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Supplementary Note 1. Discounting with two goods

In this Supplementary Note, we consider a social welfare that is a function of the provision of
two goods over time, f(t) and c(t) (e.g., a natural resource and a manufactured good), and we
derive the formulas for the discount rate and for the prices of the two goods. We consider the
general case in which social welfare, UT , is given by the standard form given in Eq. 4 (main
text), where u(c, f) is twice differentiable with respect to both c and f . We consider a small,
marginal perturbation that may vary over time and, at time t, it adds to society B(t)/ε units to
some currency, each of which is used to consume µε units of the natural resource, and (1− µ)ε

units of the manufactured good at time t. Consequently, the consumption of the two goods over
time becomes

c(t)→ c∗(t) = c(t) + (1− µ)B(t), (A1a)

f(t)→ f ∗(t) = f(t) + µB(t). (A1b)

We assume that the perturbation is marginal, namely, (1−µ)B(t)� c(t) and µB(t)� f(t) at
all t. Following this perturbation, social welfare becomes

UT =

∫ T

0

u(c∗, f ∗)e−ρtdt (A2)

=

∫ T

0

u(c, f)e−ρtdt+

∫ T

0

du

dc
(1− µ)B(t)e−ρtdt+

∫ T

0

du

df
µB(t)e−ρtdt.

We denote
w(t) = (1− µ)

∂u

∂c
+ µ

∂u

∂f
, (A3)

which implies

UT = UT
0 +

∫ T

0

B(t)w(t)e−ρtdt = U0 +

∫ ∞
0

B(t) exp

(∫ t

0

dw(t′)

dt′
dt′ + ρt

)
, (A4)

where U0 is the utility without the perturbation. It follows that the cumulative discount is given
by

∆(t) = − ln

(
w(t)

w(0)

)
+ ρt. (A5)

In turn,
dw

dt
= (1− µ)ucc

dc

dt
+ (1− µ)ucf

df

dt
+ µufc

dc

dt
+ µuff

df

dt
, (A6)

where subscripts of u denote partial derivatives, and the discount rate is given by

δ(t) =
d∆

dt
= − 1

w

dw

dt
+ ρ

= −
(1− µ)ucc

dc
dt

+ (1− µ)ucf
df
dt

+ µufc
dc
dt

+ µuff
df
dt

(1− µ)uc + µuf
+ ρ. (A7)
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Note that several authors suggested one discount rate for the manufactured good and a second
discount rate for the natural good37. These two discounts are equivalent to Eq. (A7) in the two
special cases where µ = 0 and where µ = 1, respectively.

Next, we derive formulas for the changes in the prices of the two goods over time. Note that the
prices are well-defined in a perfectly competitive market in which the goods are being traded as
long as it increases social welfare, and therefore, at any time t, the market price of c, Pc(t), and
the market price of f , Pf(t), are proportional to the respective derivatives of u at time t:

Pc(t)

Pf(t)
=
uc(t)

uf (t)
. (A8)

Another constraint that is satisfied by the prices is that the same currency is being used at all
times (no inflation), which implies that, for all t,

(1− µ)Pc(t) + µPf(t) = 1/ε. (A9)

In turn, Eqs. A8 and A9 imply

Pc =
1

ε

[
µ
uf
uc

+ (1− µ)

]−1

, (A10a)

Pf =
1

ε

[
(1− µ)

uc
uf

+ µ

]−1

. (A10b)

Also, using the same currency units (in which the weight of the natural resource is given by µ),
the total product is proportional to the value of all products at time t, i.e.,

product ∼ cPc + fPf . (A11)

To calculate Pc, consider a perturbation that affects only c (µ̃ = 0). Substituting into Eq. A6
implies

− 1

w̃

dw̃

dt
+ ρ = −

ucc
dc
dt

+ ucf
df
dt

uc
+ ρ. (A12)

In turn, this must be equal to the rate at which c is discounted37, which must equal the market
discount rate times the rate of change in the price of c:

δ + νc = −
ucc

dc
dt

+ ucf
df
dt

uc
+ ρ, (A13)

where
νc ≡

1

Pc

dPc

dt
, (A14)

or

Pc(t) = Pc(0) exp

(∫ t

0

νc(t
′)dt′

)
. (A15)
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Similarly, the change in the price of the natural resource,

