Supplementary Online Content

Hanna GB, Boshier PR, Markar SR, Romano A. Accuracy and Methodologic Challenges of Volatile Organic Compound–Based Exhaled Breath Tests for Cancer Diagnosis: A Systematic Review and Pooled Analysis. *JAMA Oncol.* Published online August 16, 2018. doi:10.1001/jamaoncol.2018.2815

Supplement. eTable 1. Search strategy for cancer systematic review

eTable 2. Modification of QUADAS-2 assessment tools

eTable 3. QUADAS-2 results

eTable 6. STARD assessment of each study

eTable 7. Summary of factors reported to influence levels of volatile organic compounds within exhaled breath

eFigure 1. Risk of bias and applicability concerns using QUADAS-2

eFigure 2. PRISMA flowchart of literature search

eTable 4. Details of studies on exhaled volatile organic compounds in cancer

eTable 5. Cancer VOCs in exhaled breath and their chemical class.

eFigure 3. Chemical classes of VOCs reported in different tumor sites.

This supplementary material has been provided by the authors to give readers additional information about their work.

eTable 1. Search strategy for cancer systematic review

#	Search
1	(cancer or neoplasm* or malignancy).ab.
2	limit 1 to abstracts
3	limit 2 to cochrane library [Limit not valid in Ovid MEDLINE(R),Ovid MEDLINE(R) Daily
	Update,Ovid MEDLINE(R) In-Process,Ovid MEDLINE(R) Publisher; records were retained]
4	limit 3 to english language
5	limit 4 to human
6	limit 5 to yr="2000 -Current"
7	limit 6 to humans
8	(cancer or neoplasm* or malignancy).ti.
9	limit 8 to abstracts
10	limit 9 to cochrane library [Limit not valid in Ovid MEDLINE(R),Ovid MEDLINE(R) Daily
	Update,Ovid MEDLINE(R) In-Process,Ovid MEDLINE(R) Publisher; records were retained]
11	limit 10 to english language
12	limit 11 to human
13	limit 12 to yr="2000 -Current"
14	limit 13 to humans
15	7 or 14
16	(volatile organic compound* or VOC* or Breath or Exhaled).ab.
17	limit 16 to abstracts
18	limit 17 to cochrane library [Limit not valid in Ovid MEDLINE(R),Ovid MEDLINE(R) Daily
	Update,Ovid MEDLINE(R) In-Process,Ovid MEDLINE(R) Publisher; records were retained]
19	limit 18 to english language
20	limit 19 to human
21	limit 20 to yr="2000 -Current"
22	limit 21 to humans
23	(volatile organic compound* or VOC* or Breath or Exhaled).ti.
24	limit 23 to abstracts
25	limit 24 to cochrane library [Limit not valid in Ovid MEDLINE(R),Ovid MEDLINE(R) Daily
20	Update,Ovid MEDLINE(R) In-Process,Ovid MEDLINE(R) Publisher; records were retained]
26	limit 25 to english language
27	limit 26 to human
28	limit 27 to yr="2000 -Current"
29	limit 28 to humans
30	22 or 29 15 and 30
31 32	
3Z	remove duplicates from 31

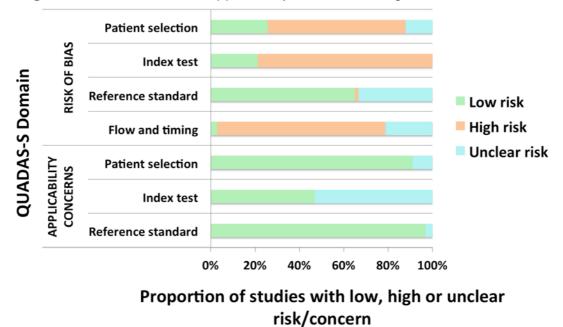
Description of the modification and application of QUADAS-2

			DAS-2 assessment too	13
		QUADAS-2	QUADAS-2 (modified)	
		Was a consecutive or random sample of patients enrolled?	Were sampled (A patients m representative of the intended population?	
	Patien t selecti on	Was a case-control design avoided?	Did the study include (A both positive (benign conditions) as well as healthy controls?	
		Did the study avoid inappropriate exclusions?		Jn
	Index test	Were the index test results interpreted without knowledge of the results of the reference standard?	Was the index test (A and interpretation of data performed in standardised and reproducible fashion?	1)
		If a threshold was used, was it pre- specified?	Validation of results (A performed (internal or m external)?	1)
	Refere	Is the reference standard likely to correctly classify the target condition?	standard likely to) correctly classify the target condition?	Jn
	nce standa rd	Were the reference standard results interpreted without knowledge of the results of the index test?	-	1)*
		Was there an appropriate interval between index test and reference standard?	Was there an (L appropriate interval) between index test and reference standard?	Jn
	Flow and timing	-		Ad
		Did all patients receive the same reference standard?	Didallpatients(Lreceivethesame)referencestandard?	Jn
		Were all patients included in the analysis?	Were all patients (L included in the) analysis?	Jn
	Patien t selecti	Are there concerns that the included patients and setting	that the included) patients and setting	Jn
	on	do not match the review question? Are there concerns	do not match the review question? Are there concerns (A	
אדו ווסא כו וססא	Index test	that the index test, its conduct, or interpretation differs from the review question?	that the authors have m not demonstrated suitable reproducibility and sensitivity of the chosen index test?	1)

eTable 2. Modification of QUADAS-2 assessment tools

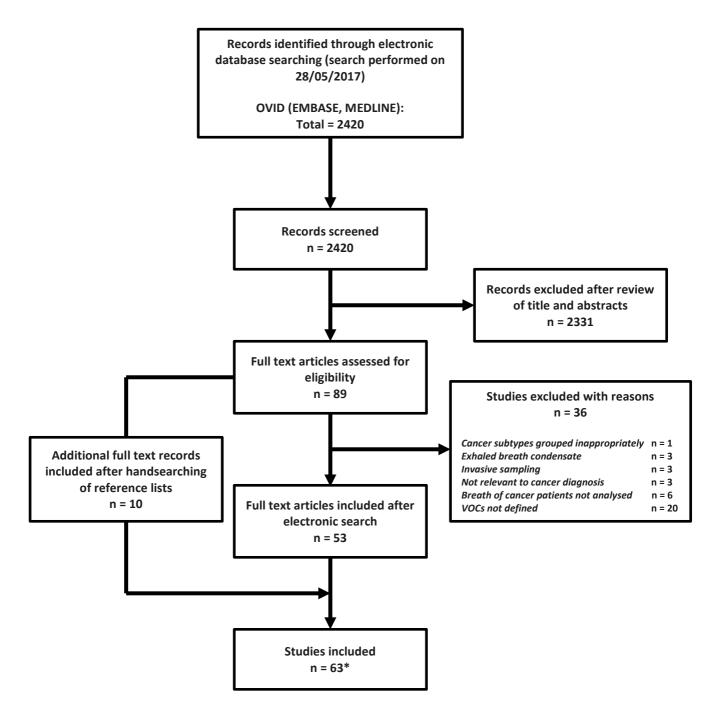
		Are there concerns Are there concerns (Un									
Re	fere	that the target that the target)									
nc	е	condition as defined condition as defined									
sta	anda	by the reference by the reference									
rd		standard does not standard does not									
		match the question? match the question?									
Am = a	amendn	nent. Om = omitted. Ad = addition. Un = unchanged. *Criteria omitted									
		ble in the case of phase 1 biomarker discovery studies									
		ESTION									
		on: human subLects									
		VOC analysis within exhaled breath									
Refere	nce sta	andard: the accepted standard for diagnosis of cancer and/or benign									
		disease in that field									
Target	condition	on: cancer									
Setting	Setting: hospital, medical centre										
Intende	ed use o	use of the index test: diagnostic									
Patient	Patient presentation: routine investigation for symptoms of malignancy										
Prior te	esting: r	not applicable									

eTable 3. QUADAS-2 results													
			RISK	OF BIA	S			ICABIL					
			Pati ent sele ctio n	Inde x Test	Ref ere nce stan dar d	Flo w and timi ng	Pati ent sele ctio n	Inde x test	Ref ere nce stan dar d				
1	Barash 2015	В	L	L	?	н	L	L	L				
2	Li 2014	В	L	L	L	Н	L	L	L				
3	Mangler 2012	В	Н	Н	?	?	?	?	?				
4	Peng 2010	В	Н	Н	L	Н	?	L	L				
5	Phillips 2003	В	?	L	L	Н	L	?	L				
6	Phillips 2006	В	L	L	L	Н	L	?	L				
7	Wang 2014	В	L	L	L	?	L	?	L				
8	Amal 2015	0	L	L	?	Н	L	?	L				
9	Peng 2010	Ρ	н	Н	L	Н	?	L	L				
1 0	Guo 2015	Т	Н	Н	?	?	L	?	L				
1 1	Gruber 2014	H & N	L	н	L	н	L	?	L				
1 2	Hakim 2011	H & N	Н	н	L	н	L	L	L				
1 3	Bouza 2017	О с	н	Н	?	Н	L	L	L				
1 4	Szabó 2015	O c	Н	Н	?	?	L	L	L				
1	Altomar	Cr	Н	L	L	?	L	?	L				


5	e 2013								
1 6	Amal 2015	Cr	©	Н	L	Н	L	L	L
1 7	Peng 2010	Cr	Н	Н	L	Н	?	L	L
1 8	Wang 2014	Cr	Н	Н	L	Н	L	?	L
1 9	Abela 2009	E & G	Н	Н	L	Н	L	?	L
2 0	Kumar 2013	E & G	L	Н	L	L	L	L	L
2 1	Kumar 2015	E & G	L	Н	L	L	L	L	L
2 2	Amal 2013	G	L	Н	L	Н	L	L	L
2 3	Amal 2016	G	L	Н	L	?	L	L	L
2 4	Xu 2013	G	L	Н	L	Н	L	L	L
2 5	Qin 2010	Li	L	Н	L	Н	L	?	L
2 6	Garcia 2014	L a	Н	Н	?	?	L	L	L
2 7	BaLtare vic 2009	L u	Н	Н	?	Н	L	Û	L
2 8	Bousa mra 2014	L u	Н	Н	?	Н	L	?	L
2 9	Buszew ski 2011	L u	Н	Н	L	Н	L	?	L

3 0	Buszew ski 2012	L u	н	Н	?	?	L	L	L
3 1	Chen 2005	L u	?	Н	?	Н	L	?	L
3 2	Corradi 2015	L u	Н	Н	L	Н	L	?	L
3 3	Crohns 2009	L u	Н	Н	L	Н	L	?	L
3 4	Deng 2004	L u	Н	Н	?	?	L	L	L
3 5	Feinber g 2016	Lu	Н	Н	L	Н	L	?	L
3 6	Filipiak 2014	L u	Н	Н	L	Н	L	L	L
3 7	Fu 2014	L u	?	Н	?	Н	L	?	L
3 8	Fuchs 2010	L u	Н	Н	?	Н	L	L	L
3 9	Gaspar 2009	Lu	Н	Н	?	?	L	?	L
4 0	Handa 2014	Lu	Н	Н	L	Н	L	?	L
4 1	Kischke I 2010	Lu	Н	Н	Н	?	L	L	L
4 2	Li 2015	L u	?	L	L	Н	L	?	L
4 3	Ligor 2009	L u	н	Н	?	Н	L	L	L
4 4	Ligor 2015	L u	Н	Н	L	Н	L	L	L
4 5	Ma 2014	L u	Н	Н	?	Н	L	?	L
4 6	Ma 2015	L u	Н	Н	?	?	?	?	?

4 7	Peled 2012	L u	?	Н	L	Н	L	?	L
4 8	Peng 2009	L u	н	Н	L	Н	L	L	L
4 9	Peng 2010	L u	н	Н	L	Н	?	L	L
5 0	Phillips 2003	L u	L	L	L	Н	L	?	L
5 1	Phillips 2007	L u	н	L	L	Н	L	?	L
5 2	Phillips 2008	L u	н	L	L	Н	L	?	L
5 3	Poli 2005	L u	L	Н	L	Н	L	?	L
5 4	Poli 2010	L u		L	L	Н	L	L	L
5 5	Rudnick a 2011	L u		Н	?	Н	L	L	L
5 6	Sakum ura 2017	L u		Н	?	?	L	?	L
5 7	Schalls chmidt 2016	L u		Н	?	?	L	L	L
5 8	Schum er 2015	L u	?	Н	L	Н	L	?	L
5 9	Schum er 2016	L u	н	Н	L	Н	L	?	L
6 0	Skeldon 2006	L u	?	Н	L	Н	L	L	L
6 1	Song 2010	L u	Н	Н	L	Н	L	L	L
6 2	Ulanow ska 2011	L u	Н	Н	L	Н	L	?	L


6 3	Wang 2012		L u	?	Н		L	Н	L	?	L
6 4	Wehing er 2007		L u	Н	L		L	Н	L	?	L
6 5	Zou 2014		L u	L	L		L	Н	L	?	L
6 6	de Genna o 2010		M L		н		L	Н	L	L	L
L	Low rsk	Η	High	n risk	?	U	nclear ri	sk			
ga	B, breast; O, ovarian; P, prostate; Cr, colorectal; E&G, esophageal & gastric; G, gastric; Oc, oral cavity; H&N, head& neck; T, thyroid; Li, liver; La, laryngeal; Lu, lung; M, mesothelioma										

9

eFigure 1. Risk of bias and applicability concerns using QUADAS-2

eFigure 2. PRISMA flow chart of literature search.*One study by Peng et al., 2010 presented data for four cancer types, that are considered independently for the purpose of this review.

Aut hor Bar as h	Y e a r 2 0 1 5	Ca nc er Br ea st	Canc er patie nts (No.) 80	Bio mar ker pha se 1	Anal ytical platf orm GC- MS	Volatile organic compounds Ethanol; Heptane; 2-propenoic acid, butyl ester; 6-methyl-5-Hepten-2-one	Se ns iti vit y 78 a	S pe cif ici ty 61 a	A U C 0 . 7 9 a	ST AR D sc ore 17	R e f
Li	2 0 1 4	Br ea st	22	1	GC- MS	Hexanal; heptanal; octanal; nonanal	68 •2 a	91 •7 a	0 9 0 2 5	20	2
Ma ngl er	2 0 1 2	Br ea st	10	1	GC- MS	3-methylhexane; decene ^c ; caryophyllene ^c ; naphthalene ^c ; trichlorethylene ^c	-	-	-	12	3
Pe ng*	2 0 1 0	Br ea st	14	1	GC- MS	3,3-dimethyl pentane; 2-amino-5-isopropyl-8-methyl-1-azulenecarbonitrile; 5-(2- methypropyl)nonane; 2,3,4-trimethyl decane; 6-ethyl-3-octyl ester 2-trifluoromethyl benzoic acid	-	-	-	14	4
Phi Ilip s	2 0 0 3	Br ea st	51	1	GC- MS	Nonane; tridecane; 5-methyl undecane; 3-methyl pentadecane; 6-methyl propane; 2- methyl nonadecane, 3-methyl dodecane, 4-methyl octane, 2-methyl	88 •2 a	73 .8 a	-	18	5
Phi Ilip s	2 0 0 6	Br ea st	51	1	GC- MS	2-propanol; 2,3-dihydro-1-phenyl-4(1H)-quinazolinone; 1-phenyl-ethanone; heptanal; isopropyl myristate	93 .8 a	84 •6 ª	0 9 a	13	6
Wa ng	2 0 1 4	Br ea st	39	1	GC- MS	Cyclohexanone; 1,4-Dimethoxy-2,3-butanediol; 2,5,6-trimethyloctane	-	-	-	14	7

eTable 4. Details of studies on exhaled volatile organic compounds in cancer

Am al	2 0 1 5	Ov ari an	48	1	GC- MS	Decanal; nonanal; styrene; 2-butanone; hexadecane	-	-	-	14	8
Pe ng*	2 0 1 0	Pr ost ate	13	1	GC- MS	Toluene; 2-amino-5-isopropyl-8-methyl-azulene carbonitrile; p-xylene; 2,2-dimethyl decane	-	-	-	14	4
Gu o	2 0 1 5	Th yro id	39	1	GC- MS	Cyclohexanone; 4-hydroxybutyric acid; phenol; 2,2-dimethyldecane; ethylhexanol; ethyleneglycol mono vinyl ester; cyclopropane; 1-bromo-1-(3-methyl-1-pentenylidene)-2,2,3,3-tetramethyl	10 0 ^a	10 0 ^a	1 • 0 a	13	9
Gr ub er	2 0 1 4	H& N	22	1	GC- MS	Ethanol; 2-propenenitrile; undecane	-	-	-	15	1 0
Ha ki m	2 0 1	H& N	8	1	GC- MS	4,6-dimethyl-dodecane; 2,2-dimethyl-propanoic acid; 5-methyl-3-hexanone; 2,2- dimethyl-decane; limonene; 2,2,3-erimethyl-, exo- bicyclo[2·2·1]heptane	-	-	-	12	1
Bo uza	2 0 1 7	Or al ca vity	26	1	GC- MS	Undecane; dodecane; decanal; benzaldehyde; 3,7-dimethylundecane; 4,5-dimethyl- nonane; 1-octene; hexadecane	-	-	-	11	1 2
Sz ab ó	2 0 1 5	Or al ca vity	14	1	Porta ble GC	Hydrogen sulphide; Isoprene; Methyl mercaptan; Dimethyl sulphide; Acetaldehyde ^d	-	-	-	11	1 3
Alt om are	2 0 1 3	Col ore cta I	37	1	GC- MS	Nonanal; 4-methyl-2-pentanone; decanal; 2-methylbutane; 1,2-pentadiene; 2- methylpentane; 3-methylpentane; methylcyclohexane; 1,3-dimethylbenzene; 4- methyloctane; 1,4-dimethybenzene; 4-methylundecane; trimethyldecane	86 a	83 a	0 8 5 2 a	20	1 4
Am al	2 0 1 6	Col ore cta I	65	1	GC- MS	Ethanol; acetone; ethyl acetate; 4-methyl octane	-	-	-	20	1 5

