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Susceptibility or Resilience to Maltreatment Can Be Explained by 
Specific Differences in Brain Network Architecture 

 
Supplemental Information 

 
 
Recruitment 

Briefly, subjects were recruited by advertisements. Potentially interested participants were 

phone screened to be medically healthy, right handed, unmedicated (except for contraceptives, 

hormone replacement and occasional use of albuterol inhalers or non-sedating antihistamines) 

and between 18-25 years of age. Those who appeared eligible were invited to log onto a 

HIPAA-compliant online enrollment system to provide detailed information on demographics, 

medical and psychiatric history, developmental history, life experiences, psychiatric 

symptomatology and history of childhood maltreatment. Those that meet criteria were invited to 

the laboratory for further evaluation. 

 

Exclusion criteria included: history of neurologic disease, concussion or head trauma resulting in 

loss of consciousness for more than 5 minutes, multiple unrelated forms of adversity including 

natural disaster, motor vehicle accidents, near drowning, house fire, mugging, witnessing or 

experiencing war, gang violence or murder, riot, or assault with a weapon or animal attack. 

Additionally, high levels of drug or alcohol use were grounds for exclusion. 

 

Overall, 2188 subjects provided on-line information. From this group we interviewed 670 

subjects, and from this interviewed pool we selected the neuroimaging sample. The large 

number of subjects screened was not specifically required to provide the required number of 

participants with moderate-to-high levels of maltreatment. Most online screened subjects were 

eliminated due to histories of head injury / possible concussion, exposure to multiple types of 



Ohashi et al.  Supplement 

2 

trauma (e.g., natural disasters, motor vehicle accidents), prematurity or birth complications and 

binge drinking. 

 

Subjects received $25 for completing the online assessment, $100 per interview and 

assessment session and $100 for a one-hour MRI protocol. 

 

Additional Information – Maltreatment and Abuse Chronology of Exposure (MACE) Scale 

MACE provides ratings on 10 types of abuse and neglect: 1) emotional neglect; 2) physical 

neglect; 3) witnessing interparental violence; 4) witnessing violence towards siblings; 5) sexual 

abuse; 6) parental verbal abuse; 7) parental non-verbal emotional abuse; 8) parental physical 

abuse; 9) peer emotional abuse and 10) peer physical bullying. The MACE provides two 

measures of overall exposure – MACE Severity (range 0-100), which indicates composite 

degree of exposure, and MACE Multiplicity (range 0 – 10), which indicates the number of 

different types of maltreatment experienced. MACE provides excellent overall reliability and 

good to excellent reliability at each age and to each type of maltreatment. MACE Severity 

correlated 0.738 with Childhood Trauma Questionnaire (CTQ) score and MACE Multiplicity 

correlated 0.698 with the ACE scale scores. MACE accounted for 2.00- and 2.07-fold more of 

the variance in psychiatric symptom ratings than CTQ or ACE, respectively (n=1051) based on 

variance decomposition. MACE was our primary measure of exposure as it provided data on 

timing of exposure not available in other instruments. Further, each MACE category fits a Rasch 

Model which means that each category provides a ‘fundamental measurement’ of exposure in 

which items are measured on an interval scale with a common unit (1, 2). 

 

MRI Acquisition 

Multiple diffusion-weighted images and high-resolution T1-weighted images were acquired 

using 3T Siemens Trio with 32-channel coil (Siemens Medical Solutions, Erlangen, Germany). 
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An image analyst observed all scans and sequences with discernible motion artifacts were 

recollected. Multiple diffusion-weighted images were acquired in 72 directions. Scan parameters 

were: b=1000 sec/mm2; echo time (TE)/repetition time (TR)=81 msec/6sec; matrix=128x128 on 

240mmx240mm field of view (FOV); slices 3.5mm without gap, to yield voxel size of 

1.8mmx1.8mmx3.5mm. Anatomical images were acquired using magnetization prepared rapid 

gradient echo (MPRAGE) sequence. Scan parameters were: sagittal plane, echo time/repetition 

time/inversion time/flip 1⁄4 2.74 msec/2.1 sec/ 1.1 sec/121; three-dimensional matrix 

256x256x128 on 256x256x170 mm field of view; bandwidth of 48.6 kHz; scan time 4:56.  