νf ≡
1

Pf

dPf

dt
, (A16)

can be calculated by considering a perturbation with µ̃ = 1, which implies

δ + νf = −
uff

df
dt

+ ufc
dc
dt

uf
+ ρ. (A17)

Also, deriving both sides of Eq. A9 with respect to t and substituting Eq. A8 implies

νc

νf

= − µuf
(1− µ)uc

. (A18)

Finally, note that the changes in the present values of the goods at a given time, which are given
by δ + νf for the natural resource and δ + νc for the manufactured good, do not depend on µ
(Eqs. A13, A17).

Supplementary Note 2. Sustainable discount rates and relative
prices

In this Supplementary Note, we calculate the discount rate that emerges when harvest is sus-
tainable, δsus, as well as the rates of changes in the prices, νc and νf , (Eqs. A14, A16) in two
special cases. Specifically, we focus on the the asymptotic rates in which the entire system is
under sustainable harvest, which implies that c and f increase exponentially (as in other related
studies32,37):

dc

dt
= cgc, (B1a)

df

dt
= fgf . (B1b)

In what follows, we calculate the discount rate in the two special cases: where the goods are
non-substitutable, and where the goods are partially-substitutable. Note that similar derivations
of δsus for other forms of the utility function can be found in the literature32,36,37.

Non-substitutable goods (separable utility function)

For non-substitutable goods, we use the standard, separable utility function given by12

u(c, f) = (1− γ)
c1−η

1− η
+ γ

f 1−η

1− η
, (B2)
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where γ is the relative significance of f , and η is the elasticity of utility with respect to con-
sumption, characterizing how fast an increase in utility diminishes. In turn, note that the second
partial derivatives of u are given by ucf = ufc = 0, ucc = −ηuc/c, and uff = −ηuf/f .
Substitution of these partial derivatives into Eq. A7 implies

δsus =
(1− µ)ηgcuc + µηgfuf

(1− µ)uc + µuf
+ ρ. (B3)

Specifically, if both goods grow exponentially at the same rate, gf = gc, then

δsus = δtoday = ηgc + ρ, (B4)

which retrieves Ramsey’s discount formula14,16. Otherwise, if 0 ≤ gf < gc, then substitution of
uc = (1− γ)c−η and uf = γf−η, into Eq. B3 implies

δsus =
ηgc(1− µ)(1− γ)c−η + ηgfµγf

−η

(1− µ)(1− γ)c−η + µγf−η
+ ρ. (B5)

Specifically, in the limit t → ∞, if gc > gf and η > 1, then f � c and c−η � f−η. Therefore,
if η > 1 and µ > 0, then

δsus → ηgf + ρ (B6)

and
δtoday − δsus → η(gc − gf) (B7)

as t→∞.

Finally, to calculate the changes in the prices, note that Eq. A13 implies

δ + νc = ηgc + ρ. (B8)

Specifically, if δ = δsus and gf = gc, then νc = νf = 0, whereas if gf < gc and t→∞, then

νc → η(gc − gf) , (B9a)

νf → 0 . (B9b)

Partially-substitutable goods (non-separable utility function)

For partially-substitutable goods, we consider a non-separable utility function12,

u(c, f) =
(c1−γfγ)1−η

1− η
, (B10)

where, as with the separable utility function, 0 < γ < 1 is the relative significance of f ,
and η is the elasticity of utility with respect to consumption. Note that the partial derivatives
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of u are given by uc = (1 − γ)(1 − η)u/c and uf = γ(1 − η)u/f . In turn, the second
partial derivatives of u are given by ucc = (−γ − η + γη)uc/c, uff = (γ − 1 − γη)uf/f and
ucf = ufc = (1− γ)(1− η)uf/c = γ(1− η)uc/f . Substitution of the second partial derivatives
in Eq. A7 implies

δsus = −{(1− µ)uc [(−γ − η + γη)gc + γ(1− η)gf ]

+ µuf [(1− γ)(1− η)gc + (γ − 1− γη)gf ]} / {(1− µ)uc + µuf}+ ρ. (B11)

In turn, substitution of uc and uf into Eq. B11 and multiplying both the numerator and the
denominator by cf/u implies

δsus = −{(1− γ)(1− µ)f [(−γ − η + γη)gc + γ(1− η)gf ]

+ γµc [(1− γ)(1− η)gc + (γ − 1− γη)gf ]} / {(1− µ)(1− γ)f + µγc}+ ρ.

