H),

7.73 (s, 10H), 7.62 – 7.47 (m, 10H), 7.44 – 7.35 (m, 4H), 7.22 - 7.10 (m, 5H), 6.94 - 6.85 (m, 2H), 5.87 (dd, J = 12.2, 9.8 Hz, 1H), 5.35 - 5.27 (m, 1H), 5.00 – 4.92 (m, 1H), 4.48 (t, J = 9.8 Hz, 1H), 4.27 (dd, J = 12.2, 9.9 Hz, 1H), 3.96 – 3.87 (m, 1H), 3.39 - 3.31 (m, 1H), 2.45 (s, 3H), 2.22 (s, 3H), 2.08 - 1.73 (m, 6H), 1.71 - 1.60 (m, 1H), 1.52 – 1.41 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.70, 161.70 (q, J = 49.9 Hz), 160.96, 159.57, 151.84, 146.57, 146.49, 146.36, 146.24, 143.84, 139.35, 139.27, 134.83, 132.65-119.42 (other aromatic carbons), 117.45, 108.24, 106.91, 103.00, 102.83, 101.50, 101.33, 87.75, 71.48, 69.21, 64.13, 61.11, 33.47 (d, J = 3.9 Hz), 30.97 (s), 27.85 (d, J = 2.3 Hz), 27.74 (d, J = 1.0 Hz), 14.29, 13.07.

HRMS-ESI; $m/z [C_{50}H_{44}IrNO_5P]^{+} = 962.2569$, calcd. For $[C_{50}H_{44}IrNO_5P]^{+} : 962.2584$.

[Ir(cod)(L1a)]BArF.

Orange solid, 0.191 g, 91% yield. $[\alpha]_D^{22.0} = + 48.00 (c \ 0.1, CHCl_3)$ ³¹P NMR (CDCl₃, 162 MHz): δ 112.67. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.24 (dd, J = 3.9, 1.2 Hz, 1H), 8.06 – 7.94 (m, 4H), 7.81 – 7.67 (m, 11H), 7.62 – 7.47

(m, 9H), 7.42 – 7.30 (m, 4H), 7.22 – 7.15 (m, 4H), 7.12 (dd, J = 4.9, 3.9 Hz, 1H), 7.01 (dd, J = 8.8, 0.9 Hz, 1H), 6.89 (dd, J = 6.8, 2.9 Hz, 2H), 5.98 (dd, J = 11.6, 10.1 Hz, 1H), 5.45 – 5.36 (m, 1H), 4.93 – 4.84 (m, 1H), 4.56 – 4.48 (m, 1H), 4.31 (dd, J = 11.6, 10.0 Hz, 1H), 4.16 – 4.08 (m, 1H), 3.57 – 3.48 (m, 1H), 2.32 – 2.22 (m, 1H), 2.12 – 2.02 (m, 1H), 1.98 – 1.82 (m, 3H), 1.77 – 1.61 (m, 2H), 1.51 – 1.40 (m, 1H).¹³C NMR (101 MHz, CDCl₃) δ 167.47, 161.84 (q, J = 49.9 Hz), 146.52, 146.43, 146.40, 146.28, 144.08, 144.05, 139.50, 139.42, 137.55, 136.82, 134.96, 132.73-119.32 (other aromatic carbons), 117.61, 117.58, 102.80, 102.64, 102.39, 102.21, 88.75, 71.82, 70.36, 65.89, 63.46, 34.33 (d, J = 4.7 Hz), 30.50 (d, J = 3.3 Hz), 28.31 (d, J = 1.9 Hz), 27.41 (d, J = 3.1 Hz).

HRMS-ESI; $m/z [C_{48}H_{40}IrNO_4PS]^+ = 950.2039$, calcd. For $[C_{48}H_{40}IrNO_4PS]^+ : 950.2041$.

[Ir(cod)(L1a)]BArF.

Orange solid, 0.198 g, 94% yield.