Pe ng*	2 0 1 0	Col ore cta I	22	1	GC- MS	1,1-(1-butenylidene)bis benzene; 1,3-dimethyl benzene; 1-iodo nonane; [(1,1-dimethylethylthio] acetic acid; 4-(4-propylcyclohexyl)-4-cyano[1,1'-biphenyl]-4-yl ester benzoic acid; 2-amino-5-isopropyl-8-methyl-1-azulenecarbonitrile	-	-	-	14	4
Wa ng	2 0 1 4	Col ore cta I	20	1	GC- MS	Cyclohexanone; 2,2-dimethyldecane; dodecane, 4-ethyl-1-octyn-3-ol; ethylaniline; cyclooctylmethanol; trans-2-dodecen-1-ol; 3-hydroxy- 2,4,4-trimethylpentyl 2-methylpropanoate; 6-t-butyl-2,2,9,9-tetramethyl-3,5-decadien-7-yne	-	-	-	13	1 6
Ab ela	2 0 0 9	O G	20	1	TDLS	Ethane ^d	-	-	-	14	1 7
Ku ma r	2 0 1 3	O G	18	1	SIFT- MS	Hexanoic acid; phenol; methyl-phenol; ethyl-phenol	-	-	0 9 1	18	1 8
Ku ma r	2 0 1 5	O G	81	1	SIFT- MS	Pentanoic acid; hexanoic acid; phenol; methyl phenol; ethyl phenol; butanal; pentanal; hexanal; heptanal; octanal; nonanal; decanal	86 .7 a	81 •2 a	0 8 7 a	22	9
Am al	2 0 1 3	Ga stri c	74 ^e	1	GC- MS	2-Propenenitrile; 2-butoxy-ethanol; furfural; 6-methyl-5-hepten-2-one; isoprene; styrene; 6-methyl-5-hepten-2-one; 2-ethyl-1 hexanol; Nonanal	-	-	-	15	2 0
Am al	2 0 1 6	Ga stri c	99	1	GC- MS	2-propenenitrile; furfural; 2-butoxy-ethanol; hexadecane; 4-methyl-octane; 1,2,3-tri- methyl-benzene; a-methyl-styrene; 2-butanone ^f	-	-	-	20	2 1
Xu	2 0 1 3	Ga stri c	37	1	GC- MS	2-propenenitrile; furfural; 6-methyl-5-hepten-2-one	-	-	-	21	2 2
Qin	2 0 1 0	Liv er	30	1	GC- MS	3-hydroxy-2-butanone; styrene; decane	83 .3 a	91 •7 a	-	18	2 3
Ga rci	2 0	Lar yn	10	1	GC- MS	Ethanol; 2-butanone; 2,3-butanediol; 9-tetradecen-1-ol; octene derivative; cycloheptane derivative; cyclononane derivative	-	-	-	8	2 4

а	1 4	ge al									
Baj tar evi c	2 0 0 9	Lu ng	220/6 5	1	PTR- MS/ GC- MS ⁹	2-butanone; benzaldehyde; 2,3-butanedione; 1-propanol; 3-hydroxy-2-butanone; 3- butyn-2-ol; 2-mthylbutane; 2-butene, 2-methyl; acetophenone; 1-cyclopentene; methyl propyl sulfide; Urea, tetramethyl-n-pentanal; 1-methyl-1,3 cyclopentadience; 2,3- dimethyl-2-butanol; 1,2,3,4-tetrahydro-isoquinoline; 3,7-dimethyl-undecane; cyclobutyl- benzene; butyl acetate; ethylenlmine; n-undecane; isoprene ^h ; acetone ^h ; methanol ^h	80 i	10 0 ⁱ	-	11	2 5
Bo us am ra	2 0 1 4	Lu ng	107	1	FT- ICR- MS	2-butanone; 3-hydroxy-2-butanone; 2-hydroxyacetaldehyde; 4-hydroxyhexenal	28	10 0	0 8 6	13	2 6
Bu sze ws ki	2 0 1 1	Lu ng	115	1	GC- MS	Ethanol; acetone; carbon disulfide; dimethyl sulfide; 2-propanol; 2-butanone; 2- pentanone; acetonitrile ^j ; 1-propanol ^j	-	-	-	12	2 7
Bu sze ws ki	2 0 1 2	Lu ng	29	1	GC- MS	Acetone; benzene; butanal; 2-butanone; ethyl acetate; ethylbenzene; furan; 2- pentanone; propanal; 1-propanol; 2-propanol; 2-propenal	-	-	-	5	2 8
Ch en	2 0 0 5	Lu ng	5	1	SAW sens or	Styrene; decane; isoprene; benzene; undecane; hexanal; 1,2,4-trimethyl benzene; heptanal	-	-	-	6	2 9
Co rra di	2 0 1 5	Lu ng	71	1	GC- MS	Ethyl benzene; hexane; trans-2-nonenal	-	-	-	22	3 0
Cr oh ns	2 0 0 9	Lu ng	11	1	GC- MS	Pentane	-	-	-	15	3
De ng	2 0 0 4	Lu ng	10	1	GC- MS	Hexanal; heptanal	-	-	-	7	3 2

Fei nb erg	2 0 1 6	Lu ng	22	1	PTR- MS	m/z 61 (proposed identity: acetic acid, isopropanol) ^d	-	-	-	15	3 3
Fili pia k	2 0 1 4	Lu ng	36	1	GC- MS	n-octane; n-nonane; 2,3-butanedione ^k	-	-	-	12	3 4
Fu	2 0 1 4	Lu ng	97	1	FT- ICR- MS	2-butanone; 3-hydroxy-2-butanone; 2-hydroxyacetaldehyde; 4-hydroxyhexenal	89 .8 ¹	81 •3 ¹	-	10	3 5
Fu ch s	2 0 1 0	Lu ng	12	1	GC- MS	Pentanal; hexanal; octanal; nonanal	75 m	95 .8 m	-	11	3 6
Ga sp ar	2 0 0 9	Lu ng	18	1	GC- MS	2-methylundecane; 2-methyltridecane; 2-methyltetradecane; 3-methyltetradecane; <i>n</i> -C15H32; 3-methylpentadecane; branched-C16H34; 2-methylhexadecane	10 0 ⁿ	10 0 ⁿ	-	5	3 7
Ha nd a	2 0 1 4	Lu ng	50	1	IMS	n-dodecane; 3-methyl1-1=butanol; 2-methylbutylacetat or 2-hexanol; cyclohexanon; iso- propylamin; n-nonal or cyclohexanon; ethylbenzol; hexanal; heptanal; 3-methyl-1- butanol	76	10 0	-	17	3 8
Kis ch kel	2 0 1 0	Lu ng	31	1	GC- MS	Acetonitrile; benzene; 2,5-dimethyl furan; acetone; dimethyl sulfide; dimethyl formamide; 2-methyl-1,3-butadiene; toluene; butane; propanal; butanal; hexanal; isopropanol; 1-propanol	-	-	-	8	3 9
Li	2 0 1 5	Lu ng	85	1	FT- ICR- MS and GC- MS	2-butanone; 4-hydroxy-2-hexenal; 3-hydroxy-2-butanone; hydroxyacetaldehyde; hydroxy-2-nonenal; 2-pentanone / pentanal	96 °	84 °	0 9 6 2 P	19	4
Lig or	2 0 0 9	Lu ng	65	1	GC- MS	1-propanol; 2-butanone; 3-butyn-2-ol; benzyaldehyde; 2-methyl-pentane; 3-methyl- pentane; n-pentane; n-hexane	51	10 0	-	12	4

Lig or	2 0 1 5	Lu ng	123	1	GC- MS	Butane; 2-methyl-butane; 4-methyl-octane; propane; 2-pentanone; propanal; 2,4- dimethyl-heptane; propene	63 .5 a	72 .4 a	0 6 5 a	11	4 2
Ма	2 0 1 4	Lu ng	13	1	GCx GC- FID	Acetone; isoprene; methanol; pentane; propanol		-	-	13	4 3
Ма	2 0 1 5	Lu ng	10	1	GC- MS	Toluene; ethylbenzene; p-xylene + m-xylene; o-xylene; isopropyl benzene		-	-	5	4
Pel ed	2 0 1 2	Lu ng	28	1	GC- MS	1-octene	-	-	-	13	4 5
Pe ng	2 0 9	Lu ng	40	1	GC- MS	Hydrazine-carboxamide; methyl hydrazine; ethyl alcohol; o-xylene; 1-methyl-4-(1- methylethyl)-benzene; ethylbenzene; styrene; toluene; dimethyl ether; butylated hydroxytoluene; carbonic dihydrazide; 1-methyl-2-(1-methylethyl)-benzene; 1-methyl-3- (1-methylethyl)-benzene; 1,3,5-cycloheptatriene; 3-methyl-hexane; 3-ethyl-pentane; 1,3,5,7-cyclooctatetraene; bicyclo[4.2.0]octa-1,3,5-triene; 2,3,4-trimethyl-hexane; 2,6- bis(1,1-dimethylethyl)-4-methyl-methylcarbamate phenol; 2,4-dimethyl-heptane; 4,7- dimethyl-undecane; 2,4,6-Tris(1,1-dimethyl-ethyl)-4-methylcyclohexa-2,5-dien-1-one; 2,6,6-trimethyl octane; 2-butanone; hydrazine; 1,3-pentadiene; 3,3-dimethyl-pentane; 3,3-dimethyl-hexane; 2-methyl-hexane; 3-ethyl-hexane; 2,2,3-trimethyl-hexane; ethylidene cyclopropane; 4-methyl-octane; 2-ethyl-1-hexanol; 2-ethyl-4-methyl-1- pentanol; 2,3,4-trimethyl-pentane; 2,3-dimethyl-hexane; 3-ethyl-3-methyl-2-pentanone; 2-methyl-4,6-octadiyn-3-one; 2-propyl-1-pentanol; 6,10-dimethyl-5,9-dodecadien-2-one	-	-	-	13	4
Pe ng*	2 0 1 0	Lu ng	16	1	GC- MS	1-methyl-4-(1-methylethyl)benzene; toluene; dodecane; 3,3-dimethyl pentane; 2,3,4- trimethyl hexane; 1,1'-(1-butenylidene)bis benzene		-	-	14	4
Phi Ilip s	2 0 0 3	Lu ng	67	1	GC- MS	Butane; tridecane,3-methyl; tridecane, 7-methyl; octane, 4-methyl; hexane, 3-methyl; heptane; hexane; 2-methyl; pentane; decane, 5-methyl	85 •1 ª	80 •5 a	-	19	4 7

Phi Ilip s	2 0 0 7	Lu ng	193	1	GC- MS	1,5,9-trimethyl-1,5,9-cyclododecatriene; 2,2,4-trimethyl pentan-1,3-dioldiisobutyrate; 4- ethoxy-benzoic acid, ethyl ester; 2-methyl propanoic acid; 10,11-dihydro-5H-dibenz- (B,F)-azepine; 2,5-cyclohexadiene-1,4-dione; benzene, 1,1-oxybis; 2,5-dimethyl-furan; 2,2-diethyl-1,1-biphenyl; 2,4-dimethyl-3-pentanone; trans-caryophyllene; 2,3-dhydro- 1,1,3-trimethyl-3-phenyl 1H-Indece; 1-propanol; decane, 4-methyl; diethyl ester 1,2- benzenedicarboxylic acid; 2,5-dimethyl-2,4-Hexadiene	84 •6 a	80 •0 a	0 8 8 a	18	4 8
Phi Ilip s	2 0 8	Lu ng	193	1	GC- MS	Isopropyl alcohol; 4-penten-2-ol; 1,1,2-trichloro-1,2,2-trifluoro-ethane; 2-methoxy-2- methyl-propane; 1-propene, 1-(methylthio)-, (E)-; 2,3-hexanedione; 5,5-dimethyl-1,3- hexadiene; 3-hexanone, 2-methyl-; 1H-indene, 2,3-dihydro-4-methyl-; camphor; 1,7,7- trimethyl-bicyclo[2.2.1]heptan-2-one, (1S)-; à,à4-trimethyl-3-cyclohexene-1-methanol; p- menth-1-en-8-ol; 5-isopropenyl-2-methyl-7-oxabicyclo[4.1.0]heptan-2-ol; à Isomethyl ionone; 2,2,7,7-tetramethyltricyclo[6.2.1.0(1,6)]undec-4-en-3-one; 2,2,4-trimethyl-1,3- pentanediol diisobutyrate; 4-ethoxy-benzoic acid, ethyl ester; bicyclo[3.2.2]nonane-1,5- dicarboxylic acid, 5-ethyl ester; pentanoic acid, 2,2,4-trimethyl-3-carboxyisopropyl, isobutylester propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3-; propanediyl ester; 3,3,6,6-tetraphenyl-1,2,4,5-tetroxane; benzophenone; 2,6-bis(1,1-dimethylethyl)-4- ethylidene-2,5-cyclohexadien-1-one; 2-[(2-ethoxy-3,4-dimethyl-2-cyclohexen-1-ylidene) methyl]-furan; 1,1-(1,2-cyclobutanediyl)bis-, cis-Benzene; 1,1-[1- (ethylthio)propylidene]bis-benzene; 1,2,3,4-tetrahydro-9-propyl-anthracene; 2-ethyl-9,10- anthracenediol; 1,1-ethylidenebis 4-ethyl-benzene	84	81	0 9	15	9
Pol i	2 0 0 5	Lu ng	36	1	GC- MS	2-methylpentane; pentane; ethylbenzene xylenes total; trimethylbenzene; toluene; benzene; decane; octane; pentamethylheptane	72 ·2	93 •6	-	16	5 0
Pol i	2 0 1 0	Lu ng	40	1	GC- MS	Propanal; butanal; pentanal; hexana; heptanal; octanal; nonanal	90	92 •1	-	16	5
Ru dni cka	2 0 1 1	Lu ng	23	1	GC- TOF/ MS	Isopropyl alcohol; styrene; pentanal; carbon disulfide; 2-methyl-furan; ethylbenzene; isobutane; 2-propenal; propane; 3-methyl-furan; propanal; cyclopentane; butanal; pentane	-	-	-	5	5 2
Sa ku mu ra	2 0 1 7	Lu ng	107	1	GC- MS	Hydrogen cyanide; methanol; acetonitrile; isoprene; 1-propanol	95	89	-	7	5 3

Sc hal Isc hm idt	2 0 1 6	Lu ng	37	1	GC- MS	Propanal; n-butanal; n-decanal; 1-butanol; 2-butanone; ethylbenzene	10 0 ^a	10 0 ^a	-	10	5
Sc hu me r	2 0 1 5	Lu ng	156	1	Silico n chip- MS	2-butanone; 3-hydroxy-2-butanone; 2-hydroxyacetaldehyde; 4-hydroxyhexenal	95 •5 9	64 •4 9	-	14	5 5
Sc hu me r	2 0 1 6	Lu ng	31	1	Silico n chip- MS	2-butanone; 2-hydroxyacetaldehyde; 4-hydroxyhexanol; 3-hydroxy-2-butanone	-	-	-	13	5 6
Sk eld on	2 0 0 6	Lu ng	12	1	TDLS	Ethane ^d	-	-	-	14	5 7
So ng	2 0 1 0	Lu ng	43	1	GC- MS	1-butanol; 3-hydroxy-2-butanone	95 .3 ^r	85 •4 ^r	0 9 4 ^r	13	5 8
Ula no ws ka	2 0 1 1	Lu ng	127	1	GC- MS	Pentanal; hexanal; nonane; ethanol; acetone; butane; dimethyl sulfide; isoprene, propanal; 1-propanol; 2-pentanone, furan; o-xylene; ethylbenzene; acetaldehyde; pentane; 3-methylpentane; pentane; butyrolactone; 2-methylbutane; 1-(methylthio)- propane; dimethyl sulfide; benzene; 3-methylfuran; propane; 4-methyloctane; N,N- dimethylacetamide 2,4-dimethylpentane; carbon disulfide	-	-	-	10	5 9
Wa ng	2 0 1 2	Lu ng	88	1	GC- MS	Hexadecanal; 2,6,10,14-tetramethylpentadecane; eicosane; 5-(2-methyl-) propylnonane; 7-methylhexadecane; 8-methylheptadecane; 2,6-di-tert-butyl-,4-methylphenol; 2,6,11- trimethyldodecane; 3,7-dimethylpentadecane; nonadecane; 8-hexylpentadecane; 4- methyltetradecane; 2,6,10-trimethyl tetradecane; 5-(1-methyl-)propylnonane; 2- methylnapthalene; 2-methylhendecanal; nonadecanol; 2-pentadecanone; 3,7- dimethyldecane; tridecanone; 5-propyltridecane; 2,6-dimethylnapthalene; tridecane; 3,8- dimethylhedecane; 5-butylnonane	96 •4 7 ^a	97 •4 7 ^a	0 • 9 4 9 _{a,} s	13	6 0
We hin ger	2 0 0 7	Lu ng	17	1	PTR- MS	m/z 31 (proposed identity: formaldehyde); m/z 43 (proposed identity: iso-propanol	54 t	99 t	0 9 5 u	17	6 1

Zo	2	Lu	79	1	GC-	5-(2-methyl-)propyl-nonane; 2,6-ditert-butyl-,4-methyl-phenol; 2,6,11,-trimethyl-	-	-	1	22	6
u	0	ng			MS	dodecane; hexadecanal; 8-hexyl-pentadecane,			•		2
	1	-							0		
	4								a,		
									s		
de	2	Me	13	1	GC-	Cyclopentane; cyclohexane, dodecane; xylene; toluene; decane; methyl-cyclohexane;	-	-	-	13	6
Ge	0	sot			MS	dimethyl-nonanane; benzaldehyde; limonene; b-pinene					3
nn	1	hel									
aro	0	io									
	_	ma									
*Outco	omes	reporte	ed from th	e same s	tudy. AUC	C, area under the curve. STARD, Standards for Reporting of Diagnostic Accuracy Studies. H&N, head & neck; OC	G oeso	phago	gastric	. GC-N	ИS,
						rtable GC, portable gas chromatography; TDLS, tunable diode laser absorption spectroscopy; SIFT-MS, se					
						n mass spectrometry; FT-ICR-MS, fourier transform ion cyclotron resonance mass spectrometry; SAW sensor, su					
						comprehensive two-dimensional gas chromatography with flame ionization detector; GC-TOF/MS, gas chroma	atograp	ohy tim	e-ot-tli	ight m	ass
						s spectrometry.	Compo	unde	ronort	to have	(A A A
^a Figure derived from a validated model (cancer vs. healthy control and/or benign disease). ^b Figure derived from non-validated model for all four compounds. ^c Compounds report to have a negative alveolar gradient, suggesting they are of exogenous origin. ^d Compound(s) not found to be significantly different between cancer patients and control subLects. ^e Includes patients											
presented in earlier publication by Xu etal., 2013. ^f The cut off for statistical significance was considered at <i>P</i> <0.017. ^g PTR-MS, n=220; GC-MS, n=65. ^h Compounds detected by PTR-MS.											
Figures based on the 21 compounds determined by GC-MS. Compounds considered to be of exogenous origin. Only compounds with positive alveolar gradients are reported. Sensitivity											
	and specificity determined from patients with 2 or more of the 4 VOCs raised as diagnostic for the presence of cancer. ^m For pentanal only. ⁿ Two volatile organic compounds that were used in										
the m	the model were not reported "Figures are for cancer patients vs. all non-cancer sublines is for 3-bydroxy-2-bytanone only, cancer patients vs. healthy controls who are non-smokers										

and specificity determined from patients with 2 or more of the 4 VOCs raised as diagnostic for the presence of cancer. ^mFor pentanal only. ^{In}Two volatile organic compounds that were used in the model were not reported. ^oFigures are for cancer patients vs. all non-cancer subLects. ^oFigure is for 3-hydroxy-2-butanone only, cancer patients vs. healthy controls who are non-smokers. ^oFigure is determined for a test cut off defined by ≥1 standard deviation above the mean of the control population with ≥1 elevated cancer marker. ^rFigure is for 1-butanol only. ^sFigure is for is or 1-butanol only. ^sFigure is for is or 1-butanol only. ^sFigure is for is or 1-butanol only. ^sFigure is for solver than >50yrs.

eTable 5. Cancer VOCs in exhaled breath and their chemical class.