Some algebra (collecting terms that are identical in both square brackets) implies

δsus = ηgc + (gc − gf)γ(1− η)− (gc − gf)
γµc

(1− γ)(1− µ)f + γµc
+ ρ. (B12)

Note that, in the special case where gf = gc, we obtain Ramsey’s discount formula, δtoday =

ηgc + ρ. If gf < gc and t→∞, then f � c, and it follows that

δsus → ηgc + (γ(1− η)− 1) (gc − gf) + ρ (B13)

and
δtoday − δsus → (γ(η − 1) + 1) (gc − gf). (B14)

Finally, to calculate the rate of change in prices, note that

νc = −δ − 1

w̃

dw̃

dt
+ ρ = −δ −

[
ucc

dc

dt
+ ucf

df

dt

]/
uc + ρ

= −δ − (−γ − η + γη)gc − γ(1− η)gf + ρ

= −δ + ηgc + γ(1− η)(gc − gf) + ρ. (B15)

Similarly,

νf = −δ − 1

w̃

dw̃

dt
+ ρ = −δ −

[
uff

df

dt
+ ufc

dc

dt

]/
uf + ρ

= −δ − (1− γ)(1− η)gc − (γ − 1− γη)gf + ρ

= −δ + ηgc + (γ − 1− γη)(gc − gf) + ρ. (B16)

Specifically, note that, if δ = δsus and gf = gf , then νc = νf = 0, whereas if gf < gc and t→∞,
then

νc → gf − gc , (B17a)

νf → 0 . (B17b)
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Supplementary Note 3. Proof of the theorem

In this Supplementary Note, we prove the theorem (Theorem in the main text). We begin with
proving six Lemmas and three Corollaries.

Lemma 1. Assume that u(c, f) is monotonically increasing, twice differentiable with respect
to both c and f , and satisfies uff < 0 and ucf ≤ 0. Consider a perturbation such that f(t0)

increases at a given time t0, while c(t0) does not change. Then, the cumulative discount at time
t0, ∆(t0), which is given by Eqs. A5, A3 where 0 < µ ≤ 1, increases due to the perturbation.

Proof of Lemma 1. According to Eq. A5, the discount increases as w decreases. Therefore,
we need to show that w (given by Eq. A3) decreases as f increases. Specifically,

dw

df
= (1− µ)ucf + µuff (C1)

(0 < µ ≤ 1). In turn, the assumptions that uff < 0 and ucf < 0 imply that dw/df ≤ 0, which
complete the proof of Lemma 1. �

Lemma 2A. Assume that u(c, f) is monotonically increasing and twice differentiable with
respect to both c and f , where c is given by Eq. 9 and f is given by Eq. 6. Also assume that,
as c → ∞ while f remain fixed, ucc/uff → 0 and ufc/uff → 0. Consider a perturbation
that occurs at a given time t0, increases f(t0) by H0, and decreases c(t0) by K(t0), where
0 ≤ K(t) ≤ Kmax at all t. Then, for sufficiently large t0 and sufficiently small H0, ∆(t0) (Eqs.
A5, A3) increases due to the perturbation. Specifically, if gf = 0 and C1 and C2 are bounded
from above, then, for sufficiently large t, ∆(t) increases as the total harvest, Ĥ = αHs + Hn,
increases (regardless of whether the increase in Ĥ is due to an increase in Hn or Hs).