 $[\alpha]_{D}^{22.0} = + 62.00 (c \ 0.1, CHCl_{3})$

³¹P NMR (CDCl₃, 162 MHz): δ 113.08.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.86 (dd, *J* = 3.0, 1.1 Hz, 1H), 8.04 (dd, *J* = 8.5, 5.8 Hz, 2H), 7.98 (dd, *J* = 8.6, 3.9 Hz, 2H), 7.92 (dd, *J* = 5.2, 1.2 Hz, 1H), 7.81 – 7.68 (m, 10H), 7.63 – 7.48 (m, 9H), 7.44 – 7.33 (m, 5H), 7.18 (dd, *J* = 7.5, 2.8 Hz, 4H), 7.07 (d, *J* = 8.8 Hz, 1H), 6.89 (dd, *J* = 6.7, 2.9 Hz, 2H), 5.94 (dd, *J* = 12.4, 9.9 Hz, 1H), 5.33 – 5.23 (m, 1H), 4.82 – 4.68 (m, 1H), 4.45 (t, *J* = 9.9 Hz, 1H), 4.31 (dd, *J* = 12.4, 10.0 Hz, 1H), 3.98 – 3.88 (m, 1H), 3.42 (td, *J* = 7.1, 3.3 Hz, 1H), 2.18 – 1.87 (m, 3H), 1.75 (dd, *J* = 21.2, 11.8 Hz, 4H), 1.52 – 1.39 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.58, 161.84 (q, J = 50.0 Hz), 146.53, 146.45, 146.37, 146.25, 143.92, 143.88, 139.25, 139.17, 135.79, 134.97, 132.74-119.34 (other aromatic carbons), 117.62, 103.18, 103.02, 101.75, 101.58, 88.12, 71.63, 69.93, 64.79, 61.63, 33.32 (d, J = 4.1 Hz), 31.40 (d, J = 3.8 Hz), 28.23 (d, J = 2.9 Hz), 27.62 (d, J = 2.2 Hz).

HRMS-ESI; $m/z [C_{48}H_{40}IrNO_4PS]^+ = 950.2027$, calcd. For $[C_{48}H_{40}IrNO_4PS]^+ : 950.2041$.

[Ir(cod)(L1a)]BArF. Orange solid, 0.195 g, 92% yield. $[α]_D^{22.0} = + 61.00 (c 0.1, CHCl_3)^{31}$ P NMR (CDCl₃, 162 MHz): δ 112.73. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.51 (d, *J* = 5.5 Hz, 1H), 8.06 (dd, *J* = 12.6, 8.6 Hz, 2H), 7.98 (d, *J* = 8.9 Hz, 2H), 7.73 (s,

10H), 7.64 – 7.47 (m, 9H), 7.45 – 7.34 (m, 4H), 7.22 – 7.14 (m, 5H), 7.07 (d, J = 5.4 Hz, 1H), 6.91 (dd, J = 6.6, 2.9 Hz, 2H), 5.93 (dd, J = 12.9, 9.7 Hz, 1H), 5.28 – 5.20 (m, 1H), 4.64 – 4.47 (m, 2H), 4.37 (dd, J = 12.9, 10.0 Hz, 1H), 3.90 – 3.79 (m, 1H), 3.42 – 3.28 (m, 1H), 2.58 (s, 3H), 2.10 – 1.93 (m, 2H), 1.88 – 1.61 (m, 5H), 1.53 – 1.42 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 169.83, 161.84 (q, J = 99.7, 49.8 Hz), 150.18, 146.66, 146.58, 146.51, 146.39, 143.75, 139.29, 139.22, 134.96, 132.72-119.43 (other aromatic carbons), 117.60, 103.56, 103.40, 101.66, 101.49, 87.59, 87.56, 71.99, 69.48, 64.25, 61.14, 33.29 (d, J = 3.9 Hz), 31.37 (d, J = 3.6 Hz), 28.08 (d, J = 2.2 Hz), 27.80 (d, J = 2.3 Hz), 15.21.

HRMS-ESI; $m/z [C_{49}H_{42}IrNO_4PS]^+ = 964.2163$, calcd. For $[C_{49}H_{42}IrNO_4PS]^+ : 964.2198$.

Synthesis of catalyst IC

The catalyst **IC** was prepared following the procedures that have been reported in the group.

Peters, B. K.; Liu, J.; Margarita, C.; Rabten, W.; Kerdphon, S.; Orebom, A.; Morsch, T.; Andersson, P. G. Journal of the American Chemical Society **2016**, *138*, 11930.