When multiple functional groups are present, chemical class is attributed according to IUPAC priority rules (*Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013.* (2013). Cambridge: Royal Society of Chemistry. Retrieved from http://ebook.rsc.org/?DOI=10.1039/9781849733069).

Compound name	Chemical classes	References
methanol	alcohols/phenols	27,45,56
ethanol	alcohols/phenols	1,11,16,26,29,48,62
1-propanol	alcohols/phenols	27,29,30,41,43,45,51,56
isopropanol	alcohols/phenols	35,41,52,55,64
1-butanol	alcohols/phenols	57,61
2,3-butanediol	alcohols/phenols	26
3-butyn-2-ol	alcohols/phenols	27,43
3-methyl-1-butanol	alcohols/phenols	40
4-penten-2-ol	alcohols/phenols	52
1,4-dimethoxy-2,3-butanediol	alcohols/phenols	7
2-butanol,2,3-dimethyl	alcohols/phenols	27
2-butoxy-ethanol	alcohols/phenols	22,23
2-hexanol	alcohols/phenols	40
4-hydroxyhexanol	alcohols/phenols	59
phenol	alcohols/phenols	10,20,21,48
methyl-phenol	alcohols/phenols	20,21
2-ethyl-1 hexanol (all isomers)	alcohols/phenols	10,22,48
2-ethyl-4-methyl-1-pentanol	alcohols/phenols	48
2-propyl-1-pentanol	alcohols/phenols	48
cyclooctylmethanol	alcohols/phenols	18
ethyl phenol	alcohols/phenols	20,21
5-isopropenyl-2-methyl-7-oxabicyclo[4.1.0]heptan-2-ol	alcohols/phenols	52
alpha terpineol	alcohols/phenols	52
butylated hydroxytoluene	alcohols/phenols	48
trans-2-dodecen-1-ol	alcohols/phenols	18
9-tetradecen-1-ol	alcohols/phenols	26
2,6-di-tert-butyl-,4-methylphenol	alcohols/phenols	63,65
nonadecanol	alcohols/phenols	63
dodecane, 4-ethyl-1-octyn-3-ol	alcohols/phenols	18
formaldehyde	aldehyde	64
2-hydroxyacetaldehyde	aldehyde	28,37,42,58,59
acetaldehyde	aldehyde	14,62

2-propenal	aldehyde	30,55
propanal	aldehyde	30,41,44,54,55,57
butanal	aldehyde	21,30,41,54,55,57
furfural	aldehyde	22,23,24
pentanal	aldehyde	21,27,38,42,54,55,62
4-hydroxyhexenal (all isomers)	aldehyde	28,37,42,58
hexanal	aldehyde	2,21,31,34,38,40,41,54,62
benzaldehyde	aldehyde	13,27,43,66
heptanal	aldehyde	2,6,21,31,34,40,54
octanal	aldehyde	2,21,38,54
hydroxy-2-nonenal	aldehyde	42
nonanal	aldehyde	2,8,15,21,22,38,40,54
trans-2-nonenal	aldehyde	32
decanal	aldehyde	8,13,15,21,57
2-methylundecanal	aldehyde	63
hexadecanal	aldehyde	63,65
acetic acid	carboxylic acid	35
4-hydroxybutyric acid	carboxylic acid	10
propanoic acid, 2-methyl	carboxylic acid	51
2,2-dimethyl-propanoic acid	carboxylic acid	12
pentanoic acid	carboxylic acid	21
hexanoic acid	carboxylic acid	20,21
bicyclo[3.2.2]nonane-1,5-dicarboxylic acid, 5-ethyl ester	carboxylic acid	52
butyrolactone	ester	62
ethyl acetate	ester	16,30
2-propenoic acid, butyl ester	ester	1
butyl acetate	ester	27
ethyleneglycol mono vinyl ester	ester	10
2-methylbutylacetate	ester	40
benzoic acid, 4-ethoxy-, ethyl ester	ester	51,52
1,2-benzenedicarboxylic acid, diethyl ester	ester	51
3-hydroxy- 2,4,4-trimethylpentyl 2-methylpropanoate	ester	18
2,2,4-trimethyl-1,3-pentanediol diisobutyrate	ester	52
pentanoic acid, 2,2,4-trimethyl-3-carboxyisopropyl, isobutylester	ester	52
propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3-propanediyl ester	ester	52
isopropyl myristate	ester	6
pentan-1,3-dioldiisobutyrate, 2,2,4-trimethyl	ester	51
dimethyl ether	ether	48
© 2010 Ann ani ann Martinel Anna sintian All sintha san anna d	•	

