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1. Deep characterization of the human cortex transcriptome 

We used Ensembl v75 annotation to quantify the normalized expression (via reads per kilobase 
per million reads mapped, RPKM) of 615,410 exons across 63,677 genes, and guided transcript 
assembly within and across samples to identify and quantify 188,578 transcripts with at least 
modest expression across all of the samples1.  Only approximately half of the assembled 
transcripts were found in Ensembl annotation (N=100,932, 53.5%), while 41.8% (N=78,751) 
consisted of transcripts with novel splicing patterns. We also more directly interrogated the 
spliced alignments, which supported 3,582,199 unique exon-exon splice junctions across the 
495 samples. We defined four classes of splice junctions based on the Ensembl gene/transcript 
annotation – present/existing, exon skipping, alternative exonic boundary, and completely novel 
(Figure S2, Table S2), and found moderate expression of many potentially unannotated 
transcripts in brain. To assess the replication and brain specificity of our findings, we identified 
junctions in both the brain samples from the GTEx project (N=1,393 samples from 201 
individuals) and lymphoblastoid cell lines (LCLs) from the GEUVADIS project (N=666, see 
Methods). Overall, we find extensive replication in human brain GTEx samples of annotated 
junctions (95.0%), and high replication of potentially novel transcripts that capture exon skipping 
(75.6%) or alternative exonic boundaries (65.8%), with extremely high replication (>95%, Table 
S2). Much of this novel transcriptional activity appeared relatively-brain specific, as few 
junctions identified in DLPFC were present only in GEUVADIS LCLs and not GTEx brain 
samples further suggesting that this degree of junction discovery was not largely driven by 
alignment software. We lastly defined “expressed regions” (ERs) of contiguously expressed 
sequence – these ERs and junctions together can “tag” elements of transcripts in the data that 
are not constrained by limitations or incompleteness of existing annotation. 

 

2. Developmental regulation of human brain transcription 

We sought in this study to more fully characterize developmental regulation of transcription 
across human brain development and aging, and modeled dynamic expression in 320 control 
samples using flexible linear splines in each of the five expression summarizations (see 
Methods). We found widespread developmental regulation across all five features (Table S3) 
corresponding to 28,127 unique Ensembl genes (across 19,515 gene symbols), including a core 



set of 15,334 Ensembl genes with all five features showing convergent expression association 
with development/aging (Figure S3). There were 64,397 previously unannotated expressed 
features corresponding to the majority of genes (14,295 gene IDs to 13,085 symbols) with 
genome-wide significant dynamic expression across brain development in these subjects (Table 
S4), suggest putative biological importance to at least a subset of this unannotated sequence. 
The majority of these unannotated features were identified using the exon-exon splice junction 
counts (N= 26,482, 41.1%) of which 18,350 junctions (69.3%) tagged alternative exonic 
boundaries and 8,132 junctions (30.7%) corresponding to exonic skipping, while there were 
23,094 differentially expressed regions (DERs, 35.9%) that correspond to alternative exonic 
boundaries and 14,821 transcripts of which 13,862 (93.5%) correspond to exonic skipping novel 
isoforms. 

We further performed sensitivity analyses to assess the effects of RIN on differential expression 
across the lifespan in our spline modeling. Statistically adjusting the age spline model for RIN 
changed very little of the inference – at the gene level, there were 21710 genes at Bonferroni 
significance compared to the 22209 genes reported in the text without the RIN adjustment 
(similar comparisons were seen at the other four feature summarization levels). 

 

 

 

 

3. eQTL maps of the human frontal cortex 

We hypothesized that, in general, analyzing transcript features like exons and junctions 
would increase statistical power for eQTL discovery if genetic variation regulated the expression 
levels of specific mRNA transcripts. At the gene-level, which collapses data from all transcripts 
into a single measure and is the most commonly implemented feature for eQTL discovery, the 
vast majority of expressed genes were associated with the expression of at least one nearby 
genetic variant. There were eQTLs to 6748 Ensembl Gene IDs (of which 4955 genes had HGC 
symbols) at stringent Bonferroni-adjusted significance (p < 8.41x10-9, see Methods), and eQTLs 
to 18,416 Ensembl Gene IDs at more liberal FDR < 1% significance (p < 1.84x10-4). However, 
we found a larger number of genes with eQTLs using exon-level analysis – 48,031 exons 
mapping to 8386 Ensembl IDs - at Bonferroni significance (“eExons”, p < 7.64x10-10). 
Interestingly, while transcript-specific by nature, we actually found the fewest eQTLs to 
assembled-and-quantified transcripts (3,263 eTxns at p < 1.73x10-9), in line with previous 
reports highlighting the difficulties in merging assemblies across many samples19.  Lastly, there 
were an additional 3,022 eGenes identified with exon-level analysis compared to the 5364 
eGenes identified with both summarization levels. 