8-((di-*tert*-butylphosphaneyl)methyl)-2-(2,4dimethoxyphenyl)-5,6,7,8-tetrahydroimidazo[1,2*a*]pyridine

Yellow light oil, 115 mg, 65% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (d, *J* = 8.6 Hz, 1H), 7.27 (s, 1H), 6.59 (dd, *J* = 8.6, 2.4 Hz, 1H), 6.50 (d, *J* = 2.4 Hz, 1H), 4.06 – 3.98 (m, 1H), 3.96 – 3.86 (m, 1H), 3.90

(s, 3H), 3.84 (s, 3H), 3.30 – 3.11 (m, 3H), 2.75 – 2.64 (m, 0H), 2.11 – 1.91 (m, 1H), 1.60 (s, 3H), 1.44 (d, *J* = 12.5 Hz, 9H), 1.26 (d, *J* = 12.5 Hz, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 158.95, 156.71, 147.07, 135.30, 127.57, 117.30, 116.38, 104.41, 98.14, 55.25, 44.75, 34.02, 33.55, 33.29, 32.57, 32.54, 31.70, 31.42, 30.04, 27.74, 27.73, 27.67, 27.66, 22.28, 22.20, 21.47, 21.17, 14.05.

HRMS-ESI; $m/z [C_{24}H_{30}BN_2O_2P-BH_3+H]^+ = 417.2659$, calcd. For $[C_{24}H_{30}BN_2O_2P-BH_3+H]^+$: 417.2665.

[Ir(cod)]BArF.

Orange solid, 257 mg, 48% yield.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.55 (d, J = 8.5 Hz, 1H), 7.76 – 7.66 (m, 8H), 7.52 (s, 4H), 7.36 (s, 1H), 6.65 (dd, J = 8.6, 2.4 Hz, 1H), 6.56 (d, J = 2.3 Hz, 1H), 5.20 – 5.13 (m, 1H), 4.44 – 4.34 (m, 1H), 3.98 – 3.91 (m, 2H),

3.88 (s, 3H), 3.86 (s, 3H), 3.48 – 3.28 (m, 2H), 2.52 (dtd, *J* = 15.8, 10.4, 5.7 Hz, 1H), 2.32 – 1.79 (m, 8H), 1.75 – 1.63 (m, 1H), 1.42 (d, *J* = 12.9 Hz, 9H), 1.09 (d, *J* = 13.4 Hz, 9H).

³¹P NMR (162 MHz, CDCl₃) δ 40.62.

¹³C NMR (101 MHz, CDCl₃) δ 162.41, 161.92, 161.43, 161.20, 160.93, 157.48, 145.28, 145.25, 134.77, 131.44, 129.44 – 128.27 (m), 125.88, 123.17, 120.68, 120.46, 117.58 – 117.28 (m), 111.61, 104.35, 98.60, 90.27, 90.20, 80.54, 80.38, 67.71, 59.89, 55.57, 55.48, 45.70, 38.04, 37.74, 37.69, 35.68, 35.49, 35.03, 35.00, 34.10, 30.14, 29.85, 29.83, 28.29, 28.21, 28.10, 24.56, 24.53, 20.00, 19.76.

HRMS-ESI; $m/z [C_{32}H_{49}IrN_2O_2P]^+ = 717.3139$, calcd. For $[C_{32}H_{49}IrN_2O_2P]^+ : 717.3157$. $[\alpha]_D^{22.0} = + 77.5 (c \ 0.04, \ CHCl_3)$

4. General procedure for asymmetric hydrogenations

A vial was charged with the substrate and Ir-complex. Dry CH_2Cl_2 (4 ml) was added (to ensure the concentration of the substrate was 0.034 M) and the vial was placed in a high-pressure hydrogenation apparatus. The reactor was purged 3 times with N_2 , then filled to pressure with H_2 . The reaction was stirred at room temperature for 2 hours before the H_2 pressure was released and the solvent was removed *in vacuo*. The crude product was purified through silica column chromatography. Conversion was determined by ¹H NMR spectroscopy and *ee* values were determined using chiral GC or SFC.