Proof of Lemma 2A. To show that ∆ increases with Ĥ if Ĥ is sufficiently small and t is
sufficiently large, we need to show that dw(t0)/dĤ < 0. In turn, it follows from Eq. A3 that

dw

dĤ
=
dw

df

df

dĤ
+
dw

dc

dc

dĤ
= (µuff + (1− µ)ucf )β0 + (µufc + (1− µ)ucc)

dc

dĤ
. (C2)

Note that, since K is bounded from above, dc/dĤ is negative and is bounded from below,
regardless of the values ofHn andHs that determine Ĥ . Specifically, there existsKmax > 0 such
that dc/dĤ ≥ −Kmax. Therefore, it remains to show that, when t→∞, for any Kmax > 0,

µuff + (1− µ)ucf ≤ Kmax(µufc + (1− µ)ucc), (C3)

or, equivalently,
µufc + (1− µ)ucc
µuff + (1− µ)ucf

<
β0

Kmax

. (C4)
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In turn, Eq. C4 follows from the assumption that

lim
t→∞

ufc
uff

= lim
t→∞

ucc
uff

= 0. (C5)

Specifically, this applies to increasing harvest as this is a special case where
K(t) = max{C1(x1(t)), C2(x2(t))}, which completes the proof of Lemma 2A. �

Lemma 2B. Assume that u(c, f) is monotonically increasing and twice differentiable with re-
spect to both c and f , where c is given by Eq. 9 and f is given by Eq. 6. Also assume that,
ucc < 0, ufc < 0, and for all f0, if c(t) = c0 exp(gct) and f(t) = f0 exp(gft), then

lim
t→∞

(µuff + (1− µ)ucf )e
gf t < 0. (C6)

Consider a perturbation that occurs at a given time t0 and increases f(t0) byH0e
gf and decreases

c(t0) by K(t), where 0 ≤ K(t) ≤ Kmax at all t. Then, for sufficiently large t and sufficiently
small H0, ∆(t) (Eqs. A5, A3) increases with H0. Specifically, this implies that if C1 and C2

are bounded from above, then, for sufficiently large t, ∆(t) increases as total harvest, Ĥ =

αHs +Hn, increases (regardless of whether the increase in Ĥ is due to an increase inHn orHs).

Proof of Lemma 2B. As in Lemma 2A, we need to show that, for sufficiently large t0, dw(t0)/dĤ <

0. In turn,

dw

dĤ
=
dw

df

df

dĤ
+
dw

dc

dc

dĤ
= (µuff + (1− µ)ucf )e

gf t + (µufc + (1− µ)ucc)
dc

dĤ
. (C7)

Since uc > 0 (u is monotonically increasing) and decreasing with both c and f (ufc < 0 and
ucc < 0), and since dc/dĤ is bounded, it follows that

lim
t→∞

(µufc + (1− µ)ucc)
dc

dĤ
= 0. (C8)

Therefore, Eq. C6 implies that, for sufficiently large t, dw/dĤ > 0. Specifically, this applies
to increasing harvest as this is a special case where K(t) = max{C1(x1(t)), C2(x2(t))}, which
completes the proof. �

Lemma 3. Assume that u(c, f) is monotonically increasing and twice differentiable with re-
spect to both c and f , where c is given by Eq. 9 where C1 and C2 are bounded from above and
f is given by Eq. 6. Also assume that, for all f0, if c(t) = c0 exp(gct) and f(t) = f0 exp(gft),
then

lim
t→∞

uc
uf
e−gf t = 0. (C9)

Note that, as a special case where gf = 0, Eq. C9 becomes

lim
c→∞

uc
uf

= 0. (C10)
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Then, for sufficiently large t0, a sufficiently small increase in harvest at t0, either sustainable or
non-sustainable, results in an increase in u(t0).

Proof of Lemma 3. We need to show that, for any level of the total harvest, Ĥ = αHs + Hn,
there exists t′, such that increasing Ĥ would increase u for any t > t′. Increasing harvest
increases u if and only if du/dĤ > 0, and therefore, we need to show that

lim
t→∞

du

dĤ
> 0. (C11)

Note that,
du

dĤ
=
du

df

df

dĤ
+
du

dc

dc

dĤ
= ufβ0e

gf t + uc
dc

dĤ
. (C12)

Since C1 and C2 are bounded from above, dc/dĤ is bounded from below, namely, there exists
M > 0 such that dc/dĤ > −M . Therefore, to complete the proof, we need to show that, for
sufficiently large t,

β0ufe
gf t −Muc ≥ 0, (C13)

or, equivalently,
uc
uf
e−gf t <

β0

M
(C14)

for any M > 0. However, this follows directly from Eq. C9, which completes the proof of
Lemma 3. �

Corollary 1. Assume that social welfare, UT , is given by Eq. 4, where ρ is a constant and u
follows the assumptions of Lemma 3. Then, optimal harvest dictates that, for sufficiently large
t, the entire area is under harvest, namely, Hn(t) +Hs(t) = x1(t) + x2(t).