Among the 18908 junctions with eQTL signal at Bonferroni significance (“eJxns”, p<1.1x10-

9), 21.6% (N=4089) were previously unannotated, including 1312 eJxns to exon-skipping 
splicing events and 2777 eJxns to shifted exonic boundaries (acceptor or donor splice sites). 



The eJxns also highlight a large degree of potential transcript specificity, both in the 4089 
unannotated junctions as well as 3388 additional annotated eJxns that delineate individual 
transcript isoforms (when multiple isoforms are present for the gene). At the expressed region-
level, among the 27,643 ERs with eQTL signal at Bonferroni significance (“eERs”, p<1.28x10-9), 
14,890 were either fully or partially unannotated, with partial events including 4521 exon 
extensions into neighboring intronic sequence and 769 extended untranslated regions (UTRs) 
and fully unannotated events being strictly intronic (N=6,255) and intergenic (N=3,345) 
sequences. These two feature classes also had the largest eQTL effect sizes of the tested 
features, with 41.4% and 29.2% change in expression per allele copy for eJxns and eERs. 
Lastly, we found that 1,042 Ensembl genes had eQTLs exclusively to unannotated sequence 
with no corresponding eQTL signal to annotated features in the genes. 

 
4. Expression associations with chronic schizophrenia illness  

Given the apparent lower RNA quality of patient samples in virtually all schizophrenia brain 
case control studies including our own (see Table S1), we filtered the 384 samples above age 
17 (209 controls and 175 patients) to a subset of 351 higher quality samples (196 controls and 
155 cases) using metrics of age, ancestry, RNA quality, and cryptic ancestry (see Methods). 
Even after filtering, using gene-level expression, univariate comparisons between SCZD 
patients and controls identified 12,686 genes differentially expressed (DE) at a false discovery 
rate (FDR) < 5%, suggesting a large degree of bias. Regression modeling, adjusting for age, 
sex, ancestry, and observed RNA quality (see Methods) reduced the extent of confounding, 
resulting in 1,988 genes DE between patients and controls at FDR < 5%.  We identified the 
largest number of significant and replicated DE features using exon counts (N=274) followed by 
gene counts (N=170) and expressed region counts (N=110).  Very few DE junctions (N=2) and 
no DE transcripts were identified and independently replicated, which likely highlight the 
decreased statistical power using these approaches when annotated features are differentially 
expressed (see Discussion). Approximately one half of the genes annotated by these DE 
features were identified using gene-level summarization only (86/170, 50.6%), which utilize the 
largest number of reads collapsed across all possible transcript isoforms (Table S11). The 
majority of genes with DE signal were only supported by a single summarization type across 
both Ensembl IDs (142/237, 59.9%) and gene symbols (119/209 56.9%, Table S11). 

Interestingly, analogous analyses for developmental regulation of schizophrenia-associated 
features without adjusting for the RNA quality qSVs were significant in the opposite directions, 
namely that schizophrenia-associated changes were further from, rather than closer to, fetal 
expression levels, which would be predicted as an effect of residual RNA quality confounding 
(as the quality of the samples were ranked fetal > adult control > adult SZ, see Table S1).  This 
directional difference in RNA quality between fetal and postnatal samples is also typical of 
earlier studies.  

 

5. GWAS implications of illness-associated expression differences 



Only two genes in the 108 significant schizophrenia GWAS loci (KLC1 and PPP2R3A) 
had expression features significantly differentially expressed and replicated. To potentially 
identify more subtle associations within these GWAS risk regions, we performed an exploratory 
“feature set” analysis (analogous to traditional gene set analyses) comparing the schizophrenia 
differential expression statistics of all expressed features within the loci to those outside the loci. 
We  found decreased expression of the 15,050 expressed features within the risk loci in patients 
compared to controls, relative to the 996,775 expressed features outside of the loci, adjusting 
for mean expression level (Figure S8A, p =3.32x10-36, Table S13). While the absolute set-level 
effect sizes were small, these GWAS region-level associations were largely consistent when 
stratified by summarization type, with the exception of transcript counts which showed no 
association. Of particular importance is the observation that these findings also were only 
significant after quality adjustment in the differential expression analysis (Figures S8B-F) – 
analyses adjusting for only the usual observed confounders (e.g. clinical covariates and 
observed quality variable)  showed no enrichment  among PGC risk regions (p=0.2, Table S13). 
Therefore, while many of the case-control expression differences that meet both genome-wide 
statistical significance and replication criteria may be related to schizophrenia treatment and 
epiphenomena and depleted for GWAS regions, some differences in expression in some 
subsets of patient populations might be related to genetic risk for the disorder, though the 
biological interpretation of the feature distribution differences is not clear. Larger studies can 
likely improve power to detect expression changes within the GWAS risk regions amidst the 
clinical and molecular heterogeneity of schizophrenia. 
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