These compounds have been reported.³

These compounds have been reported.⁴

These compounds have been reported.⁵

Entry	Product	Separation method	Optical rotation	ее
1	CHa	GC-MS: column	$[\alpha]_{2}^{25.0} = 22.52$	95%
-	\sim	Chiraldex B-3n	$[\alpha_{JJ}] = 0.37 \text{ in}$	5570
		50°C isothermal		
		$t_{\rm p} = 35.2 {\rm min}$		
		(minor)/36.8		
		(maior)		
2	CHa	GC-MS: column	$[\alpha]_{2}^{25.0} = 21.01$	95%
2		Chiraldex B-DM	$[\alpha_{\rm JD}] = 21.01$	5570
		60°C hold 30min		
		to 175°C at		
		$3^{\circ}C/min t_{p} =$		
		39.4 min		
		(major)/40.0		
		(major) 40.0		
3		GC-MS: column	$[\alpha]_{2}^{25.0} = 27.17$	94%
5		Chiraldex B-DM	$[\alpha_{JD} = 0.38$ in	5470
		60°C hold 30min		
		to 175°C at		
		$3^{\circ}C/min t_{0} =$		
		25 9 min		
		(maior)/28.5		
		(minor)		
4	CH ₃	GC-MS: column	$[\alpha]_{\rm D}^{25.0} = 18.32$	94%
		Chiraldex B-DM.	(c = 0.19 in)	0.70
		60°C hold 30min	CHCl ₃)	
		to 175°C at	51	
		3°C/min. t _R =		
		55.1 min		
		(major)/55.6		
		(minor)		
5		GC-MS: column	$[\alpha]_{D}^{25.0} = 28.52$	99%
		Chiraldex β-3p,	(c = 0.24 in	
		60°C isothermal	CHCl₃)	
	\sim	60 min, t _R = 53.6		
		min (major)		
6		GC-MS: column	$[\alpha]_{D}^{25.0} = 22.45$	96%
		Chiraldex β-DM,	(c = 0.44 in	
		60°C hold 30min	CHCl₃)	
	F ~	to 175°C at		
		3°C/min. t _R =		
		21.8 min		
		(major)/23.2		
		(minor)		

7		GC-MS: column	$[\alpha]_{D}^{25.0} = 22.05$	94%
		Chiraldex β-	(c = 0.45 in	
		6TBDM, 70°C	CHCl ₃)	
		isothermal 90		
	Br 🔨	min, t _R = 94.5		
		min		
		(maior)/94.7		
		(minor)		
8	1	Chiraldex β-	$[\alpha]_{\rm D}^{25.0} = 23.96$	96%
		6TBDM, 60°C	(c = 0.41 in)	
		hold 30 min to	CHCl ₃)	
	MeO	175°C at		
		3°C/min. t _R =		
		47.0 min		
		(major)/47.4		
		(minor)		
9	I	GC-MS: column	$[\alpha]_{\rm D}^{25.0} = 18.90$	94%
		Chiraldex B-	(c = 0.36 in)	
		6TBDM. 80°C	CHCl ₃)	
	F ₃ C	isothermal 90		
		min. t _R = 16.8		
		min		
		(maior)/18.3		
		(minor)		
10		GC-MS: column	$[\alpha]_{D}^{25.0} = 25.14$	94%
		Chiraldex β-3p,	(c = 0.36 in)	
		80°C isothermal	CHCl ₃)	
		60 min, t _R = 32.8		
		min		
		(minor)/34.1		
		(major)		
11		GC-MS: column	$[\alpha]_{D}^{25.0} = 21.58$	93%
	Br	Chiraldex β-3p,	(c = 0.45 in	
		70°C isothermal	CHCl ₃)	
		90 min, t _R = 82.2		
		min		
		(minor)/82.4		
		(major)		
12		HPLC-SFC, OJH	$[\alpha]_{D}^{25.0} = 75.06$	97%
	Ph Ph	column, 5%	(c = 0.40 in	
		MeOH, 2	CHCl ₃)	
		ml/min, 10min,		
		t _R = 5.6 min		
		(minor)/7.1		
		(major)		

13	Chiraldex β - 6TBDM, 60°C hold 30 min to 175°C at 3°C/min. t _R = 53.7 min (major)/50.9	$[\alpha]_D^{25.0} =$ 17.37(c = 0.305 in CHCl ₃)	90%
14	HPLC-SFC, OJH column, 5% MeOH, 2 ml/min, 10min, $t_R = 5.6$ min (minor)/7.1 (major)	$[\alpha]_{D}^{25.0} =$ 16.76 (c = 0.32 in CHCl ₃)	95%
15	GC-MS : column Chiraldex β -DM, 90°C isothermal 150 min t _R = 71.2 min (major)/74.6 (minor)	$[\alpha]_{D}^{24.0} =$ +41.0 (c = 0.83 in CHCl ₃)	95%

5.¹H and ¹³C NMR spectroscopic data of the substrates

S28

S30

S34

80 90 80 70 f1 (ppm) 70

NMR spectroscopic data for intermediates of Iridium complexes.

S45

290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 fl (ppm)

290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm)

290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 fl (ppm)

290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm)

290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm)

290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm)

290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 11 (ppm)

290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm)

S87

6. ¹H and ¹³C NMR spectroscopic data for the hydrogenated products

All the hydrogenated products in this study have been reported.