 

MRI Analysis and Network Construction 

First, all scans were inspected for motion artifacts or incomplete coverage. Second, eddy 

current corrected DTI data were fit to a diffusion tensor model in order to generate FA images 

using the FMRIB's Diffusion Toolbox (FDT: FSL FMRIB Software Library). Parcellation was 

conducted in DTI native space (3-5). Each individual’s co-registered structural image was 

normalized to the Montreal Neurological Institute (MNI) template and transformed back to DTI 

native space along with the AAL template (5) which was used to parcellate each brain into 90 

regional nodes (45 for each hemisphere with the cerebellum excluded).  Subsequently, diffusion 

tensor tractography (DTT) was performed and the number of fiber streams interconnecting each 

node were estimated with the deterministic tractography method implemented in the Diffusion 

Toolkit and TrackVis (6) using previously reported criteria (7). Two AAL nodes (ROI) were 

considered to be connected if the reconstructed fiber streams touch these two regions. Fiber 

streams connecting nodes were defined as edges. Unweighted networks were created by 

assigning a weight of 1 for edges between nodes with one or more interconnecting fiber streams 

and 0 for edges between nodes with no interconnecting fiber streams. All graph theory 

measures presented were for unweighted networks. 
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Identifying Nodal Differences between Groups: Elastic Net and Random Forest 

Regression  

To identify nodal differences between symptomatic and asymptomatic participants we used 

elastic net, a form of penalized regression that includes both lasso (least absolute shrinkage 

and selection operator) and ridge regularization procedures to define an optimal model with a 

minimal number of predictor variables. Elastic net classification minimizes overfitting by 

penalizing estimate coefficients reducing the variance of several of the potential predictors to 

zero and provides more stable estimates for the other predictors. Second, we used random 

forest regression with conditional inference trees (RFR-CIT) as a powerful machine learning 

model (8), which does not assume a linear relationship between predictor variables and 

outcome.  

 

Random forest regression (RFR) predicts outcome by creating a forest of decision trees with 

each tree generated from a different subset of the data and constrained in the number of 

predictor it can consider at each decision point (9). This “wisdom of the crowd” strategy provides 

superior predictions versus conventional regression techniques (10). The tree structure can also 

model interactions, does not assume a linear relationship between predictor and response and 

is highly resistant to collinearity. Variable importance is assessed by permuting each variable, 

and determining how much this degrades model fit (increase in mean square error) (9). 

Permuting important predictors decreases fit to a large degree whereas permuting unimportant 

predictors has little impact. We use a variant of Breiman’s approach with conditional inference 

trees (8) that rectifies a problem in the estimation of importance of predictors with many versus 

few levels or categories (8). We also found in Monte-Carlo simulations that it is better able to 

detect the most important predictors in collinear data sets. Statistical significance of the 

importance measures was assessed through permutation testing by repeatedly fitting the 

predictors to randomized outcome data. 
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Multiclass Prediction 

We used random forest classifier to create a multiclass prediction model.  As with the random 

forest regression, the model was built by a set of decision trees from randomly selected subsets 

of the training data. The votes from all of the decision trees are aggregated to decide the final 

class of the test object. This set of decision trees was used to predict the class. Predictive 

accuracy was determined using 10-fold cross-validation.  

 

Between Group Differences in Fractional Anisotropy (FA) 

Our hypothesis of maltreatment-related alterations in global network architecture was presaged 

by findings of alterations in FA in corpus callosum, arcuate fasciculus, superior longitudinal 

fasciculus, inferior longitudinal fasciculus, uncinate, cingulum bundle and fornix (11, 12). A key 

concern with tractography is that the performance of the algorithm is affected by divergence of 

fiber streams from major pathways and by potential crossing of fiber tracts in a given voxel.  

Further, performance is directly proportional to FA values which are thresholded for ending 

points. As FA values are sensitive to both genetic and psychiatric disorders network findings 

may stem from overall FA differences between the groups.  

 

Overall, there were no differences between groups in mean FA for the entire brain (F2, 301 = 

0.223, p > 0.8) nor for the mean of the skeletonized pathways (F2,301 = 0.320, p > 0.7). Including 

FA as a covariate had no effect on the overall findings. For example, MANOVA comparison for 

network architecture in resilient-susceptible-control comparison was essentially unchanged by 

including skeletonized FA as a covariate (PBT = 0.088, F10,552 = 2.542, p = .005). Likewise, 

symptomatic, asymptomatic and control group differences were unaffected by including FA as a 

covariate (without FA F2,301 = 8.836, p = 0.00019; with FA as covariate F2,300 = 8.798, p = 

0.00019) as were group differences in nodal efficiency (e.g., nodal efficiency of right amygdala 

without FA F2,305 = 4.272, p = 0.0148; with mean skeletonized FA F2,304 = 4.222, p = 0.0155). 
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Lack of influence of FA values is likely the result of analyzing unweighted networks in which 

nodes were either considered connected (1 or more interconnecting fiber streams) or 

unconnected (no interconnecting fiber streams). FA values may well exert significant influence 

on weighted networks. 