benzene, 1,1-oxybisether51furanfuran552-methyl-furanfuran553-methyl-furanfuran15,153-methyl-furanfuran15,15ethane, 1,1,2-trichloro-1,2,2-trifluoro-haloalkane37trichlorethylenehaloalkane171-iodo nonanenatosikane181-bromo-1-(3-methyl-1-pentenylidene)-2,2,3,3-tetramethylhaloalkane1006-ethyl-3-octyl ester 2-trifluoromethyl benzoic acidhaloalkane14cyclopropanehydrocarbon, aliphatic100yropanehydrocarbon, aliphatic14,455,827propenehydrocarbon, aliphatic14,455,8271-2-pentadienehydrocarbon, aliphatic14,455,8271-2-pentadienehydrocarbon, aliphatic14,455,8271-2-pentadienehydrocarbon, aliphatic14,455,8271-2-pentadienehydrocarbon, aliphatic151-2-pentadienehydrocarbon, alipha	propane, 2-methoxy-2-methyl-	ether	52
Interim Interim Interim Bit 2-methylfuran furan 86.82 2-dimethylfuran furan 86.82 2-dimethylfuran furan 86.82 ethane, 1, 1,2-trichloro-1,2,2-trifluoro- haloalkane 82 trichlorethylene haloalkane 3 1-idod nonane haloalkane 17 1-bromon-1-(3-methyl-1-pentenylidene)-2,2,3,3-tetramethyl haloalkane 14 6-ethyl-3-octyl ester 2-trifluoromethyl benzoic acid haloalkane 14 6-ethyl-3-octyl ester 2-trifluoromethyl benzoic acid haloalkane 14 propane hydrocarbon, aliphatic 14,45002 propane hydrocarbon, aliphatic 14,45002 propane hydrocarbon, aliphatic 14 butane hydrocarbon, aliphatic 14 1,3-pentadiene hydrocarbon, aliphatic 15 1,3-pentadiene hydrocarbon, aliphatic 14 1-cyclopentene hydrocarbon, aliphatic 14 2-butene, 2-methyl hydrocarbon, aliphatic 14 2		ether	51
2-InterlyProduct 10/21 2.5-dimethyl furan furan 47.31 2.5-dimethyl furan furan 47.31 ethane, 1, 1, 2-trichloro-1, 2, 2-trifluoro- haloalkane 52 trichlorethylene haloalkane 7 1-iodo nonane haloalkane 17 1-bromo-1-(3-methyl-1-pentenylidene)-2,2,3,3-tetramethyl haloalkane 10 6-ethyl-3-octyl ester 2-trifluoromethyl benzoic acid haloalkane 1300 cyclopropane hydrocarbon, aliphatic 1300 propene hydrocarbon, aliphatic 1300 propene hydrocarbon, aliphatic 1445082 propene hydrocarbon, aliphatic 144 1.2-pentadiene hydrocarbon, aliphatic 15 1.2-pentadiene hydrocarbon, aliphatic 15 1.2-pentadiene hydrocarbon, aliphatic 15 1.2-pentadiene hydrocarbon, aliphatic 27 2-butene, 2-methyl hydrocarbon, aliphatic 27 2-methylbutane hydrocarbon, aliphatic 15 butane hydrocarbon, aliphatic 27 2-butene, 2-methyl hydrocarbon, aliphatic 27 2-butene, 2-methyl hydrocarbon, aliphatic 15 1-cyclopentene hydrocarbon, a	furan	furan	30,62
Shifertylintari 10/an ethane, 1,1,2-trichloro-1,2,2-trifluoro- haloalkane ^{3/2} trichlorethylene haloalkane ^{3/2} 1-idod nonane haloalkane ^{3/2} 1-bromo-1-(3-methyl-1-pentenylidene)-2,2,3,3-tetramethyl haloalkane ^{1/2} 6-ethyl-3-octyl ester 2-trifluoromethyl benzoic acid haloalkane ^{1/2} ethane hydrocarbon, aliphatic ¹⁹⁸⁰ propane hydrocarbon, aliphatic ^{10/4} propane hydrocarbon, aliphatic ^{44,50,62} propane hydrocarbon, aliphatic ^{44,50,62} propane hydrocarbon, aliphatic ^{44,450,62} 1,2-pentadiene hydrocarbon, aliphatic ⁵⁶ 1,2-pentadiene hydrocarbon, aliphatic ⁵⁶ 1,2-pentadiene hydrocarbon, aliphatic ⁵⁶ 1,2-pentadiene hydrocarbon, aliphatic ⁵⁶ 1,2-pentadiene hydrocarbon, aliphatic ⁵⁷ 1,2-pentadiene hydrocarbon, aliphatic ⁵⁶ 1,2-pentadiene hydrocarbon, aliphatic ⁵⁶ 1,2-pentadiene hydrocarbon, aliphatic ⁵⁷ <td>2-methyl-furan</td> <td>furan</td> <td>55</td>	2-methyl-furan	furan	55
2,5-0metry/latinIndianethane, 1,1,2-trichloro-1,2,2-trifluoro-haloalkane31-iodo nonanehaloalkane171-iodo nonanehaloalkane101-boron-1/3-smethyl-1-pentenylidene)-2,2,3,3-tetramethylhaloalkane46-ethyl-3-octyl ester 2-trifluoromethyl benzoic acidhaloalkane4ethanehydrocarbon, aliphatic1980cyclopropanehydrocarbon, aliphatic44.55.62propanehydrocarbon, aliphatic44.55.62propanehydrocarbon, aliphatic44.55.62propenehydrocarbon, aliphatic151,2-pentalenehydrocarbon, aliphatic151,2-pentalenehydrocarbon, aliphatic481-cyclopentenehydrocarbon, aliphatic151,2-pentalenehydrocarbon, aliphatic272-butene, 2-methylhydrocarbon, aliphatic272-butene, 2-methylhydrocarbon, aliphatic272-butene, 2-methylhydrocarbon, aliphatic27cyclopentanehydrocarbon, aliphatic27cyclopentanehydrocarbon, aliphatic27cyclopentanehydrocarbon, aliphatic27cyclopentanehydrocarbon, aliphatic27cyclopentanehydrocarbon, aliphatic14.227.31.41.45.56.82pentanehydrocarbon, aliphatic14.227.31.41.45.56.82cyclopentanehydrocarbon, aliphatic14.227.31.41.45.56.82cyclopentanehydrocarbon, aliphatic27cyclopentanehydrocarbon, aliphatic14.2	3-methylfuran	furan	55,62
entationindicatableindicatableindicatable1-iodo nonanehaloalkane1-iodo nonanehaloalkane1-bromo-1-(3-methyl-1-pentenylidene)-2,2,3,3-tetramethylhaloalkane6-ethyl-3-oxyl ester 2-trifluoromethyl benzoic acidhaloalkane97000hydrocarbon, aliphatic97000hydrocarbon, aliphatic970000hydrocarbon, aliphatic9700000hydrocarbon, aliphatic97000000hydrocarbon, aliphatic97000000000hydrocarbon, aliphatic97000000000000000000000000000000000000	2,5-dimethyl furan	furan	41,51
Includency end Indicative 1 1-iodo nonane haloalkane 1 1-bromo-1-(3-methyl-1-pentenylidene)-2,2,3,3-tetramethyl haloalkane 1 6-ethyl-3-octyl ester 2-trifluoromethyl benzoic acid haloalkane 1 6-ethyl-3-octyl ester 2-trifluoromethyl benzoic acid hydrocarbon, aliphatic 19.80 cyclopropane hydrocarbon, aliphatic 10 propane hydrocarbon, aliphatic 44 butane hydrocarbon, aliphatic 44 butane hydrocarbon, aliphatic 44 butane hydrocarbon, aliphatic 44 1.2-pentadiene hydrocarbon, aliphatic 45 1.3-pentadiene hydrocarbon, aliphatic 48 1-cyclopentene hydrocarbon, aliphatic 27 2-butene, 2-methyl hydrocarbon, aliphatic 55.66 ethylidene cyclopropane hydrocarbon, aliphatic 55.66 ethylidene cyclopropane hydrocarbon, aliphatic 49 1.3-cyclopentane hydrocarbon, aliphatic 55.66 ethylidene cyclopropane hydrocarbon, aliphatic 55.66 ethylidene cyclopropane hydroc	ethane, 1,1,2-trichloro-1,2,2-trifluoro-	haloalkane	52
FildDatableIndicate1-bromo-1-(3-methyl-1-pentenylidene)-2,2,3,3-tetramethylhaloalkane106-ethyl-3-octyl ester 2-trifluoromethyl benzoic acidhaloalkane4ethanehydrocarbon, aliphatic10cyclopropanehydrocarbon, aliphatic10propanehydrocarbon, aliphatic44,85,82propanehydrocarbon, aliphatic44,45,862butanehydrocarbon, aliphatic44butanehydrocarbon, aliphatic551.2-pentadienehydrocarbon, aliphatic551.2-pentadienehydrocarbon, aliphatic551.2-pentadienehydrocarbon, aliphatic551.2-pentadienehydrocarbon, aliphatic551.2-pentadienehydrocarbon, aliphatic772-methylbutanehydrocarbon, aliphatic272-methylbutanehydrocarbon, aliphatic772-methyllhydrocarbon, aliphatic15,44,82cyclopentanehydrocarbon, aliphatic15,44,82isoprenehydrocarbon, aliphatic27cyclopentanehydrocarbon, aliphatic14,222,73,14,45,56,82isoprenehydrocarbon, aliphatic15,44,821.3-cyclopentanehydrocarbon, aliphatic14,35,56,82isoprenehydrocarbon, aliphatic15,43,531.3-cyclopentanehydrocarbon, aliphatic15,43,531.3-cyclopentanehydrocarbon, aliphatic15,43,531.3-cyclopentanehydrocarbon, aliphatic15,43,531.3-cyclopentanehydrocarbon, aliphatic <td< td=""><td>trichlorethylene</td><td>haloalkane</td><td></td></td<>	trichlorethylene	haloalkane	
Prototion (S-Interfujion (S-Interf	1-iodo nonane	haloalkane	
6-ethyl-3-octyl ester 2-trifluoromethyl benzoic acidhaloalkane4ethanehydrocarbon, aliphatic19,000cyclopropanehydrocarbon, aliphatic10propanehydrocarbon, aliphatic44propenehydrocarbon, aliphatic44butanehydrocarbon, aliphatic44butanehydrocarbon, aliphatic551,2-pentadienehydrocarbon, aliphatic151,3-pentadienehydrocarbon, aliphatic441-cyclopentenehydrocarbon, aliphatic442-methylbutanehydrocarbon, aliphatic15,44,822-methylbutanehydrocarbon, aliphatic15,44,822-methylbutanehydrocarbon, aliphatic15,44,82cyclopentenehydrocarbon, aliphatic15,44,822-methylbutanehydrocarbon, aliphatic15,44,82butane, 2-methylhydrocarbon, aliphatic14,222,73,14,45,56,82cyclopentanehydrocarbon, aliphatic14,222,73,14,45,56,82cyclopentanehydrocarbon, aliphatic14,222,73,14,45,56,82isoprenehydrocarbon, aliphatic14,222,73,14,45,56,82j.3-cyclopentanehydrocarbon, aliphatic14,222,73,14,45,56,82j.3-cyclopentanehydrocarbon, aliphatic14,222,73,14,45,56,82j.3-cyclopentanehydrocarbon, aliphatic15,45,82j.3-cyclopentanehydrocarbon, aliphatic15,45,85j.3-cyclopentanehydrocarbon, aliphatic15,45,85j.3-cyclopentanehydrocarbon, aliphatic15,45,85j.3-cyclopentane	1-bromo-1-(3-methyl-1-pentenylidene)-2,2,3,3-tetramethyl	haloalkane	10
ethalmehydrocarbon, aliphaticTocyclopropanehydrocarbon, aliphatic44propanehydrocarbon, aliphatic44butanehydrocarbon, aliphatic44butanehydrocarbon, aliphatic44butanehydrocarbon, aliphatic551,2-pentadienehydrocarbon, aliphatic151,2-pentadienehydrocarbon, aliphatic151,2-pentadienehydrocarbon, aliphatic272-butene, 2-methylhydrocarbon, aliphatic272-methylbutanehydrocarbon, aliphatic152-methylbutanehydrocarbon, aliphatic272-methylbutanehydrocarbon, aliphatic272-methylbutanehydrocarbon, aliphatic272-methylbutanehydrocarbon, aliphatic15soprenehydrocarbon, aliphatic27cyclopentanehydrocarbon, aliphatic14cyclopentanehydrocarbon, aliphatic48isoprenehydrocarbon, aliphatic48isoprenehydrocarbon, aliphatic48isoprenehydrocarbon, aliphatic48isoprenehydrocarbon, aliphatic15,45,652-methylpentanehydrocarbon, aliphatic483-cyclopentadiene,1-methyl-hydrocarbon, aliphatic15,43,83,43,55,05,5623-methylpentanehydrocarbon, aliphatic15,43,833-methylpentanehydrocarbon, aliphatic15,43,822-methylpentanehydrocarbon, aliphatic15,43,822-methylpentanehydrocarbon, alipha		haloalkane	
Cyclopropanehydrocarbon, aliphatic44propanehydrocarbon, aliphatic44butanehydrocarbon, aliphatic44,45,8,82isobutanehydrocarbon, aliphatic41,44,50,82isobutanehydrocarbon, aliphatic151,2-pentadienehydrocarbon, aliphatic151,3-pentadienehydrocarbon, aliphatic481-cyclopentenehydrocarbon, aliphatic272-butene, 2-methylhydrocarbon, aliphatic272-methylbutanehydrocarbon, aliphatic15,44,82butane, 2-methylhydrocarbon, aliphatic55,66cyclopentanehydrocarbon, aliphatic48isoprenehydrocarbon, aliphatic55,66ethylidene cyclopropanehydrocarbon, aliphatic44isoprenehydrocarbon, aliphatic55,661,3-cyclopentanehydrocarbon, aliphatic14,2227,31,41,45,56,82isoprenehydrocarbon, aliphatic14,43,33,45,00,335,56,221,3-cyclopentanehydrocarbon, aliphatic15,43,531,3-cyclopentanehydrocarbon, aliphatic15,43,531,3-cyclopentanehydrocarbon, aliphatic15,43,532-methylpentanehydrocarbon, aliphatic15,43,533-methylpentanehydrocarbon, aliphatic15,43,535-methylpentanehydrocarbon, aliphatic15,43,586/clopexanehydrocarbon, aliphatic15,43,586/clopexanehydrocarbon, aliphatic15,43,586/clopexanehydrocarbon, aliphatic15,43,581,3,5-cy	ethane	hydrocarbon, aliphatic	19,60
propenehydrocarbon, aliphatic44butanehydrocarbon, aliphatic41,44,50,62isobutanehydrocarbon, aliphatic551,2-pentadienehydrocarbon, aliphatic151,3-pentadienehydrocarbon, aliphatic481-cyclopentenehydrocarbon, aliphatic272-butene, 2-methylhydrocarbon, aliphatic272-methylbutanehydrocarbon, aliphatic272-methylbutanehydrocarbon, aliphatic272-methyllhydrocarbon, aliphatic272-methyllhydrocarbon, aliphatic272-methyllhydrocarbon, aliphatic272-methyllhydrocarbon, aliphatic55,68ethylidene cyclopropanehydrocarbon, aliphatic48isoprenehydrocarbon, aliphatic43,43,50,53,55,821,3-cyclopentadiene,1-methyl-hydrocarbon, aliphatic43,43,50,53,55,822-methylpentanehydrocarbon, aliphatic55,48benzenehydrocarbon, aliphatic272-methylpentanehydrocarbon, aliphatic54,35,33-methylpentanehydrocarbon, aliphatic15,43,52benzenehydrocarbon, aliphatic55,88cyclopentadiene,1-methyl-hydrocarbon, aliphatic441,3-cyclopentadiene,1-methyl-hydrocarbon, aliphatic15,43,533-methylpentanehydrocarbon, aliphatic54,35,33benzenehydrocarbon, aliphatic15,43,58cyclopetatrienehydrocarbon, aliphatic661,3,5-cycloheptatrienehydroc	cyclopropane	hydrocarbon, aliphatic	10
propertiesInvolocation, aliphatic41,44,5082butanehydrocarbon, aliphatic551,2-pentadienehydrocarbon, aliphatic151,3-pentadienehydrocarbon, aliphatic481-cyclopentenehydrocarbon, aliphatic272-butene, 2-methylhydrocarbon, aliphatic272-methylbutanehydrocarbon, aliphatic55.66butane ,2-methylhydrocarbon, aliphatic55.66cyclopentanehydrocarbon, aliphatic55.66ethylidene cyclopropanehydrocarbon, aliphatic55.66ethylidene cyclopropanehydrocarbon, aliphatic48isoprenehydrocarbon, aliphatic15.435.05.02pentanehydrocarbon, aliphatic15.435.05.022-methylpentanehydrocarbon, aliphatic15.435.05.022-methylpentanehydrocarbon, aliphatic15.435.05.022-methylpentanehydrocarbon, aliphatic272-methylpentanehydrocarbon, aliphatic15.435.05.023-methylpentanehydrocarbon, aliphatic15.435.05benzenehydrocarbon, aliphatic15.436.2cyclopentatiene,1-methyl-hydrocarbon, aliphatic15.436.22-methylpentanehydrocarbon, aliphatic15.436.2benzenehydrocarbon, aliphatic15.436.2cyclopentatienehydrocarbon, aliphatic15.436.22-methylpentanehydrocarbon, aliphatic661-3.5-cycloheptatrienehydrocarbon, aliphatic481,3.5-cycloheptatrienehydrocarbon, aliphatic	propane	hydrocarbon, aliphatic	
butanehydrocarbon, aliphatic551,2-pentadienehydrocarbon, aliphatic151,3-pentadienehydrocarbon, aliphatic481-cyclopentenehydrocarbon, aliphatic272-butene, 2-methylhydrocarbon, aliphatic272-methylbutanehydrocarbon, aliphatic15,44,82butane ,2-methylhydrocarbon, aliphatic272-methylbutanehydrocarbon, aliphatic272-methylbutanehydrocarbon, aliphatic15,44,82butane ,2-methylhydrocarbon, aliphatic272-methylbutanehydrocarbon, aliphatic56,86cyclopentanehydrocarbon, aliphatic48isoprenehydrocarbon, aliphatic48isoprenehydrocarbon, aliphatic481,3-cyclopentanehydrocarbon, aliphatic34,45,50,521,3-cyclopentanehydrocarbon, aliphatic15,43,533-methylpentanehydrocarbon, aliphatic15,43,533-methylpentanehydrocarbon, aliphatic15,43,533-methylpentanehydrocarbon, aliphatic15,43,82cyclohexanehydrocarbon, aliphatic15,43,531,3,5-cycloheptatrienehydrocarbon, aliphatic481,3,5-cycloheptatrienehydrocarbon, aliphatic27,431,3,5-cycloheptatrienehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic483,3-dimethylpentanehydrocarbon, aliphatic483,3-dimethylpentanehydrocarbon, aliphatic483,3-dimethylpentane<	propene	hydrocarbon, aliphatic	
IsolutatieHydrocarbon, aliphatic151,2-pentadienehydrocarbon, aliphatic151,3-pentadienehydrocarbon, aliphatic272-butene, 2-methylhydrocarbon, aliphatic272-methylbutanehydrocarbon, aliphatic15,44,62butane, 2-methylhydrocarbon, aliphatic15,44,622-methylbutanehydrocarbon, aliphatic55,66butane, 2-methylhydrocarbon, aliphatic55,66cyclopentanehydrocarbon, aliphatic48ethylidene cyclopropanehydrocarbon, aliphatic48isoprenehydrocarbon, aliphatic14,22,27,14,14,556,62pentanehydrocarbon, aliphatic15,43,53,55,621,3-cyclopentadiene, 1-methyl-hydrocarbon, aliphatic15,43,532-methylpentanehydrocarbon, aliphatic15,43,62benzenehydrocarbon, aliphatic15,43,53cyclohexanehydrocarbon, aliphatic15,43,62benzenehydrocarbon, aliphatic15,43,62cyclohexanehydrocarbon, aliphatic15,43,621,3,5-cycloheptatrienehydrocarbon, aliphatic15,43,621,3,5-cycloheptatrienehydrocarbon, aliphatic32,431,3,5-cycloheptatrienehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, al	butane	hydrocarbon, aliphatic	
1,2-pentadienehydrocarbon, aliphatic491,3-pentadienehydrocarbon, aliphatic272-butene, 2-methylhydrocarbon, aliphatic272-methylbutanehydrocarbon, aliphatic15,44,62butane ,2-methylhydrocarbon, aliphatic27cyclopentanehydrocarbon, aliphatic55,66ethylidene cyclopropanehydrocarbon, aliphatic48isoprenehydrocarbon, aliphatic48pentanehydrocarbon, aliphatic14,2227,31,41,45,56,62pentanehydrocarbon, aliphatic14,2227,31,41,45,56,62pentanehydrocarbon, aliphatic14,34,50,53,55,62pentanehydrocarbon, aliphatic271,3-cyclopentadiene,1-methyl-hydrocarbon, aliphatic272-methylpentanehydrocarbon, aliphatic15,43,623-methylpentanehydrocarbon, aliphatic15,43,62benzenehydrocarbon, aliphatic15,43,62cyclohexanehydrocarbon, aliphatic15,43,621,3-5-cycloheptatrienehydrocarbon, aliphatic15,43,622-methylpentanehydrocarbon, aliphatic15,43,622-methylpentanehydrocarbon, aliphatic30,31,41,53,622-cyclohexanehydrocarbon, aliphatic481,3-5-cycloheptatrienehydrocarbon, aliphatic662,4-dimethylpentanehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphat	isobutane	hydrocarbon, aliphatic	55
1,3-peritablenehydrocarbon, aliphaticZ'1-cyclopentenehydrocarbon, aliphaticZ'2-butene, 2-methylhydrocarbon, aliphatic15,44,822-methylbutanehydrocarbon, aliphatic15,44,82butane ,2-methylhydrocarbon, aliphatic2'cyclopentanehydrocarbon, aliphatic55,66ethylidene cyclopropanehydrocarbon, aliphatic48isoprenehydrocarbon, aliphatic14,22,27,31,41,45,56,82pentanehydrocarbon, aliphatic33,43,45,50,53,55,622-methylpentanehydrocarbon, aliphatic2'2-methylpentanehydrocarbon, aliphatic2'2-methylpentanehydrocarbon, aliphatic15,43,503-methylpentanehydrocarbon, aliphatic15,43,503-methylpentanehydrocarbon, aliphatic56cyclohexanehydrocarbon, aliphatic54,362hydrocarbon, aliphatic15,43,6230,31,41,53,62cyclohexanehydrocarbon, aliphatic54,362hydrocarbon, aliphatic54,36230,31,41,53,62cyclohexanehydrocarbon, aliphatic481,3,5-cycloheptatrienehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic48<	1,2-pentadiene	hydrocarbon, aliphatic	
1-cyclopentenehydrocarbon, aliphatic272-butene, 2-methylhydrocarbon, aliphatic15,44,62butane ,2-methylhydrocarbon, aliphatic27cyclopentanehydrocarbon, aliphatic55,66ethylidene cyclopropanehydrocarbon, aliphatic48isoprenehydrocarbon, aliphatic14,22,27,31,41,45,56,62pentanehydrocarbon, aliphatic14,22,27,31,41,45,56,62isoprenehydrocarbon, aliphatic14,22,27,31,41,45,56,62pentanehydrocarbon, aliphatic14,22,27,31,41,45,56,621,3-cyclopentadiene,1-methyl-hydrocarbon, aliphatic15,43,532-methylpentanehydrocarbon, aliphatic15,43,533-methylpentanehydrocarbon, aliphatic15,43,62cyclohexanehydrocarbon, aliphatic15,43,62hydrocarbon, aliphatic15,43,6215,43,62cyclohexanehydrocarbon, aliphatic30,31,41,53,62cyclohexanehydrocarbon, aliphatic30,31,41,53,62cyclohexanehydrocarbon, aliphatic32,431,3,5-cycloheptatrienehydrocarbon, aliphatic862,4-dimethylpentanehydrocarbon, aliphatic82,432,4-dimethylpentanehydrocarbon, aliphatic622,4-dimethylpentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic48 <t< td=""><td>1,3-pentadiene</td><td>hydrocarbon, aliphatic</td><td>48</td></t<>	1,3-pentadiene	hydrocarbon, aliphatic	48
2-buterle, 2-interlyinHydrocarbon, aliphatic15,44,622-methylbutanehydrocarbon, aliphatic15,44,62butane, 2-methylhydrocarbon, aliphatic27cyclopentanehydrocarbon, aliphatic48ethylidene cyclopropanehydrocarbon, aliphatic14,22,27,31,41,45,56,62isoprenehydrocarbon, aliphatic14,22,27,31,41,45,56,62pentanehydrocarbon, aliphatic14,22,27,31,41,45,56,621,3-cyclopentadiene, 1-methyl-hydrocarbon, aliphatic33,43,45,50,53,55,622-methylpentanehydrocarbon, aliphatic272-methylpentanehydrocarbon, aliphatic15,43,633-methylpentanehydrocarbon, aliphatic15,43,622-methylpentanehydrocarbon, aliphatic15,43,623-methylpentanehydrocarbon, aliphatic15,43,62benzenehydrocarbon, aliphatic30,31,41,53,62cyclohexanehydrocarbon, aliphatic32,431,3,5-cycloheptatrienehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic483,3-dimethylpentanehydrocarbon, aliphatic483,3-dimethylpentanehydrocarbon, aliphatic483,3-dimethylpentanehydrocarbon, aliphatic483,3-dimethylpentanehydrocarbon, aliphatic	1-cyclopentene	hydrocarbon, aliphatic	
2-methylottanehydrocarbon, aliphatic27butane ,2-methylhydrocarbon, aliphatic55,66cyclopentanehydrocarbon, aliphatic48ethylidene cyclopropanehydrocarbon, aliphatic14,22,27,31,41,45,56,62isoprenehydrocarbon, aliphatic14,22,27,31,41,45,56,62pentanehydrocarbon, aliphatic33,43,45,50,53,55,621,3-cyclopentadiene,1-methyl-hydrocarbon, aliphatic272-methylpentanehydrocarbon, aliphatic15,43,533-methylpentanehydrocarbon, aliphatic15,43,62benzenehydrocarbon, aliphatic15,43,62cyclohexanehydrocarbon, aliphatic15,43,62hexanehydrocarbon, aliphatic30,31,41,53,821,3,5-cycloheptatrienehydrocarbon, aliphatic66hexanehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic48	2-butene, 2-methyl	hydrocarbon, aliphatic	
bitalle ,2-metryhydrocarbon, aliphatic55,66cyclopentanehydrocarbon, aliphatic48ethylidene cyclopropanehydrocarbon, aliphatic14,22,27,31,41,45,56,62isoprenehydrocarbon, aliphatic33,43,45,50,53,55,62pentanehydrocarbon, aliphatic33,43,45,50,53,55,621,3-cyclopentadiene,1-methyl-hydrocarbon, aliphatic272-methylpentanehydrocarbon, aliphatic15,43,533-methylpentanehydrocarbon, aliphatic15,43,62benzenehydrocarbon, aliphatic30,31,41,53,52cyclohexanehydrocarbon, aliphatic66hexanehydrocarbon, aliphatic32,431,3,5-cycloheptatrienehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic48	2-methylbutane	hydrocarbon, aliphatic	
CyclopentarieHydrocarbon, aliphatic48ethylidene cyclopropanehydrocarbon, aliphatic48isoprenehydrocarbon, aliphatic14,22,27,31,41,45,56,62pentanehydrocarbon, aliphatic33,43,45,50,53,55,621,3-cyclopentadiene,1-methyl-hydrocarbon, aliphatic272-methylpentanehydrocarbon, aliphatic15,43,533-methylpentanehydrocarbon, aliphatic15,43,62benzenehydrocarbon, aliphatic15,43,62cyclohexanehydrocarbon, aliphatic30,31,41,53,62hexanehydrocarbon, aliphatic661,3,5-cycloheptatrienehydrocarbon, aliphatic32,431,3,5-cycloheptatrienehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic622-methyl-hexanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic483,3-dimethyl pentane <t< td=""><td>butane,2-methyl</td><td>hydrocarbon, aliphatic</td><td></td></t<>	butane,2-methyl	hydrocarbon, aliphatic	
etnylidene cyclopropanehydrocarbon, aliphatic#422,27,31,41,45,56,62isoprenehydrocarbon, aliphatic14,22,27,31,41,45,56,62pentanehydrocarbon, aliphatic33,43,45,50,53,55,621,3-cyclopentadiene,1-methyl-hydrocarbon, aliphatic272-methylpentanehydrocarbon, aliphatic15,43,533-methylpentanehydrocarbon, aliphatic15,43,623-methylpentanehydrocarbon, aliphatic15,43,62benzenehydrocarbon, aliphatic30,31,41,53,62cyclohexanehydrocarbon, aliphatic66hexanehydrocarbon, aliphatic32,431,3,5-cycloheptatrienehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic622-methyl-hexanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic443,3-dimethyl pentanehydrocarbon, aliphatic44	cyclopentane	hydrocarbon, aliphatic	
IsopreneHydrocarbon, aliphatic33,43,45,50,53,55,62pentanehydrocarbon, aliphatic33,43,45,50,53,55,621,3-cyclopentadiene,1-methyl-hydrocarbon, aliphatic15,43,532-methylpentanehydrocarbon, aliphatic15,43,623-methylpentanehydrocarbon, aliphatic15,43,62benzenehydrocarbon, aliphatic30,31,41,53,62cyclohexanehydrocarbon, aliphatic66hexanehydrocarbon, aliphatic661,3,5-cycloheptatrienehydrocarbon, aliphatic32,432,4-dimethylpentanehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic622-methyl-hexanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic44,84,49	ethylidene cyclopropane	hydrocarbon, aliphatic	
peritaiteHydrocarbon, aliphatic271,3-cyclopentadiene, 1-methyl-hydrocarbon, aliphatic15,43,532-methylpentanehydrocarbon, aliphatic15,43,623-methylpentanehydrocarbon, aliphatic15,43,62benzenehydrocarbon, aliphatic30,31,41,53,62cyclohexanehydrocarbon, aliphatic66hexanehydrocarbon, aliphatic32,431,3,5-cycloheptatrienehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic622-methyl-hexanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic48	isoprene	hydrocarbon, aliphatic	
1,3-cycloperhadiene, 1-metryl-hydrocarbon, aliphatic15,43,532-methylpentanehydrocarbon, aliphatic15,43,623-methylpentanehydrocarbon, aliphatic30,31,41,53,62benzenehydrocarbon, aliphatic66cyclohexanehydrocarbon, aliphatic66hexanehydrocarbon, aliphatic32,431,3,5-cycloheptatrienehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic622-methyl-hexanehydrocarbon, aliphatic623,3-dimethyl pentanehydrocarbon, aliphatic48	pentane	hydrocarbon, aliphatic	
2-methylpentanehydrocarbon, aliphatic15,43,623-methylpentanehydrocarbon, aliphatic15,43,62benzenehydrocarbon, aliphatic30,31,41,53,62cyclohexanehydrocarbon, aliphatic66hexanehydrocarbon, aliphatic32,431,3,5-cycloheptatrienehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic622-methyl-hexanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic48	1,3-cyclopentadiene,1-methyl-	hydrocarbon, aliphatic	
S-methypentanehydrocarbon, aliphatic30,31,41,53,62benzenehydrocarbon, aliphatic30,31,41,53,62cyclohexanehydrocarbon, aliphatic66hexanehydrocarbon, aliphatic32,431,3,5-cycloheptatrienehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic622-methyl-hexanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic48	2-methylpentane	hydrocarbon, aliphatic	
benzenehydrocarbon, aliphatic66cyclohexanehydrocarbon, aliphatic66hexanehydrocarbon, aliphatic32,431,3,5-cycloheptatrienehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic622-methyl-hexanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic48	3-methylpentane	hydrocarbon, aliphatic	
cyclonexanehydrocarbon, aliphatic32,43hexanehydrocarbon, aliphatic32,431,3,5-cycloheptatrienehydrocarbon, aliphatic482,4-dimethylpentanehydrocarbon, aliphatic622-methyl-hexanehydrocarbon, aliphatic483,3-dimethyl pentanehydrocarbon, aliphatic48	benzene	hydrocarbon, aliphatic	
nexanenydrocarbon, aliphatic1,3,5-cycloheptatrienehydrocarbon, aliphatic2,4-dimethylpentanehydrocarbon, aliphatic2-methyl-hexanehydrocarbon, aliphatic3,3-dimethyl pentanehydrocarbon, aliphatic	cyclohexane	hydrocarbon, aliphatic	
1,3,5-cycloneptatienehydrocarbon, aliphatic2,4-dimethylpentanehydrocarbon, aliphatic2-methyl-hexanehydrocarbon, aliphatic3,3-dimethyl pentanehydrocarbon, aliphatic	hexane	hydrocarbon, aliphatic	,
2,4-dimetry pentanehydrocarbon, alphatic2-methyl-hexanehydrocarbon, aliphatic3,3-dimethyl pentanehydrocarbon, aliphatic	1,3,5-cycloheptatriene	hydrocarbon, aliphatic	
2-methyl-nexane hydrocarbon, aliphatic 3,3-dimethyl pentane hydrocarbon, aliphatic	2,4-dimethylpentane	hydrocarbon, aliphatic	
-s,s-dimetry pentane hydrocarbon, alphatic	2-methyl-hexane	hydrocarbon, aliphatic	
3-ethyl-pentane hydrocarbon, aliphatic 48	3,3-dimethyl pentane	hydrocarbon, aliphatic	
	3-ethyl-pentane	hydrocarbon, aliphatic	48