S94

7.¹H and ¹³C NMR spectroscopic data of (S)-(+)-curmurene

8. GC and SFC Chromatograms

Print Date: 28 Dec 2017 18:43:10

Print Date: 28 Dec 2017 18:25:48

Print Date: 29 Dec 2017 14:48:24

Print Date: 29 Dec 2017 14:51:11

Print Date: 28 Dec 2017 18:46:13

Print Date: 28 Dec 2017 18:52:26

Print Date: 29 Dec 2017 09:58:25

Print Date: 29 Dec 2017 14:44:53

Print Date: 28 Dec 2017 18:19:49

Print Date: 28 Dec 2017 18:23:03

SFC chromatograp

9. NMR spectra and chromatograms for the competition study

Print Date: 30 Dec 2017 14:55:22

Print Date: 30 Dec 2017 14:57:04

10. Additional experiments for mechanistic study.

OH	0.5 mol% catalyst HC-3 additive	
TMS	CH_2CI_2 , H_2 balloon 10mins r.t.	(d)
10	hen degas and add substrate, r.t. i	n (*)
1d		
Entry	additive	conversion
1	none	>99%
2	DTBMP (10 mol%)	no conv.
3	TEMPO (10 mol%)	17%

Separeted experiments for Peterson elimination (Step 1)

Note: a)reaction carried out in 0.05 mmol scale, conversion determined by ^{1}NMR .

b)DTBMP = 2,6-di-tert-butyl-4-methylpridine. c)TEMPO = (2,2,6,6-tetramethylpiperidin-1-yl)oxyl.

d) Experimental procedure: A 5 ml vial was charged with Ir complex and sealed with rubber septum. It was then purged by three successive vacuum/nitrogen sequences and then filled with H₂ (connected with a hydrogen balloon). CH_2Cl_2 (0.5ml) was added, then stirred for 10 mins, during which time the orange solution became yellow. Then the hydrogen balloon was removed and the solution was degassed through three freeze-pump-thaw cycles, a solution of the substrate in 0.5 ml CH_2Cl_2 was added, the reaction was stirred under nitrogen for 1h.

Results discussion:

1. When the β -hydroxy silane was added to the catalyst, activated by hydrogen gas, in CH₂Cl₂, full conversion to the terminal olefin was obtained, with no hydrogenated product being observed.

2. When the experiment was carried out with a bulky non-coordinating base DTBMP (10 mol%) as an additive, no trace of the terminal olefin was detected. This result further supports the assumption that the free proton is responsible for Peterson elimination.

3. When the experiment was carried out with an Ir-H trap TEMPO (10 mol%) as an additive, 17% conversion to the terminal olefin is still obtained. Although not conclusive, this result further supports the assumption that Ir-H is not directly responsible for the Peterson elimination.

NMR results:

Separated experiments for asymmetric hydrogenation of terminal olefins (Step 2)

$R_{2} \xrightarrow[l]{I} R_{1} \xrightarrow{0.5 \text{ mol\% catalyst HC-3}}{1 \text{ bar H}_{2}, \text{ r.t. 2h}} R_{2} \xrightarrow[l]{I} R_{1}$					
Entry	substrate	conversion	ee ^a	ee ^b	
1	R ₁ =Et, R ₂ =H	>99%	94%	94%	
2	R ₁ =Et, R ₂ =4-OMe	>99%	98%	97%	
3	R ₁ = <i>t-</i> Bu, R ₂ =H	>99%	99%	99%	

Note: a)terminal olefin was used as the substrate.

b) β -hydro silane was used as the substrate.

11. References

1 TMSCH₂MgCl was prepared by following the procedure reported in: Yoshida, S.;

Nakamura, Y.; Uchida, K.; Hazama, Y.; Hosoya, T. Org. Lett. 2016, 18, 6212.

² Johnson, C. R. and Tait, B. D. J. Org. Chem. 1987, 52, 281.

³ Mazuela, J.; Pàmies, O.; Diéguez, M. Chem. Cat. Chem 2013, 5, 2410.

⁴ Biosca, M.; Paptchikhine, A.; Pàmies, O.; Andersson, P. G.; Diéguez, M. *Chem.-Eur. J.* **2015**, *21*, 3455.

⁵ Forman, G. S.; Ohkuma, T.; Hems, W. P.; Noyori, R. *Tetrahedron Lett.* 2000, *41*, 9471.

⁶ T. Nishimura, Y. Yasuhara, T. Sawano and T. Hayashi, *J. Am. Chem. Soc.*, 2010, **132**, 7872.