 

Correlation Between Measures of Nodal Efficiency and Current Symptom Scores 

We also assessed in an exploratory analysis whether there were significant associations 

between measures of nodal efficiency in the 9 identified nodes and current symptoms of 

anxiety, depression, anger-hostility and somatization in maltreated individuals after controlling 

for differences in relevant covariates (including degree of exposure to maltreatment, gender and 

sociodemographic factors). Increased nodal efficiency (NE) in inferior triangularis, amygdala, 

supplemental motor area and middle cingulate was associated with higher composite symptoms 

scores (sum anxiety, depression, somatization and anger-hostility). Nodal efficiency in the 

inferior triangularis was specifically associated with symptoms of depression (F1,173 = 4.25, p = 

.04) and somatization (F1,173 = 4.53, p < .04). Amygdala NE was associated with somatization 

(F1,173 = 3.98, p < .05) and anger-hostility (F1,173 = 8.25, p < .005). Supplementary motor area NE 

was associated with anxiety (F1,172 = 4.58, p < .04) and somatization (F1,173 = 7.89, p < .006) 

while NE in the mid portion of the cingulate was associated with somatization (F1,174 = 4.19, p < 

0.05). 

 

Predictive Multiclass Model and Potential for Overfitting 

As a reviewer pointed out, performing classification based on features which have been 

selected on the basis that they are already known to show significant differences in the same 

dataset tends to lead to overfitting (13). This however, depends to a considerable degree on 

sample size. With small N’s the extent of overfitting can be alarming when using a 2-way feature 

set in a new 2-way classification analysis that contains some of the same participants. With 
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N=20, and assuming an average AUROC (area under the receiver operating characteristic 

curve) of 0.7, this approach was estimated (in the 8 models using real data) to overfit by an 

average of 27%, and in the worst case by 43% (13). However, with N=310 fit using this 

approach overestimated fit by less than 2% on average, with a worst case of ~ 8% overfit (e.g., 

AUROC of 0.757 vs AUROC of 0.700). 

 

To further evaluate this concern we assessed the fit of the 5 global architecture and 9 nodal 

feature model by creating an independent training set (67% of subjects) and test set. The two 

groups were created by balancing percent of subjects in each class as well as age and gender. 

The top nine nodes distinguishing symptomatic and asymptomatic participants were selected 

using RFR-CIT from just the training set and combined with five measures of global network 

architecture to build a predictive multiclass model that best fit the training set. The test set was 

then run through this predictive model. The results were almost identical to the cross validated 

fit showing balanced predicted accuracy of 73.1%, 78.8% and 82.2% for controls, resilient and 

susceptible groups respectively. Hence, it appears that the three-way cross validated model 

provided reasonable estimates of fit. 
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Table S1. Participant’s general demographic information 
Age (years) 21.7 ± 2.5 
Subjects Education (years) 14.7 ± 2.0 
Parental Education (years) 15.6 ± 3.2 
Financial sufficiency during childhood  
   Much less than enough money 5.0% 
   Less than enough money 20.3% 
   Enough money 42.5% 
   More than enough money 28.5% 
   Much more than enough money 3.2% 
Race  
   White 68.1% 
   Asian 14.7% 
   Black 9.5% 
   American Indian/Alaska Native/Hawaiian 2.4% 
   Other 5.2% 
Hispanic Ethnicity 14.1% 
 
 
 
Table S2. Exploratory analysis of differences in nodal centrality between symptomatic and 

asymptomatic participants. 

Predictor Elastic Net Random Forest 
Importance t-levels p-levels 

Amygdala (R) 2.74 0.38 8.48 p < 10-12 
Frontal Inferior Triangularis (L) 2.50 0.52 10.4 p < 10-17 
Mid Cingulum (R) 1.38 0.28 5.53 p < 10-5 
Paracentral Lobule (R) 1.33 0.48 10.8 p < 10-19 
Supplemental Motor Area (L) 0.50 0.20 3.76 p < .05 
Olfactory Cortex (L) 0.0 0.27 5.96 p < 10-6 
                           (R) 0.0 0.19 3.85 p < .01 
Postcentral Gyrus (L) 0.0 0.18 3.76 p < .05 
                             (R) 0.0 0.26 5.22 p < 10-4 
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