Proof of Corollary 1. This Corollary follows directly from Lemma 3. Specifically, increasing
sustainable harvest at a sufficiently large t0 increases u(t0). Moreover, this increase in sus-
tainable harvest necessarily increases UT as it does not affect future values of u (sustainable
harvest does not affect the dynamics of x1 and x2). Therefore, optimal harvest dictates that
harvest increases until it hits the constraint where Hn +Hs = x1 +x2. This completes the proof
of Corollary 1. �

Corollary 2. Assume that social welfare, UT , is given by Eq. 4, where ρ is a constant and u
follows the assumptions of Lemma 3. Then, following the market dynamics, there exists a time
t′ after which all shared resources are exhausted (x2(t) = 0 for all t > t′).

Proof of Corollary 2. Lemma 3 implies that, for sufficiently large t, an increase in harvest
increases u. Specifically, since α < 1, increasing non-sustainable harvest of the shared resource
at time t0 increases u(t0), even if it comes on the account of sustainable harvest (and even if
harvest non-sustainably is more expensive, λ < 1). (Note that the non-sustainable harvest may
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decrease the future values of u, and therefore, may not be preferable using optimal harvest;
however, the managers in the market solution over-harvest despite the future reduction in u due
to the non-sustainable harvest of the shared resource.] Therefore, for sufficiently large t, each
manager is better off harvesting the shared resource non-sustainably. Thus, there exists t′ such
that the entire shared resource is being exhausted. This completes the proof of Corollary 2. �

Lemma 4. Assume that social welfare, UT , is given by Eq. 4, f is given by Eq. 6, c is
given by Eq. 9 where C1 and C2 are constants, and Hn and Hs are non-negative and satisfy
the constraints given by Eqs. 7, 8. Assume that, for sufficiently large t, both cufc/uf and
fuff/uf are monotone with t. Also assume that u(c, f) is non-decreasing in both c and f and
that ufc ≤ 0 and uff ≤ 0. Furthermore, assume that Hn ≥ 0 and Hs ≥ 0 are subject to the
constraints given by Eqs. 7, 8 and follow optimal harvest. Then, there exists t′ such that if
x(t′) = x1(t′) + x2(t′) increases, then total harvest, Ĥ = Hn + αHs increases at all t > t′.
Namely, for sufficiently large t′, if Hopt

small(t) denotes the total optimal harvest in a system with
a given x(t′) = xsmall, and Hopt

large(t) denotes the optimal harvest in a system that is identical
except that x(t′) = xlarge > xsmall, then Hopt

large(t) ≥ Hopt
small(t) for all t > t′.

Proof of Lemma 4. The idea behind the proof is to show that, for sufficiently large t, Ĥ =

Hn + αHs is non-increasing with time. Since UT is time invariant when T → ∞, the optimal
harvest, Ĥopt, depends on time only implicitly via the state variable x (Ĥopt = Ĥopt(x(t))).
Also, x is non-increasing with time (Eq. 7). Therefore, if Ĥopt decreases with time, this implies
that Ĥopt decreases with x.

More formally, note that Corollary 2 implies that, for sufficiently large t, Hn + Hs = x, and
therefore,

Ĥ = Hn + αHs = Hn + α(x−Hn) = (1− α)Hn + αx, (C15)

where Hn and Hs denote optimal non-sustainable harvest and optimal sustainable harvest, re-
spectively. In turn, substituting Eq. C15 into Eq. 6 implies

f(t) = Ĥβ0e
gf t = [(1− α)Hn + αx]β0e

gf t, (C16)

and therefore,
1

f

df

dt
= gf +

(1− α)dHn

dt
− αHn

(1− α)Hn + αx
, (C17)

where we used dx/dt = −Hn (Eq. 7).