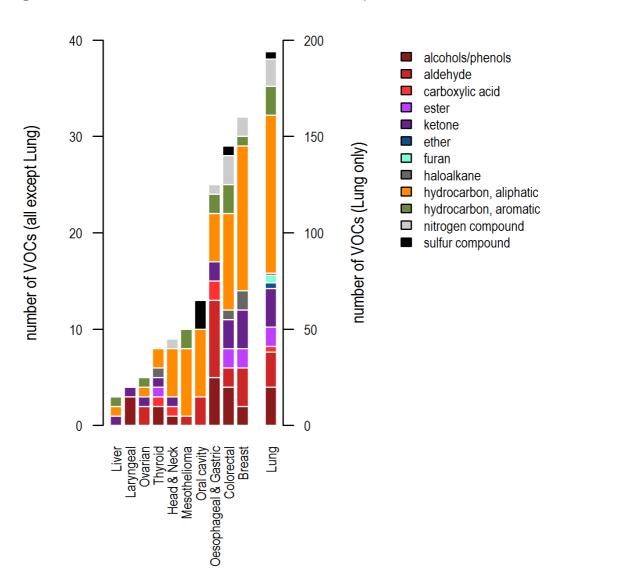
3-methylhexane	hydrocarbon, aliphatic	3,48
heptane	hydrocarbon, aliphatic	1,50
hexane, 2 methyl	hydrocarbon, aliphatic	50
hexane, 3-methyl	hydrocarbon, aliphatic	50
methylcyclohexane	hydrocarbon, aliphatic	15,66
1,3,5,7-cyclooctatetraene	hydrocarbon, aliphatic	48
1-octene	hydrocarbon, aliphatic	13,47
2,3,4-trimethyl-pentane	hydrocarbon, aliphatic	48
2,3-dimethyl-hexane	hydrocarbon, aliphatic	48
2,4-hexadiene, 2,5-dimethyl-	hydrocarbon, aliphatic	51
3,3-dimethyl-hexane	hydrocarbon, aliphatic	48
3-ethyl-hexane	hydrocarbon, aliphatic	48
5,5-dimethyl-1,3-hexadiene	hydrocarbon, aliphatic	52
alpha methyl styrene	hydrocarbon, aliphatic	23
ethylbenzene	hydrocarbon, aliphatic	30,32,40,46,48,53,55,57
octane	hydrocarbon, aliphatic	36,53
2,2,3-trimethyl-hexane	hydrocarbon, aliphatic	48
2,3,4-trimethyl hexane	hydrocarbon, aliphatic	48,49
2,4-dimethyl-heptane	hydrocarbon, aliphatic	44,48
4-methyl octane	hydrocarbon, aliphatic	5,15,16,23,44,48,50,62
nonane	hydrocarbon, aliphatic	5,36,62
2,2,3-trimethyl-, exo- bicyclo[2.2.1]heptane	hydrocarbon, aliphatic	12
benzene, cyclobutyl-	hydrocarbon, aliphatic	27
beta-pinene	hydrocarbon, aliphatic	66
decane	hydrocarbon, aliphatic	25,31,53,66
decene	hydrocarbon, aliphatic	3
limonene	hydrocarbon, aliphatic	12,66
2,5,6-trimethyl-octane	hydrocarbon, aliphatic	7
2,6,6-trimethyl-octane	hydrocarbon, aliphatic	48
4,5-dimethyl-nonane	hydrocarbon, aliphatic	13
decane, 4-methyl	hydrocarbon, aliphatic	51
decane, 5-methyl	hydrocarbon, aliphatic	50
dimethyl-nonane	hydrocarbon, aliphatic	66
undecane	hydrocarbon, aliphatic	11,13,27,31
2,2-dimethyl decane	hydrocarbon, aliphatic	9,10,12,18
2-methylundecane	hydrocarbon, aliphatic	39
3,7-dimethyldecane	hydrocarbon, aliphatic	63
4-methylundecane	hydrocarbon, aliphatic	15

5-methylundecane	hydrocarbon, aliphatic	5
dodecane	hydrocarbon, aliphatic	13,40,49
pentamethylheptane	hydrocarbon, aliphatic	53
2,3,4-trimethyl decane	hydrocarbon, aliphatic	4
3,7-dimethylundecane	hydrocarbon, aliphatic	13
3,8-dimethylundecane	hydrocarbon, aliphatic	63
3-methyl dodecane	hydrocarbon, aliphatic	5
4,7-dimethyl-undecane	hydrocarbon, aliphatic	48
5-(1-methyl-)propylnonane	hydrocarbon, aliphatic	63
5-(2-methyl-)propylnonane	hydrocarbon, aliphatic	4,63
5-butyInonane	hydrocarbon, aliphatic	63
nonane,5-(2-methyl-)propyl-	hydrocarbon, aliphatic	65
tridecane	hydrocarbon, aliphatic	5,63
trimethyldecane	hydrocarbon, aliphatic	15
undecane,3,7-dimethyl-	hydrocarbon, aliphatic	27
2-methyltridecane	hydrocarbon, aliphatic	39
4,6-dimethyl-dodecane	hydrocarbon, aliphatic	12
tridecane, 3-methyl	hydrocarbon, aliphatic	50
tridecane, 7-methyl	hydrocarbon, aliphatic	50
1,5,9-cyclododecatriene, 1,5,9-trimethyl-	hydrocarbon, aliphatic	51
2,6,11-trimethyldodecane	hydrocarbon, aliphatic	63
2-methyltetradecane	hydrocarbon, aliphatic	39
3-methyltetradecane	hydrocarbon, aliphatic	39
4-methyltetradecane	hydrocarbon, aliphatic	63
caryophyllene	hydrocarbon, aliphatic	3,51
dodecane,2,6,11,-trimethyl-	hydrocarbon, aliphatic	65
3-methyl pentadecane	hydrocarbon, aliphatic	5,39
5-propyltridecane	hydrocarbon, aliphatic	63
hexadecane	hydrocarbon, aliphatic	8,13,23
2,6,10-trimethyl tetradecane	hydrocarbon, aliphatic	63
2-methylhexadecane	hydrocarbon, aliphatic	39
3,7-dimethylpentadecane	hydrocarbon, aliphatic	63
7-methylhexadecane	hydrocarbon, aliphatic	63
6-t-butyl-2,2,9,9-tetramethyl-3,5-decadien-7- yne	hydrocarbon, aliphatic	18
8-methylheptadecane	hydrocarbon, aliphatic	63
2,6,10,14-tetramethylpentadecane	hydrocarbon, aliphatic	63
nonadecane	hydrocarbon, aliphatic	63
2-methyl nonadecane	hydrocarbon, aliphatic	5
© 2010 American Madiael Association. All rights resourced		

eicosane	hydrocarbon, aliphatic	63
8-hexylpentadecane	hydrocarbon, aliphatic	63,65
toluene	hydrocarbon, aromatic	9,41,46,48,49,53,66
1,3-dimethylbenzene	hydrocarbon, aromatic	15,17
1,4-dimethybenzene	hydrocarbon, aromatic	15
bicyclo[4.2.0]octa-1,3,5-triene	hydrocarbon, aromatic	48
styrene	hydrocarbon, aromatic	8,22,25,31,48,55
xylene (all isomers)	hydrocarbon, aromatic	9,46,48,53,62,66
isopropyl benzene	hydrocarbon, aromatic	46
trimethylbenzene (all isomers)	hydrocarbon, aromatic	23,31,53
1H-indene, 2,3-dihydro-4-methyl-	hydrocarbon, aromatic	52
1-methyl-2-(1-methylethyl)-benzene	hydrocarbon, aromatic	48
1-methyl-3-(1-methylethyl)-benzene	hydrocarbon, aromatic	48
1-methyl-4-(1-methylethyl)-benzene	hydrocarbon, aromatic	48,49
naphthalene	hydrocarbon, aromatic	3
2-methylnapthalene	hydrocarbon, aromatic	63
2,6-dimethylnapthalene	hydrocarbon, aromatic	63
1,1'-(1-butenylidene)bis benzene	hydrocarbon, aromatic	17,49
1,1-biphenyl,2,2-diethyl-	hydrocarbon, aromatic	51
1H-Indene, 2,3-dhydro-1,1,3-trimethyl-3-phenyl	hydrocarbon, aromatic	51
acetone	ketone	16,27,29,30,41,45,62
2,3-butanedione	ketone	27,36
2-butanone	ketone	8,23,26,27,28,29,30,37,42,43,48,57,58,59
3-hydroxy-2-butanone	ketone	25,27,28,37,42,58,59,61
2-pentanone	ketone	6,29,30,42,44,62
2,3-hexanedione	ketone	52
2,5-cyclohexadiene-1,4-dione	ketone	51
4-methyl-2-pentanone	ketone	15
cyclohexanone	ketone	7,10,18,40
3-hexanone, 2-methyl-	ketone	52
3-pentanone,2,4-dimethyl-	ketone	51
5-methyl-3-hexanone	ketone	12
3-ethyl-3-methyl-2-pentanone	ketone	48
5-hepten-2-one, 6-methyl	ketone	1,22,24
acetophenone	ketone	6,27
2-methyl-4,6-octadiyn-3-one	ketone	48
camphor	ketone	52
tridecanone	ketone	63
© 2019 American Medical Accordiation All rights recorrid	•	·

6,10-dimethyl-5,9-dodecadien-2-one	ketone	48
2,2,7,7-tetramethyltricyclo[6.2.1.0(1,6)]undec-4-en-3-one	ketone	52
2-pentadecanone	ketone	63
alpha isomethyl ionone	ketone	52
2,4,6-tris(1,1-dimethyl-ethyl)-4-methylcyclohexa-2,5-dien-1-one	ketone	48
hydrazine	nitrogen compound	48
carbonic dihydrazide	nitrogen compound	48
hydrazine-carboxamide	nitrogen compound	48
hydrogen cyanide	nitrogen compound	56
methyl hydrazine	nitrogen compound	48
acetonitrile	nitrogen compound	29,41,56
ethylenimine	nitrogen compound	27
dimethyl formamide	nitrogen compound	41
iso-propylamin	nitrogen compound	40
2-propenenitrile	nitrogen compound	11,22,23,24
N,N-dimethylacetamide	nitrogen compound	62
urea, tetramethyl-	nitrogen compound	27
ethylaniline	nitrogen compound	18
isoquinoline, 1,2,3,4-tetrahydro-	nitrogen compound	27
10,11-dihydro-5H-dibenz-(B,F)-azepine	nitrogen compound	51
2,3-dihydro-1-phenyl-4(1H)-quinazolinone	nitrogen compound	6
2-amino-5-isopropyl-8-methyl-1-azulenecarbonitrile	nitrogen compound	4,9,17
2,6-bis(1,1-dimethylethyl)-4-methyl-methylcarbamate	nitrogen compound	48
4-(4-propylcyclohexyl)-4-cyano[1,1'-biphenyl]-4-yl ester benzoic acid	nitrogen compound	17
hydrogen sulphide	sulfur compound	14
carbon disulfide	sulfur compound	29,55,62
methyl mercaptan	sulfur compound	14
dimethyl sulfide	sulfur compound	14,29,41,62
1-propene, 1-(methylthio)-, (E)-	sulfur compound	52
methyl propyl sulfide	sulfur compound	27,62
[(1,1-dimethylethylthio] acetic acid	sulfur compound	17

References


- 1. Barash O, Zhang W, Halpern LM, et al. Differentiation between genetic mutations of breast cancer by breath volatolomics. *Oncotarget* 2015; **6**(42): 44864-76.
- 2. Li L, Peng Y, Liu Y, et al. Investigation of potential breath biomarkers for the early diagnosis of breast cancer using gas chromatography-mass spectrometry. *Clin Chim Acta* 2014; **436**: 59-67.

- 3. Mangler M, Freitag C, Lanowska M, Staeck O, Schneider A, Speiser D. Volatile organic compounds (VOCs) in exhaled breath of patients with breast cancer in a clinical setting. *Ginekol Pol* 2012; **83**(10): 730-6.
- 4. Peng G, Hakim M, Broza YY, et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. *Br L Cancer* 2010; **103**(4): 542-51. (breast)
- 5. Phillips M, Cataneo RN, Ditkoff BA, et al. Volatile markers of breast cancer in the breath. Breast L 2003; 9(3): 184-91.
- 6. Phillips M, Cataneo RN, Ditkoff BA, et al. Prediction of breast cancer using volatile biomarkers in the breath. *Breast Cancer Res Treat* 2006; **99**(1): 19-21.
- 7. Wang C, Sun B, Guo L, et al. Volatile organic metabolites identify patients with breast cancer, cyclomastopathy, and mammary gland fibroma. *Sci Rep* 2014; **4**: 5383.
- 8. Amal H, Shi DY, Ionescu R, et al. Assessment of ovarian cancer conditions from exhaled breath. *Int L Cancer* 2015; **136**(6): E614-22.
- 9. Peng G, Hakim M, Broza YY, et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. *Br L Cancer* 2010; **103**(4): 542-51. (prostate)
- 10. Guo L, Wang C, Chi C, et al. Exhaled breath volatile biomarker analysis for thyroid cancer. *Transl Res* 2015; **166**(2): 188-95.
- 11. Gruber M, Tisch U, Leries R, et al. Analysis of exhaled breath for diagnosing head and neck squamous cell carcinoma: a feasibility study. *Br L Cancer* 2014; **111**(4): 790-8.
- 12. Hakim M, Billan S, Tisch U, et al. Diagnosis of head-and-neck cancer from exhaled breath. *Br L Cancer* 2011; **104**(10): 1649-55.
- 13. Bouza M, Gonzalez-Soto L, Pereiro R, de Vicente LC, Sanz-Medel A. Exhaled breath and oral cavity VOCs as potential biomarkers in oral cancer patients. *L Breath Res* 2017; **11**(1): 016015.
- 14. Szabo A, Tarnai Z, Berkovits C, et al. Volatile sulphur compound measurement with OralChroma(TM): a methodological improvement. *L Breath Res* 2015; **9**(1): 016001.
- 15. Altomare DF, Di Lena M, Porcelli F, et al. Exhaled volatile organic compounds identify patients with colorectal cancer. *Br L Surg* 2013; **100**(1): 144-50.
- 16. Amal H, LeLa M, Funka K, et al. Breath testing as potential colorectal cancer screening tool. *Int L Cancer* 2016; **138**(1): 229-36.
- 17. Peng G, Hakim M, Broza YY, et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. *Br L Cancer* 2010; **103**(4): 542-51. (colorectal)
- 18. Wang C, Ke C, Wang X, et al. Noninvasive detection of colorectal cancer by analysis of exhaled breath. *Anal Bioanal Chem* 2014; **406**(19): 4757-63.
- 19. Abela LE, Skeldon KD, Stuart RC, Padgett ML. Exhaled ethane concentration in patients with cancer of the upper gastrointestinal tract a proof of concept study. *Biosci Trends* 2009; **3**(3): 110-4.
- © 2018 American Medical Association. All rights reserved.