Next, note that postponing one unit of harvest by a small (infinitesimal) unit of time, from t0
to t0 + dt, implies that one harvests αdt at t0 plus 1 at t0 + dt instead of 1 at t0. When Hn is
positive at both t0 and t0 + dt, it implies that the increase in utility due to extra 1 at t0 equals an
increase in utility due to extra 1 + δ̃ at t0 +dt, where δ̃ is the rate by which the value of a unit of
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fish increases over time. Therefor, either (i) δ < α and Hn = 0 or (ii) Hn(t) > 0 and δ̃(t) = α:{
δ̃ = α if Hn > 0

δ̃ < α if Hn = 0.
(C18)

In turn, δ̃ it is given by the market discount plus the rate of increase in the price of f , δ̃ = δ+νf ,
which is given by Eq. A7 with µ = 1 (Supplementary Note 1):

δ̃ = −
ufc

dc
dt

+ uff
df
dt

uf
+ ρ. (C19)

Equivalently, we can write

δ̃ = Af(t)
1

f

df

dt
+ Ac(t)

1

c

dc

dt
+ ρ (C20)

or
1

f

df

dt
=
δ̃ − Ac(t)1

c
dc
dt

Af(t)
, (C21)

where we denote

Ac(t) = −cufc
uf
, (C22a)

Af(t) = −f uff
uf

. (C22b)

In turn, it follows that {
1
f
df
dt

= gf + A(t) if Hn > 0
1
f
df
dt
< gf + A(t) if Hn = 0,

(C23)

where

A ≡
α− Ac(t)1

c
dc
dt

Af(t)
− gf . (C24)

Furthermore, substituting Eq. C17 into Eq. C23 implies

(1− α)dHn

dt
− αHn

(1− α)Hn + αx
≤ A(t). (C25)

Next, note that the limitA∞ = limt→∞A(t) exists. Specifically, since ufc ≤ 0, uff ≤ 0, uc ≥ 0

and uf ≥ 0, it follows that Ac(t) and Af(t) are non-negative. Furthermore, since cufc/uf and
fuff/uf are monotone for sufficiently large t, it follows that the limits of Ac(t) and Af(t) exists
(might be infinite), and we denote

Ac
∞ = lim

t→∞
Ac(t), (C26a)

Af
∞ = lim

t→∞
Af(t). (C26b)
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Moreover, we first assume that

lim
t→∞

1

c

dc

dt
= gc, (C27)

and afterward, we find the asymptotic expansion of Hn and we show that it is non-increasing
as x decreases, and then, we show that Eq. C27 is consistent and indeed follows from the
asymptotic expansion of Hn. These considerations imply that A(t) has a limit given by

A∞ = lim
t→∞

A(t) =
gcA

c
∞ − α
Af
∞

+ gf . (C28)

We distinguish the following three cases. First, in the case where A∞ < 0, it follows from Eq.
C23 that, for sufficiently large t,

1

f

df

dt
< gf . (C29)

In turn, f(t) is given by Eq. 6, which implies that dĤ/dt ≤ 0 if and only if Eq. C29 holds.
Therefore, if A∞ < 0 there exists t′ such that dĤ/dt < 0 for all t > t′. Second, in the
case where A∞ > 0, note that a strict equality in Eq. C25 cannot hold forever. Specifically,
the equality implies that dHn/dt > 0, which cannot hold forever as the resource is limited
(dx/dt = x and Hn ≤ x). This implies that after any t there have to be intervals where Hn = 0.
However, any continuous deviation of Hn from zero yields a continuous deviation of the left-
hand-side of Eq. C25 from zero, which would still be greater than A(t) for sufficiently large
t. On the other hand, any discontinuous deviation would create an effectively infinitely large
derivative. Therefore, if A∞ < 0, then there exists a t′ such that Hn(t) = 0 (and dĤ(t)/dt = 0)
for all t > t′. Third, in the case where A∞ = 0, we use the assumption that for sufficiently
large t, both cufc/uf and fuff/uf are monotone with t. This condition implies that there exists
a time t′, such that A(t) does not switch signs for all t > t′ (namely, either (i) A∞ < 0 for all
t > t′ or (ii) A∞ ≥ 0 for all t > t′). If (i) holds, then, for sufficiently large t, dHn/dt = 0

follows from the same considerations as in Case I. If (ii) holds, then, for sufficiently large t,
dHn/dt < 0 follows from the same consideration as in Case II.