- 20. Kumar S, Huang L, Abbassi-Ghadi N, Spanel P, Smith D, Hanna GB. Selected ion flow tube mass spectrometry analysis of exhaled breath for volatile organic compound profiling of esophago-gastric cancer. *Anal Chem* 2013; **85**(12): 6121-8.
- 21. Kumar S, Huang L, Abbassi-Ghadi N, et al. Mass Spectrometric Analysis of Exhaled Breath for the Identification of Volatile Organic Compound Biomarkers in Esophageal and Gastric Adenocarcinoma. *Ann Surg* 2015; **262**(6): 981-90.
- 22. Amal H, LeLa M, Broza YY, et al. Geographical variation in the exhaled volatile organic compounds. *L Breath Res* 2013; **7**(4): 047102.
- 23. Amal H, LeLa M, Funka K, et al. Detection of precancerous gastric lesions and gastric cancer through exhaled breath. *Gut* 2016; **65**(3): 400-7.
- 24. Xu ZQ, Broza YY, Ionsecu R, et al. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. *Br L Cancer* 2013; **108**(4): 941-50.
- 25. Qin T, Liu H, Song Q, et al. The screening of volatile markers for hepatocellular carcinoma. *Cancer Epidemiol Biomarkers Prev* 2010; **19**(9): 2247-53.
- 26. Garcia RA, Morales V, Martin S, Vilches E, Toledano A. Volatile Organic Compounds Analysis in Breath Air in Healthy Volunteers and Patients Suffering Epidermoid Laryngeal Carcinomas. *Chromatographia* 2014; **77**(5-6): 501-9.
- 27. BaLtarevic A, Ager C, Pienz M, et al. Noninvasive detection of lung cancer by analysis of exhaled breath. *BMC Cancer* 2009; **9**: 348.
- 28. Bousamra M, 2nd, Schumer E, Li M, et al. Quantitative analysis of exhaled carbonyl compounds distinguishes benign from malignant pulmonary disease. *L Thorac Cardiovasc Surg* 2014; **148**(3): 1074-80; discussion 80-1.
- 29. Buszewski B, Ulanowska A, Kowalkowski T, Cieslinski K. Investigation of lung cancer biomarkers by hyphenated separation techniques and chemometrics. *Clin Chem Lab Med* 2011; **50**(3): 573-81.
- 30. Buszewski B, Ligor T, Lezierski T, Wenda-Piesik A, Walczak M, Rudnicka L. Identification of volatile lung cancer markers by gas chromatography-mass spectrometry: comparison with discrimination by canines. *Anal Bioanal Chem* 2012; **404**(1): 141-6.
- 31. Chen X, Cao M, Hao Y, et al. A Non-invasive detection of lung cancer combined virtual gas sensors array with imaging recognition technique. *Conf Proc IEEE Eng Med Biol Soc* 2005; **6**: 5873-6.
- 32. Corradi M, Poli D, Banda I, et al. Exhaled breath analysis in suspected cases of non-small-cell lung cancer: a cross-sectional study. *L Breath Res* 2015; **9**(2): 027101.
- 33. Crohns M, Saarelainen S, Laitinen L, Peltonen K, Alho H, Kellokumpu-Lehtinen P. Exhaled pentane as a possible marker for survival and lipid peroxidation during radiotherapy for lung cancer--a pilot study. *Free Radic Res* 2009; **43**(10): 965-74.
- 34. Deng C, Zhang X, Li N. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry. *L Chromatogr B Analyt Technol Biomed Life Sci* 2004; **808**(2): 269-77.
- 35. Feinberg T, Alkoby-Meshulam L, Herbig L, et al. Cancerous glucose metabolism in lung cancer-evidence from exhaled breath analysis. *L Breath Res* 2016; **10**(2): 026012.
- © 2018 American Medical Association. All rights reserved.

- 36. Filipiak W, Filipiak A, Sponring A, et al. Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. *L Breath Res* 2014; **8**(2): 027111.
- 37. Fu XA, Li M, Knipp RL, Nantz MH, Bousamra M. Noninvasive detection of lung cancer using exhaled breath. *Cancer Med* 2014; **3**(1): 174-81.
- 38. Fuchs P, Loeseken C, Schubert LK, Miekisch W. Breath gas aldehydes as biomarkers of lung cancer. *Int L Cancer* 2010; **126**(11): 2663-70.
- 39. Gaspar EM, Lucena AF, Duro da Costa L, Chaves das Neves H. Organic metabolites in exhaled human breath--a multivariate approach for identification of biomarkers in lung disorders. *L Chromatogr A* 2009; **1216**(14): 2749-56.
- 40. Handa H, Usuba A, Maddula S, Baumbach LI, Mineshita M, Miyazawa T. Exhaled breath analysis for lung cancer detection using ion mobility spectrometry. *PLoS One* 2014; **9**(12): e114555.
- 41. Kischkel S, Miekisch W, Sawacki A, et al. Breath biomarkers for lung cancer detection and assessment of smoking related effects--confounding variables, influence of normalization and statistical algorithms. *Clin Chim Acta* 2010; **411**(21-22): 1637-44.
- 42. Li M, Yang D, Brock G, et al. Breath carbonyl compounds as biomarkers of lung cancer. Lung Cancer 2015; 90(1): 92-7.
- 43. Ligor M, Ligor T, BaLtarevic A, et al. Determination of volatile organic compounds in exhaled breath of patients with lung cancer using solid phase microextraction and gas chromatography mass spectrometry. *Clin Chem Lab Med* 2009; **47**(5): 550-60.
- 44. Ligor T, Pater L, Buszewski B. Application of an artificial neural network model for selection of potential lung cancer biomarkers. *L Breath Res* 2015; **9**(2): 027106.
- 45. Ma HY, Li X, Chen LM, et al. Analysis of human breath samples of lung cancer patients and healthy controls with solidphase microextraction (SPME) and flow-modulated comprehensive two-dimensional gas chromatography (GC x GC). *Anal Methods-Uk* 2014; **6**(17): 6841-9.
- 46. Ma W, Gao P, Fan L, Hashi Y, Chen Z. Determination of breath gas composition of lung cancer patients using gas chromatography/mass spectrometry with monolithic material sorptive extraction. *Biomed Chromatogr* 2015; **29**(6): 961-5.
- 47. Peled N, Hakim M, Bunn PA, Lr., et al. Non-invasive breath analysis of pulmonary nodules. *L Thorac Oncol* 2012; **7**(10): 1528-33.
- 48. Peng G, Tisch U, Adams O, et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. *Nat Nanotechnol* 2009; **4**(10): 669-73.
- 49. Peng G, Hakim M, Broza YY, et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. *Br L Cancer* 2010; **103**(4): 542-51. (lung)
- 50. Phillips M, Cataneo RN, Cummin AR, et al. Detection of lung cancer with volatile markers in the breath. *Chest* 2003; **123**(6): 2115-23.

- 51. Phillips M, Altorki N, Austin LH, et al. Prediction of lung cancer using volatile biomarkers in breath. *Cancer Biomark* 2007; **3**(2): 95-109.
- 52. Phillips M, Altorki N, Austin LH, et al. Detection of lung cancer using weighted digital analysis of breath biomarkers. *Clin Chim Acta* 2008; **393**(2): 76-84.
- 53. Poli D, Carbognani P, Corradi M, et al. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. *Respir Res* 2005; **6**: 71.
- 54. Poli D, Goldoni M, Corradi M, et al. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS. *L Chromatogr B Analyt Technol Biomed Life Sci* 2010; **878**(27): 2643-51.
- 55. Rudnicka L, Kowalkowski T, Ligor T, Buszewski B. Determination of volatile organic compounds as biomarkers of lung cancer by SPME-GC-TOF/MS and chemometrics. *L Chromatogr B Analyt Technol Biomed Life Sci* 2011; **879**(30): 3360-6.
- 56. Sakumura Y, Koyama Y, Tokutake H, et al. Diagnosis by Volatile Organic Compounds in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm. *Sensors (Basel)* 2017; **17**(2).
- 57. Schallschmidt K, Becker R, Lung C, et al. Comparison of volatile organic compounds from lung cancer patients and healthy controls-challenges and limitations of an observational study. *L Breath Res* 2016; **10**(4): 046007.
- 58. Schumer EM, Trivedi LR, van Berkel V, et al. High sensitivity for lung cancer detection using analysis of exhaled carbonyl compounds. *L Thorac Cardiovasc Surg* 2015; **150**(6): 1517-22; discussion 22-4.
- 59. Schumer EM, Black MC, Bousamra M, 2nd, et al. Normalization of Exhaled Carbonyl Compounds After Lung Cancer Resection. *Ann Thorac Surg* 2016; **102**(4): 1095-100.
- 60. Skeldon KD, McMillan LC, Wyse CA, et al. Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer. *Respir Med* 2006; **100**(2): 300-6.
- 61. Song G, Qin T, Liu H, et al. Quantitative breath analysis of volatile organic compounds of lung cancer patients. *Lung Cancer* 2010; **67**(2): 227-31.
- 62. Ulanowska A, Kowalkowski T, Trawinska E, Buszewski B. The application of statistical methods using VOCs to identify patients with lung cancer. *L Breath Res* 2011; **5**(4): 046008.
- 63. Wang Y, Hu Y, Wang D, et al. The analysis of volatile organic compounds biomarkers for lung cancer in exhaled breath, tissues and cell lines. *Cancer Biomark* 2012; **11**(4): 129-37.
- 64. Wehinger A, Schmid A, Mechtcheriakov S, et al. Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas. *Int L Mass Spectrom* 2007; **265**(1): 49-59.
- 65. Zou Y, Zhang X, Chen X, Hu Y, Ying K, Wang P. Optimization of volatile markers of lung cancer to exclude interferences of non-malignant disease. *Cancer Biomark* 2014; **14**(5): 371-9.
- 66. de Gennaro G, Dragonieri S, Longobardi F, et al. Chemical characterization of exhaled breath to differentiate between patients with malignant plueral mesothelioma from subLects with similar professional asbestos exposure. *Anal Bioanal Chem* 2010; **398**(7-8): 3043-50.
- © 2018 American Medical Association. All rights reserved.

eFigure 3.

Chemical classes

of

VOCs reported in different

sites.

tumour

		Barash 2015	Li 2014	Mangler 2012	Peng 2010	Phillips 2003	Phillips 2006	Wang 2014	Amal 2015	Peng 2010	Guo 2015	Gruber_2014	Hakim 2011	Bouza 2017	Szabó 2015	Altomare 2013	Amal 2016	Peng 2010	Wang 2014	Abela 2009	Kumar 2013	Kumar 2015	Amal_2013	Amal 2016	Xu 2013	Qin 2010	Garcia_2014	BaLtarevic	Bousamra 2014	Buszewski	Buszewski	Chen_2005	Corradi 2015	Crohns 2009	Deng 2004	Feinberg 2016	Filipiak 2014	Fu 2014	Fuchs 2010
		Breast	Breast	Breast	Breast	Breast	Breast	Breast	Ovarian	Prostate	Thyroid	Head &	Head &	Oral cavity	Oral cavity	Colorectal	Colorectal	Colorectal	Colorectal	Esophageal	Esophageal	Esophageal	Gastric	Gastric	Gastric	Liver	Laryngeal	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung
TITLE																																						<u> </u>	
ADOTO	1	1	1	0	0	1	1	0	1	0	0	0	0	0	0	1	1	0	0	0	1	1	0	1	1	1	0	1	1	0	0	0	1	0	0	0	0	0	0
ABSTR									<u> </u>													_					_									_	_		
INTRO	2	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	0	0	1	0	0	1	1	1	1
INTRO	3	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	3	0	0	1	0	0	0	0	1	0	0	0	1	1	1	1	0	0	0	1	1	1	0	1	0	1	1	0	1	1	0	0	1	1	0	1	0	1	1
METH	-					0					Ŭ	0	0	-			0	0				-	U				-	0			0	0	-		0		U		<u> </u>
Study	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
Partici	6	1	1	1	0	1	1	1	0	0	1	1	0	0	1	0	1	0	1	1	1	1	0	1	0	1	0	0	0	0	0	0	1	1	0	1	0	0	0
	7	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	1	0	0	1	1	0	1	1	1	1
	8	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	9	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Test	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	0	1	1	1	1	0	1	1	0	0	0	1	0	0	1	1	0	0	1	0	0
	1	1	1	0	1	1	1	1	0	1	0	1	1	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	1	1	1	0	1	1	0	0	1	1	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	1	1	0	1	1	1	1	0	1	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	1	0	0	1	1	0	0	1	0	0
	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	0	1
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Analys	1	1	1	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	1	1	0	1	1	1	0	1	1	0	0	0	1	0	0	0	0	1	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	1	0	0	0	0	0	0	0		0	0	1	0	0	0
	1	0	1	0		1	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1 0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0
RESUL		U	U	U	0	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	U	U		U	U	U	U	<u> </u>	0
Partici	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
raidel	2	0	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	0	0	1	1	1	1	1	0	1
	2	0	0	1	1	0	0	0	1	1	0	1	1	1	0	1	1	1	0	0	0	1	1	1	1	0	1	0	0	0	0	0	1	1	1	1	1	0	0
	2	0	1	0	1	0	0	1	1	1	0	0	0	0	0	1	1	1	1	0	1	1	0	1	1	1	0	0	1	0	0	0	0	0	0	0	0	1	0
	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Test	2	1	1	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0
	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DISCU																																							
	2	1	1	0	0	1	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	1	1	0	1	0	0	1	1	0	0	0	1	0	0	1	0	0	1
	2	1	1	1	1	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	0	0	1	1	1	0	1	0	1	1
OTHER			L	<u> </u>	L		L		L	L	<u> </u>						L			L																		$ \rightarrow $	
	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	3		1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
TOTAL		1	2	1	1	1	1	1	1	1	1	1	1	1	1	2	2	1	1	1	1	2	1	2	2	1	8	1	1	1	5	6	2	1	1	1	1	1	1

eTable 6. STARD assessment of each study

		Gaspar 2009	Handa 2014	Kischkel 2010	Li 2015	Ligor 2009	Ligor 2015	Ma_2014	Ma 2015	Peled 2012	Peng 2009	Peng 2010	Phillips 2003	Phillips 2007	Phillips 2008	Poli 2005	Poli 2010	Rudnicka 2011	Sakumura 2017	Schallschmidt 2016	Schumer 2015	Schumer 2016	Skeldon 2006	Song 2010	Ulanowska 2011	Wang 2012	Wehinger_2007	Zou 2014	de Gennaro_2010
		Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Lung	Mesoth elioma
TITLE OR																													
	1	0	1	0	1	1	1	0	0	0	0	0	1	1	1	1	1	0	1	1	1	0	0	0	0	1	1	1	0
ABSTRACT	2	0	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	0	0	0	1	1	1	0	0	0	1	1	1
INTRODUCTI	2	0	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	0	0	0	1	1	1	0	0	0	1	1	1
	3	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
	4	0	1	0	0	2	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	1
METHODS																													
Study design	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Participants	6	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1
	7 8	0	1	1	1	0	0	1	0	1	1	1	1 0	1	1	1	1	0	0	0	0	1	1 0	1	1 0	1	1	1	1
	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Test methods	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	0	1	0	1	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	1	1	1	1	0	1	1	1
	1	0	1	0	1	0	1	0	0	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1	1	1	1	1	1
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	1	0	0	0	1	0	1	0	0	1	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1	1	1	1	1
	1	0	1	1	0	1	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Amelia	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Analysis	1	1	1	0	1	1	1	0	0	0	0	0	1	1	1	1	1	0	0	1	1	0	0	1	0	1	1	1	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	1	0	0	1	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	1	1	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RESULTS		-																			-		-						
Participants	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2	0	1	1	1	1	1	1	0	1	1	1	1	1	0	1	1	0	0	1	1	1	0	1	1	1	1	1	1
	2	1	1	0	1	0	0	1	0	1	1	1	1	1	0	0	1	0	0	0	1	1	0	1	0	1	1	1	0
	2	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Test results	2	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0
	2	0	0	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	1	0
	2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DISCUSSION																													
	2	0	1	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	1	1	1	0	0	0	1	1	0
OTHER	2	1	0	0	1	1	0	1	0	0	1	1	1	1	1	1	0	0	0	0	1	0	1	0	0	0	0	1	1
UTTER	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3	0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	0
TOTAL	-	5	17	8	19	12	11	13	5	13	13	14	19	18	15	16	16	5	7	10	14	13	14	13	10	13	17	22	13

eTable 6. STARD assessment of each study (continued)

Classificatio n	Factor	Example	Possible consequence	Example of mitigation or acceptance	References
Environment al	Ambient air	Inhalation of ambient air containing variable levels of target VOCs that is dependent on the time and location of sampling	Elevated and variable levels of target VOCs within inspiratory air diminishes confidence in the ability to accurately determine that which is produced endogenously and associated with disease processes	Concurrent analysis of ambient air is advised in order to provide a reference point for VOCs levels detected in exhaled breath samples. Exclusion of VOCs found to be in high concentrations within inspired air has been recommended.	64-97
	Environmental exposure	Inhalation of exogenous contaminants within ambient air e.g. anaesthetic gases	High levels of contaminant compounds may influence the accurate detection and quantification of trace gases that are of clinical interest	Alternatively correction of trace gas levels in ambient inhaled air through determining their specific retention coefficients has been demonstrated. Inhalation of synthetic 'clean' air another approach.	84,88,98-105
SubLect	SubLect specific	SubLect specific factors, including: age; gender and BMI	Such factors are recognised to significantly affect the concentrations of selected VOCs within exhaled breath	These factors are typically considered to be non- modifiable. Appreciation for their potential influence is however recommended.	39,72,73,76,80,87,91,93,94, 106-115
	Cardiovascular	Variation in cardiovascular parameters, including: heart rate; blood pressure and	Changes in cardiorespiratory parameters are recognised	Recording of basic cardiorespiratory parameters should be	73,74,80,88,92,116-121

eTable 7. Summary of factors reported to influence levels of volatile organic compounds within exhaled breath

Respiratory	cardiac output Variation in respiratory parameters, including: respiratory rate and tidal volume	to alter the delivery and partition of specific VOCs between the fluid and gas phases altering their concentration detected within exhaled breath	considered at the time of breath sampling as well as a standard period of rest prior to breath testing.	66,73,74,92,116-121
Biochemical	Influence of biochemical parameters including: cholesterol; blood glucose and white bloods cell counts	A relationship between biochemical parameters and the levels of selected exhaled VOCs has been reported.	For the maLority of exhaled VOCs a link to a source of systemic origin and association with biochemical processes is yet to be established. Where such a link exists, recognition of it influence upon exhaled VOCs levels should be considered during the development of a clinical breath tests.	76,92,107,108
Diet	Diet and oral intake	Timing of last oral intake can influence exhaled VOCs levels secondary to ingestion of exogenous contaminants and alteration of systemic metabolic pathways	Whilst the relationship between oral intake and the concentrations of specific VOCs (e.g. acetone) is well established, for many other trace gases there is inadequate evidence. Until more is known in regard to the effects of dietary intake the timing and nature of last oral intake should form part of the minimal dataset recorded at the time of breath sampling. A	80,86,87,91-95,114,122-130

				standard period of fasting prior to breath testing is also considered beneficial.	
	Exercise	Variation in activity status, and related metabolic and cardiorespiratory parameters	The effects of exercise on metabolism and cardiorespiratory function may influence the systemic synthesis of VOCs as well as their delivery and release within the lungs	Recording of basic cardiorespiratory parameters should be considered at the time of breath sampling as well as a standard period of rest prior to breath testing.	74,76,111,116- 119,125,131,132
	Smoking	Active and/or passive inhalation of cigarette smoke	Altered VOCs that are observed in the breath of those exposed to cigarette smoke may originate from exogenous contaminants from the smoke itself as well as local and systemic cellular changes	Documentation of smoking status as well as timing of last exposure to cigarette smoke should form part of the minimal dataset recorded at the time of breath sampling.	67,98,99,107-110,125,133- 135
	Inter-subLect variation	Inherent variation in the concentration of exhaled VOCs both within individual and groups of individuals	Knowledge of the normal variation of VOCs within the exhaled breath of healthy subLects is an	An understanding of normal inter- and intra-subLect variation is important for establish normal ranges for	69,70,72,75,76,87,91,93- 95,108,110-115,122- 125,134,136
	Intra-subLect variation		essential step to determining changes brought about by disease states	these VOCs. Controlling for other factors listed herein is anticipated to minimise the observed inter- and intra- subLect variation	67,70,71,76,86,90- 92,110,115,117,136,137
Sampling	Breathing parameters	Parameters associated with the rate, depth and speed of exhalation	Modifiable breath manoeuvres have been associated with variation of	Where possible standard practices for breath sampling should be adhered too. The	80- 82,86,89,90,104,121,138- 143

		a number of exhaled VOCs	development of consensus guidelines for standardised analysis should be considered for selected VOCs.	
Body position	Transition between different body positions	An association between body position at the time of breath sampling and the detected levels of certain VOCs is reported	Ensuring a standard period of rest in a specific position (e.g. sitting) prior to breath testing is recommended	117,120
Sample storage	The method and duration of storage of off-line breath samples	Stored breath samples are vulnerable to the effects of decay, contamination and carryover that this typically dependent upon the method and duration of storage.	Where possible on-line breath sampling should be utilised, obviating the potentially negative effects associated with sample storage. Where off-line sampling is unavoidable a suitable method should be adopted and storage time should be kept to a minimum.	46,69,71,83,110,113,117,13 7,144-148
Expiratory compartment	Sampling of mixed (whole) or alveolar breath samples and breath exhaled via either the oral or nasal cavities	The compartment from which breath is samples can serve to either enrich or contaminate VOC levels within collected samples	Where possible standard practices for breath sampling should be adhered too. The expiratory compartment which is to sampled should be Ludiciously choose to ensure optimal detection of desired VOCs whilst avoiding unwanted	75,77,113,117

				contamination	
Instrument	Analytical technique	Variation between different analytical techniques used for the detection of gas phase VOCs is poorly understood	Uncertainty in regard to the comparability of results determined using different analytical techniques	Cross platform validation of findings are recommended during the discovery phase of VOCs as clinical breath biomarkers	66,70,71,90,116,119,125,1 7,141
	Reproducibility	Intra- and inter-instrument variability and reproducibility of results	Reproducibility of findings both within individual and separate institutions has not been shown for the maLority of trials.	Standardisation of analytical techniques and reproducibility of findings within multicentre trials should be prioritised. Investigators are encouraged to report aspects relating to the reproducibility of the chosen analytical technique	
	Sensitivity	Intra- and inter-instrument characteristics permitting accurate detection to trace VOCs	The specification and capabilities of individual analytical techniques influence accuracy of	Continued refinement and Ludicious selection of analytical method is required to ensure the	
	Reliability		VOCs detection.	accurate detection of gas phase VOCs. Investigators are encouraged to report aspects relating to the sensitivity and reliability of the chosen analytical technique.	

References

- 1. Barash O, Zhang W, Halpern LM, et al. Differentiation between genetic mutations of breast cancer by breath volatolomics. *Oncotarget* 2015; **6**(42): 44864-76.
- 2. Li L, Peng Y, Liu Y, et al. Investigation of potential breath biomarkers for the early diagnosis of breast cancer using gas chromatography-mass spectrometry. *Clin Chim Acta* 2014; **436**: 59-67.
- 3. Mangler M, Freitag C, Lanowska M, Staeck O, Schneider A, Speiser D. Volatile organic compounds (VOCs) in exhaled breath of patients with breast cancer in a clinical setting. *Ginekol Pol* 2012; **83**(10): 730-6.
- 4. Peng G, Hakim M, Broza YY, et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. *Br L Cancer* 2010; **103**(4): 542-51.
- 5. Phillips M, Cataneo RN, Ditkoff BA, et al. Volatile markers of breast cancer in the breath. Breast L 2003; 9(3): 184-91.
- 6. Phillips M, Cataneo RN, Ditkoff BA, et al. Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res Treat 2006; **99**(1): 19-21.
- 7. Wang C, Sun B, Guo L, et al. Volatile organic metabolites identify patients with breast cancer, cyclomastopathy, and mammary gland fibroma. *Sci Rep* 2014; **4**: 5383.
- 8. Amal H, Shi DY, Ionescu R, et al. Assessment of ovarian cancer conditions from exhaled breath. *Int L Cancer* 2015; **136**(6): E614-22.
- 9. Guo L, Wang C, Chi C, et al. Exhaled breath volatile biomarker analysis for thyroid cancer. *Transl Res* 2015; **166**(2): 188-95.
- 10. Gruber M, Tisch U, Leries R, et al. Analysis of exhaled breath for diagnosing head and neck squamous cell carcinoma: a feasibility study. *Br L Cancer* 2014; **111**(4): 790-8.
- 11. Hakim M, Billan S, Tisch U, et al. Diagnosis of head-and-neck cancer from exhaled breath. *Br L Cancer* 2011; **104**(10): 1649-55.
- 12. Bouza M, Gonzalez-Soto L, Pereiro R, de Vicente LC, Sanz-Medel A. Exhaled breath and oral cavity VOCs as potential biomarkers in oral cancer patients. *L Breath Res* 2017; **11**(1): 016015.
- 13. Szabo A, Tarnai Z, Berkovits C, et al. Volatile sulphur compound measurement with OralChroma(TM): a methodological improvement. *L Breath Res* 2015; **9**(1): 016001.
- 14. Altomare DF, Di Lena M, Porcelli F, et al. Exhaled volatile organic compounds identify patients with colorectal cancer. *Br L Surg* 2013; **100**(1): 144-50.
- 15. Amal H, LeLa M, Funka K, et al. Breath testing as potential colorectal cancer screening tool. *Int L Cancer* 2016; **138**(1): 229-36.
- 16. Wang C, Ke C, Wang X, et al. Noninvasive detection of colorectal cancer by analysis of exhaled breath. *Anal Bioanal Chem* 2014; **406**(19): 4757-63.

- 17. Abela LE, Skeldon KD, Stuart RC, Padgett ML. Exhaled ethane concentration in patients with cancer of the upper gastrointestinal tract a proof of concept study. *Biosci Trends* 2009; **3**(3): 110-4.
- 18. Kumar S, Huang L, Abbassi-Ghadi N, Spanel P, Smith D, Hanna GB. Selected ion flow tube mass spectrometry analysis of exhaled breath for volatile organic compound profiling of esophago-gastric cancer. *Anal Chem* 2013; **85**(12): 6121-8.
- 19. Kumar S, Huang L, Abbassi-Ghadi N, et al. Mass Spectrometric Analysis of Exhaled Breath for the Identification of Volatile Organic Compound Biomarkers in Esophageal and Gastric Adenocarcinoma. *Ann Surg* 2015; **262**(6): 981-90.
- 20. Amal H, LeLa M, Broza YY, et al. Geographical variation in the exhaled volatile organic compounds. *L Breath Res* 2013; **7**(4): 047102.
- 21. Amal H, LeLa M, Funka K, et al. Detection of precancerous gastric lesions and gastric cancer through exhaled breath. *Gut* 2016; **65**(3): 400-7.
- 22. Xu ZQ, Broza YY, Ionsecu R, et al. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. *British Lournal of cancer* 2013; **108**(4): 941-50.
- 23. Qin T, Liu H, Song Q, et al. The screening of volatile markers for hepatocellular carcinoma. *Cancer Epidemiol Biomarkers Prev* 2010; **19**(9): 2247-53.
- 24. Garcia RA, Morales V, Martin S, Vilches E, Toledano A. Volatile Organic Compounds Analysis in Breath Air in Healthy Volunteers and Patients Suffering Epidermoid Laryngeal Carcinomas. *Chromatographia* 2014; **77**(5-6): 501-9.
- 25. BaLtarevic A, Ager C, Pienz M, et al. Noninvasive detection of lung cancer by analysis of exhaled breath. *BMC Cancer* 2009; **9**: 348.
- 26. Bousamra M, 2nd, Schumer E, Li M, et al. Quantitative analysis of exhaled carbonyl compounds distinguishes benign from malignant pulmonary disease. *L Thorac Cardiovasc Surg* 2014; **148**(3): 1074-80; discussion 80-1.
- 27. Buszewski B, Ulanowska A, Kowalkowski T, Cieslinski K. Investigation of lung cancer biomarkers by hyphenated separation techniques and chemometrics. *Clin Chem Lab Med* 2011; **50**(3): 573-81.
- 28. Buszewski B, Ligor T, Lezierski T, Wenda-Piesik A, Walczak M, Rudnicka L. Identification of volatile lung cancer markers by gas chromatography-mass spectrometry: comparison with discrimination by canines. *Anal Bioanal Chem* 2012; **404**(1): 141-6.
- 29. Chen X, Cao M, Hao Y, et al. A Non-invasive detection of lung cancer combined virtual gas sensors array with imaging recognition technique. *Conf Proc IEEE Eng Med Biol Soc* 2005; **6**: 5873-6.
- 30. Corradi M, Poli D, Banda I, et al. Exhaled breath analysis in suspected cases of non-small-cell lung cancer: a cross-sectional study. *L Breath Res* 2015; **9**(2): 027101.
- 31. Crohns M, Saarelainen S, Laitinen L, Peltonen K, Alho H, Kellokumpu-Lehtinen P. Exhaled pentane as a possible marker for survival and lipid peroxidation during radiotherapy for lung cancer-a pilot study. *Free Radic Res* 2009; **43**(10): 965-74.
- 32. Deng C, Zhang X, Li N. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry. *L Chromatogr B Analyt Technol Biomed Life Sci* 2004; **808**(2): 269-77.

- 33. Feinberg T, Alkoby-Meshulam L, Herbig L, et al. Cancerous glucose metabolism in lung cancer-evidence from exhaled breath analysis. *L Breath Res* 2016; **10**(2): 026012.
- 34. Filipiak W, Filipiak A, Sponring A, et al. Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. *L Breath Res* 2014; **8**(2): 027111.
- 35. Fu XA, Li M, Knipp RL, Nantz MH, Bousamra M. Noninvasive detection of lung cancer using exhaled breath. *Cancer Med* 2014; **3**(1): 174-81.
- 36. Fuchs P, Loeseken C, Schubert LK, Miekisch W. Breath gas aldehydes as biomarkers of lung cancer. *Int L Cancer* 2010; **126**(11): 2663-70.
- 37. Gaspar EM, Lucena AF, Duro da Costa L, Chaves das Neves H. Organic metabolites in exhaled human breath--a multivariate approach for identification of biomarkers in lung disorders. *L Chromatogr A* 2009; **1216**(14): 2749-56.
- 38. Handa H, Usuba A, Maddula S, Baumbach LI, Mineshita M, Miyazawa T. Exhaled breath analysis for lung cancer detection using ion mobility spectrometry. *PLoS One* 2014; **9**(12): e114555.
- Kischkel S, Miekisch W, Sawacki A, et al. Breath biomarkers for lung cancer detection and assessment of smoking related effects--confounding variables, influence of normalization and statistical algorithms. *Clin Chim Acta* 2010; **411**(21-22): 1637-44.
- 40. Li M, Yang D, Brock G, et al. Breath carbonyl compounds as biomarkers of lung cancer. Lung Cancer 2015; 90(1): 92-7.
- 41. Ligor M, Ligor T, BaLtarevic A, et al. Determination of volatile organic compounds in exhaled breath of patients with lung cancer using solid phase microextraction and gas chromatography mass spectrometry. *Clin Chem Lab Med* 2009; **47**(5): 550-60.
- 42. Ligor T, Pater L, Buszewski B. Application of an artificial neural network model for selection of potential lung cancer biomarkers. *L Breath Res* 2015; **9**(2): 027106.
- 43. Ma HY, Li X, Chen LM, et al. Analysis of human breath samples of lung cancer patients and healthy controls with solidphase microextraction (SPME) and flow-modulated comprehensive two-dimensional gas chromatography (GC x GC). *Anal Methods-Uk* 2014; **6**(17): 6841-9.
- 44. Ma W, Gao P, Fan L, Hashi Y, Chen Z. Determination of breath gas composition of lung cancer patients using gas chromatography/mass spectrometry with monolithic material sorptive extraction. *Biomed Chromatogr* 2015; **29**(6): 961-5.
- 45. Peled N, Hakim M, Bunn PA, Lr., et al. Non-invasive breath analysis of pulmonary nodules. *L Thorac Oncol* 2012; **7**(10): 1528-33.
- 46. Peng G, Tisch U, Adams O, et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. *Nat Nanotechnol* 2009; **4**(10): 669-73.
- 47. Phillips M, Cataneo RN, Cummin AR, et al. Detection of lung cancer with volatile markers in the breath. *Chest* 2003; **123**(6): 2115-23.
- © 2018 American Medical Association. All rights reserved.

- 48. Phillips M, Altorki N, Austin LH, et al. Prediction of lung cancer using volatile biomarkers in breath. *Cancer Biomark* 2007; **3**(2): 95-109.
- 49. Phillips M, Altorki N, Austin LH, et al. Detection of lung cancer using weighted digital analysis of breath biomarkers. *Clin Chim Acta* 2008; **393**(2): 76-84.
- 50. Poli D, Carbognani P, Corradi M, et al. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. *Respir Res* 2005; **6**: 71.
- 51. Poli D, Goldoni M, Corradi M, et al. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS. *L Chromatogr B Analyt Technol Biomed Life Sci* 2010; **878**(27): 2643-51.
- Rudnicka L, Kowalkowski T, Ligor T, Buszewski B. Determination of volatile organic compounds as biomarkers of lung cancer by SPME-GC-TOF/MS and chemometrics. *L Chromatogr B Analyt Technol Biomed Life Sci* 2011; 879(30): 3360-6.
- 53. Sakumura Y, Koyama Y, Tokutake H, et al. Diagnosis by Volatile Organic Compounds in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm. *Sensors (Basel)* 2017; **17**(2).
- 54. Schallschmidt K, Becker R, Lung C, et al. Comparison of volatile organic compounds from lung cancer patients and healthy controls-challenges and limitations of an observational study. *L Breath Res* 2016; **10**(4): 046007.
- 55. Schumer EM, Trivedi LR, van Berkel V, et al. High sensitivity for lung cancer detection using analysis of exhaled carbonyl compounds. *L Thorac Cardiovasc Surg* 2015; **150**(6): 1517-22; discussion 22-4.
- 56. Schumer EM, Black MC, Bousamra M, 2nd, et al. Normalization of Exhaled Carbonyl Compounds After Lung Cancer Resection. *Ann Thorac Surg* 2016; **102**(4): 1095-100.
- 57. Skeldon KD, McMillan LC, Wyse CA, et al. Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer. *Respir Med* 2006; **100**(2): 300-6.
- 58. Song G, Qin T, Liu H, et al. Quantitative breath analysis of volatile organic compounds of lung cancer patients. *Lung Cancer* 2010; **67**(2): 227-31.
- 59. Ulanowska A, Kowalkowski T, Trawinska E, Buszewski B. The application of statistical methods using VOCs to identify patients with lung cancer. *L Breath Res* 2011; **5**(4): 046008.
- 60. Wang Y, Hu Y, Wang D, et al. The analysis of volatile organic compounds biomarkers for lung cancer in exhaled breath, tissues and cell lines. *Cancer Biomark* 2012; **11**(4): 129-37.
- 61. Wehinger A, Schmid A, Mechtcheriakov S, et al. Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas. *Int L Mass Spectrom* 2007; **265**(1): 49-59.
- 62. Zou Y, Zhang X, Chen X, Hu Y, Ying K, Wang P. Optimization of volatile markers of lung cancer to exclude interferences of non-malignant disease. *Cancer Biomark* 2014; **14**(5): 371-9.

- 63. de Gennaro G, Dragonieri S, Longobardi F, et al. Chemical characterization of exhaled breath to differentiate between patients with malignant plueral mesothelioma from subLects with similar professional asbestos exposure. *Anal Bioanal Chem* 2010; **398**(7-8): 3043-50.
- 64. Phillips M, Greenberg L, Sabas M. Alveolar gradient of pentane in normal human breath. *Free Radic Res* 1994; **20**(5): 333-7.
- 65. Wade CR, van RiL AM. In vivo lipid peroxidation in man as measured by the respiratory excretion of ethane, pentane, and other low-molecular-weight hydrocarbons. *Anal Biochem* 1985; **150**(1): 1-7.
- 66. Schubert LK, Spittler KH, Braun G, Geiger K, Guttmann L. CO(2)-controlled sampling of alveolar gas in mechanically ventilated patients. *L Appl Physiol (1985)* 2001; **90**(2): 486-92.
- 67. Basanta M, Ibrahim B, Douce D, Morris M, Woodcock A, Fowler SL. Methodology validation, intra-subLect reproducibility and stability of exhaled volatile organic compounds. *L Breath Res* 2012; **6**(2): 026002.
- 68. Schubert LK, Miekisch W, Birken T, Geiger K, Noldge-Schomburg GF. Impact of inspired substance concentrations on the results of breath analysis in mechanically ventilated patients. *Biomarkers* 2005; **10**(2-3): 138-52.
- 69. Arendacka B, Schwarz K, Stolc S, Wimmer G, Witkovsky V. Variability issues in determining the concentration of isoprene in human breath by PTR-MS. *L Breath Res* 2008; **2**(3): 037007.
- 70. Thekedar B, Szymczak W, Hollriegl V, Hoeschen C, Oeh U. Investigations on the variability of breath gas sampling using PTR-MS. *L Breath Res* 2009; **3**(2): 027007.
- 71. Steeghs MM, Cristescu SM, Munnik P, Zanen P, Harren FL. An off-line breath sampling and analysis method suitable for large screening studies. *Physiol Meas* 2007; **28**(5): 503-14.
- 72. Lechner M, Moser B, Niederseer D, et al. Gender and age specific differences in exhaled isoprene levels. *Respir Physiol Neurobiol* 2006; **154**(3): 478-83.
- 73. King L, Kupferthaler A, Frauscher B, et al. Measurement of endogenous acetone and isoprene in exhaled breath during sleep. *Physiol Meas* 2012; **33**(3): 413-28.
- 74. Unterkofler K, King L, Mochalski P, et al. Modeling-based determination of physiological parameters of systemic VOCs by breath gas analysis: a pilot study. *L Breath Res* 2015; **9**(3): 036002.
- 75. Pysanenko A, Spanel P, Smith D. A study of sulfur-containing compounds in mouth- and nose-exhaled breath and in the oral cavity using selected ion flow tube mass spectrometry. *L Breath Res* 2008; **2**(4): 046004.
- 76. Turner C, Spanel P, Smith D. A longitudinal study of breath isoprene in healthy volunteers using selected ion flow tube mass spectrometry (SIFT-MS). *Physiol Meas* 2006; **27**(1): 13-22.
- 77. Wang T, Pysanenko A, Dryahina K, Spanel P, Smith D. Analysis of breath, exhaled via the mouth and nose, and the air in the oral cavity. *L Breath Res* 2008; **2**(3): 037013.
- 78. Boshier PR, Cushnir LR, Priest OH, Marczin N, Hanna GB. Variation in the levels of volatile trace gases within three hospital environments: implications for clinical breath testing. *L Breath Res* 2010; **4**(3): 031001.

C 2018 American Medical Association. All rights reserved.

- 79. Knutson MD, Handelman GL, Viteri FE. Methods for measuring ethane and pentane in expired air from rats and humans. *Free Radic Biol Med* 2000; **28**(4): 514-9.
- 80. Cope KA, Watson MT, Foster WM, Sehnert SS, Risby TH. Effects of ventilation on the collection of exhaled breath in humans. *L Appl Physiol (1985)* 2004; **96**(4): 1371-9.
- 81. Larstad MA, Toren K, Bake B, Olin AC. Determination of ethane, pentane and isoprene in exhaled air--effects of breathholding, flow rate and purified air. *Acta Physiol (Oxf)* 2007; **189**(1): 87-98.
- 82. Miekisch W, Kischkel S, Sawacki A, Liebau T, Mieth M, Schubert LK. Impact of sampling procedures on the results of breath analysis. *L Breath Res* 2008; **2**(2): 026007.
- 83. Mochalski P, King L, Klieber M, et al. Blood and breath levels of selected volatile organic compounds in healthy volunteers. *Analyst* 2013; **138**(7): 2134-45.
- 84. von Basum G, Dahnke H, Halmer D, Hering P, Murtz M. Online recording of ethane traces in human breath via infrared laser spectroscopy. *L Appl Physiol (1985)* 2003; **95**(6): 2583-90.
- 85. Maurer F, Wolf A, Fink T, et al. Wash-out of ambient air contaminations for breath measurements. *L Breath Res* 2014; **8**(2): 027107.
- 86. Bikov A, Paschalaki K, Logan-Sinclair R, et al. Standardised exhaled breath collection for the measurement of exhaled volatile organic compounds by proton transfer reaction mass spectrometry. *BMC Pulm Med* 2013; **13**: 43.
- 87. Schwarz K, Pizzini A, Arendacka B, et al. Breath acetone-aspects of normal physiology related to age and gender as determined in a PTR-MS study. *L Breath Res* 2009; **3**(2): 027003.
- 88. Trefz P, Schmidt M, Oertel P, et al. Continuous real time breath gas monitoring in the clinical environment by protontransfer-reaction-time-of-flight-mass spectrometry. *Anal Chem* 2013; **85**(21): 10321-9.
- 89. O'Hara ME, O'Hehir S, Green S, Mayhew CA. Development of a protocol to measure volatile organic compounds in human breath: a comparison of rebreathing and on-line single exhalations using proton transfer reaction mass spectrometry. *Physiol Meas* 2008; **29**(3): 309-30.
- 90. Dummer LF, Storer MK, Hu WP, et al. Accurate, reproducible measurement of acetone concentration in breath using selected ion flow tube-mass spectrometry. *L Breath Res* 2010; **4**(4): 046001.
- 91. Turner C, Spanel P, Smith D. A longitudinal study of methanol in the exhaled breath of 30 healthy volunteers using selected ion flow tube mass spectrometry, SIFT-MS. *Physiol Meas* 2006; **27**(7): 637-48.
- 92. Sturney SC, Storer MK, Shaw GM, Shaw DE, Epton ML. Off-line breath acetone analysis in critical illness. *L Breath Res* 2013; **7**(3): 037102.
- 93. Turner C, Spanel P, Smith D. A longitudinal study of ethanol and acetaldehyde in the exhaled breath of healthy volunteers using selected-ion flow-tube mass spectrometry. *Rapid Commun Mass Spectrom* 2006; **20**(1): 61-8.
- 94. Turner C, Spanel P, Smith D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subLects using selected ion flow tube mass spectrometry, SIFT-MS. *Physiol Meas* 2006; **27**(4): 321-37.

- 95. Smith D, Spanel P, Davies S. Trace gases in breath of healthy volunteers when fasting and after a protein-calorie meal: a preliminary study. *L Appl Physiol (1985)* 1999; **87**(5): 1584-8.
- 96. Spanel P, Dryahina K, Smith D. A quantitative study of the influence of inhaled compounds on their concentrations in exhaled breath. *L Breath Res* 2013; **7**(1): 017106.
- 97. Phillips M. Method for the collection and assay of volatile organic compounds in breath. *Anal Biochem* 1997; **247**(2): 272-8.
- 98. Euler DE, Dave SL, Guo H. Effect of cigarette smoking on pentane excretion in alveolar breath. *Clin Chem* 1996; **42**(2): 303-8.
- Buszewski B, Ulanowska A, Ligor T, Denderz N, Amann A. Analysis of exhaled breath from smokers, passive smokers and non-smokers by solid-phase microextraction gas chromatography/mass spectrometry. *Biomed Chromatogr* 2009; 23(5): 551-6.
- 100. Wallace LA, Pellizzari E, Hartwell T, et al. Personal exposure to volatile organic compounds. I. Direct measurements in breathing-zone air, drinking water, food, and exhaled breath. *Environ Res* 1984; **35**(1): 293-319.
- 101. Pleil LD, Lindstrom AB. Exhaled human breath measurement method for assessing exposure to halogenated volatile organic compounds. *Clin Chem* 1997; **43**(5): 723-30.
- 102. Pleil LD, Lindstrom AB. Collection of a single alveolar exhaled breath for volatile organic compounds analysis. *Am L Ind Med* 1995; **28**(1): 109-21.
- 103. Castellanos M, Xifra G, Fernandez-Real LM, Sanchez LM. Breath gas concentrations mirror exposure to sevoflurane and isopropyl alcohol in hospital environments in non-occupational conditions. *L Breath Res* 2016; **10**(1): 016001.
- 104. Thekedar B, Oeh U, Szymczak W, Hoeschen C, Paretzke HG. Influences of mixed expiratory sampling parameters on exhaled volatile organic compound concentrations. *L Breath Res* 2011; **5**(1): 016001.
- 105. Storer M, Curry K, Squire M, Kingham S, Epton M. Breath testing and personal exposure--SIFT-MS detection of breath acetonitrile for exposure monitoring. *L Breath Res* 2015; **9**(3): 036006.
- 106. Diskin AM, Spanel P, Smith D. Increase of acetone and ammonia in urine headspace and breath during ovulation quantified using selected ion flow tube mass spectrometry. *Physiol Meas* 2003; **24**(1): 191-9.
- 107. Blanchet L, Smolinska A, Baranska A, et al. Factors that influence the volatile organic compound content in human breath. *L Breath Res* 2017; **11**(1): 016013.
- 108. Kushch I, Arendacka B, Stolc S, et al. Breath isoprene--aspects of normal physiology related to age, gender and cholesterol profile as determined in a proton transfer reaction mass spectrometry study. *Clin Chem Lab Med* 2008; **46**(7): 1011-8.
- 109. Lareno-Esteban LL, Munoz-Lucas MA, Carrillo-Aranda B, et al. Volatile organic compounds in exhaled breath in a healthy population: effect of tobacco smoking. *Arch Bronconeumol* 2013; **49**(11): 457-61.

- 110. Huang L, Kumar S, Hanna GB. Investigation of C3-C10 aldehydes in the exhaled breath of healthy subLects using selected ion flow tube-mass spectrometry (SIFT-MS). *L Breath Res* 2014; **8**(3): 037104.
- 111. Senthilmohan ST, McEwan ML, Wilson PF, Milligan DB, Freeman CG. Real time analysis of breath volatiles using SIFT-MS in cigarette smoking. *Redox Rep* 2001; **6**(3): 185-7.
- 112. Hannemann M, AntufLew A, Borgmann K, et al. Influence of age and sex in exhaled breath samples investigated by means of infrared laser absorption spectroscopy. *L Breath Res* 2011; **5**(2): 027101.
- 113. Hibbard T, Killard AL. Breath ammonia levels in a normal human population study as determined by photoacoustic laser spectroscopy. *L Breath Res* 2011; **5**(3): 037101.
- 114. Spanel P, Dryahina K, Smith D. The concentration distributions of some metabolites in the exhaled breath of young adults. *L Breath Res* 2007; **1**(2): 026001.
- 115. Smith D, Spanel P, Enderby B, Lenney W, Turner C, Davies SL. Isoprene levels in the exhaled breath of 200 healthy pupils within the age range 7-18 years studied using SIFT-MS. *L Breath Res* 2010; **4**(1): 017101.
- 116. King L, Mochalski P, Kupferthaler A, et al. Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study. *Physiol Meas* 2010; **31**(9): 1169-84.
- 117. King L, Kupferthaler A, Unterkofler K, et al. Isoprene and acetone concentration profiles during exercise on an ergometer. *L Breath Res* 2009; **3**(2): 027006.
- 118. King L, Koc H, Unterkofler K, et al. Physiological modeling of isoprene dynamics in exhaled breath. *L Theor Biol* 2010; **267**(4): 626-37.
- 119. Schwoebel H, Schubert R, Sklorz M, et al. Phase-resolved real-time breath analysis during exercise by means of smart processing of PTR-MS data. *Anal Bioanal Chem* 2011; **401**(7): 2079-91.
- 120. Sukul P, Trefz P, Kamysek S, Schubert LK, Miekisch W. Instant effects of changing body positions on compositions of exhaled breath. *L Breath Res* 2015; **9**(4): 047105.
- 121. Sukul P, Schubert LK, Oertel P, et al. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests. *Sci Rep* 2016; **6**: 28029.
- 122. Spanel P, Turner C, Wang T, Bloor R, Smith D. Generation of volatile compounds on mouth exposure to urea and sucrose: implications for exhaled breath analysis. *Physiol Meas* 2006; **27**(2): N7-17.
- 123. Spanel P, Dryahina K, ReLskova A, Chippendale TW, Smith D. Breath acetone concentration; biological variability and the influence of diet. *Physiol Meas* 2011; **32**(8): N23-31.
- 124. Spanel P, Davies S, Smith D. Quantification of breath isoprene using the selected ion flow tube mass spectrometric analytical method. *Rapid Commun Mass Spectrom* 1999; **13**(17): 1733-8.
- 125. Riess U, Tegtbur U, Fauck C, Fuhrmann F, Markewitz D, Salthammer T. Experimental setup and analytical methods for the non-invasive determination of volatile organic compounds, formaldehyde and NOx in exhaled human breath. *Anal Chim Acta* 2010; **669**(1-2): 53-62.
- © 2018 American Medical Association. All rights reserved.

- 126. Baranska A, Tigchelaar E, Smolinska A, et al. Profile of volatile organic compounds in exhaled breath changes as a result of gluten-free diet. *L Breath Res* 2013; **7**(3): 037104.
- 127. Raninen KL, Lappi LE, Mukkala ML, et al. Fiber content of diet affects exhaled breath volatiles in fasting and postprandial state in a pilot crossover study. *Nutr Res* 2016; **36**(6): 612-9.
- 128. Spacek LA, Mudalel ML, Lewicki R, et al. Breath ammonia and ethanol increase in response to a high protein challenge. *Biomarkers* 2015; **20**(2): 149-56.
- 129. Galassetti PR, Novak B, Nemet D, et al. Breath ethanol and acetone as indicators of serum glucose levels: an initial report. *Diabetes Technol Ther* 2005; **7**(1): 115-23.
- 130. Lones AW. Breath-acetone concentrations in fasting healthy men: response of infrared breath-alcohol analyzers. *L Anal Toxicol* 1987; **11**(2): 67-9.
- 131. Yamai K, Ohkuwa T, Itoh H, Yamazaki Y, Tsuda T. Influence of cycle exercise on acetone in expired air and skin gas. *Redox Rep* 2009; **14**(6): 285-9.
- 132. Koc H, King L, Teschl G, et al. The role of mathematical modeling in VOC analysis using isoprene as a prototypic example. *L Breath Res* 2011; **5**(3): 037102.
- 133. Lo WK, Pack KW. Utilization of breath analysis for exposure estimates of benzene associated with active smoking. *Environ Res* 2000; **83**(2): 180-7.
- 134. Kushch I, Schwarz K, Schwentner L, et al. Compounds enhanced in a mass spectrometric profile of smokers' exhaled breath versus non-smokers as determined in a pilot study using PTR-MS. *L Breath Res* 2008; **2**(2): 026002.
- 135. Senthilmohan ST, Milligan DB, McEwan ML, Freeman CG, Wilson PF. Quantitative analysis of trace gases of breath during exercise using the new SIFT-MS technique. *Redox Rep* 2000; **5**(2-3): 151-3.
- 136. Diskin AM, Spanel P, Smith D. Time variation of ammonia, acetone, isoprene and ethanol in breath: a quantitative SIFT-MS study over 30 days. *Physiol Meas* 2003; **24**(1): 107-19.
- 137. Kang S, Paul Thomas CL. How long may a breath sample be stored for at -80 degrees C? A study of the stability of volatile organic compounds trapped onto a mixed Tenax:Carbograph trap adsorbent bed from exhaled breath. *L Breath Res* 2016; **10**(2): 026011.
- 138. Lomonaco T, Salvo P, Ghimenti S, et al. A breath sampling system assessing the influence of respiratory rate on exhaled breath composition. *Conf Proc IEEE Eng Med Biol Soc* 2015; **2015**: 7618-21.
- 139. Anderson LC, Lamm WL, Hlastala MP. Measuring airway exchange of endogenous acetone using a single-exhalation breathing maneuver. *L Appl Physiol (1985)* 2006; **100**(3): 880-9.
- 140. Boshier PR, Priest OH, Hanna GB, Marczin N. Influence of respiratory variables on the on-line detection of exhaled trace gases by PTR-MS. *Thorax* 2011; **66**(10): 919-20.
- 141. Boshier PR, Marczin N, Hanna GB. Repeatability of the measurement of exhaled volatile metabolites using selected ion flow tube mass spectrometry. *L Am Soc Mass Spectrom* 2010; **21**(6): 1070-4.
- © 2018 American Medical Association. All rights reserved.

- 142. Sukul P, Trefz P, Schubert LK, Miekisch W. Immediate effects of breath holding maneuvers onto composition of exhaled breath. *L Breath Res* 2014; **8**(3): 037102.
- 143. Bos LD, Wang Y, Weda H, et al. A simple breath sampling method in intubated and mechanically ventilated critically ill patients. *Respir Physiol Neurobiol* 2014; **191**: 67-74.
- 144. Ghimenti S, Tabucchi S, Bellagambi FG, et al. Determination of sevoflurane and isopropyl alcohol in exhaled breath by thermal desorption gas chromatography-mass spectrometry for exposure assessment of hospital staff. *L Pharm Biomed Anal* 2015; **106**: 218-23.
- 145. Gilchrist FL, Razavi C, Webb AK, et al. An investigation of suitable bag materials for the collection and storage of breath samples containing hydrogen cyanide. *L Breath Res* 2012; **6**(3): 036004.
- 146. Beauchamp L, Herbig L, Gutmann R, Hansel A. On the use of Tedlar(R) bags for breath-gas sampling and analysis. *L Breath Res* 2008; **2**(4): 046001.
- 147. Mochalski P, Wzorek B, Sliwka I, Amann A. Suitability of different polymer bags for storage of volatile sulphur compounds relevant to breath analysis. *L Chromatogr B Analyt Technol Biomed Life Sci* 2009; **877**(3): 189-96.
- 148. Mochalski P, King L, Unterkofler K, Amann A. Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm sampling bags. *Analyst* 2013; **138**(5): 1405-18.