We have seen that, in all three cases, Ĥ(x(t)) decreases with time, and therefore, it decreases
with x. It remain to show that the asymptotic expansion ofHn where t→∞ is eitherHn = 0 or
is given byHn ∼ hxwhere h is a constant, and that this implies that Eq. C27 holds. Specifically,
we have already seen that, in Case I,Hn(t) = 0 if t is sufficiently large, and therefore, we restrict
attention to the case A∞ > 0. First, we derive Hn(x) = h(x)x with respect to t, which implies

dHn

dt
= h

dx

dt
+ x

dh

dt
= −hHn + x

dh

dt
= −h2x+ x

dh

dt
. (C30)

Therefore, it follows from Eq. C25 with equality that

αhx+ (1− α)h2x− xdh
dt

(1− α)hx+ αx
= A(t), (C31)
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or, after reducing both nominator and denominator by a factor x,

αh+ (1− α)h2 − dh
dt

(1− α)h+ α
= A(t). (C32)

Next, we look for an asymptotic solution where h is a constant (dh/dt = 0):

αh+ (1− α)h2

(1− α)h+ α
= A∞. (C33)

Namely,
(1− α)h2 + [α− (1− α)A∞]h− αA∞ = 0, (C34)

which implies

h1,2 =
(1− α)A∞ − α± (1− α)A∞ + α

2(1− α)
, (C35)

or

h1 = A∞, (C36a)

h2 = − α

1− α
, (C36b)

and since only h1 ≥ 0, we get h = A∞.

Finally, we need to show that Hn = hx implies that (1/c)(dc/dt)→ gc as t→∞. Specifically,
it follows from Corollary 2 that, for sufficiently large t, Hn + Hs = x. Substituting this in Eq.
9 implies

c = c0e
gct − C1(1− λ)Hn − C2λx], (C37)

which yields
dc

dt
= gc [c− C1((1− λ)Hn)] , (C38)

or
1

c

dc

dt
= gc −

gcC1((1− λ)Hn)

c0egct − C1 ((1− λ)Hn + λx)
. (C39)

Substituting Hn = hx implies

1

c

dc

dt
= gc −

gcC1(1− λ)hx

c0egct − C1 ((1− λ)hx+ λx)
, (C40)

or
1

c

dc

dt
= gc +

gcC1((1− λ)h)
c0egct

x
− C1 ((1− λ)h+ λ)

. (C41)

Note that c0 exp(gct)/x → ∞ as t → ∞, which implies that (1/c)(dc/dt) → gc as t → ∞.
This completes the proof of Lemma 4. �

Corollary 3. Assume that social welfare, UT , is given by Eq. 4, where ρ is a constant, f is
given by Eq. 6 and c is given by Eq. 9 where C1 = C2 = constant. Consider two identical
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systems with the only difference being that one is subject to market harvest and the other is
subject to optimal harvest. Denote xmarket the value of x = x1 + x2 that follows from market
dynamics and xopt the value of x that follows socially optimal harvest (see Methods). Then, for
any t, xopt ≥ xmarket.

Proof of Corollary 3. Note that the future cost incurred by the harvest of the shared resource
to the individual in a perfectly competitive market is 0, whereas the future cost to society is
positive as it cannot harvest this resource later (Lemma 3 guarantees that the difference in cost
is strictly positive). Therefore, the shared resource may be over-exploited following market
dynamics. Therefore, whenever xopt = xmarket, market harvest is at least as large as optimal
harvest. Since initially xopt = xmarket, it follows that xopt ≥ xmarket at all t, which completes
the proof of Corollary 3. �

Lemma 5. Assume that Hn and Hs are non-negative and satisfy the constraints given by Eqs.
7, 8, where Hn = H1

n + H2
n and Hs = H1

s + H2
s . Assume that Hn(t) > 0 during a given time

interval, t ∈ [t0, t1]. Then, there exists a time tc > t1, such that the total harvest at time tc,
Ĥ(tc) ≡ Hn(tc) + αHs(tc), satisfies

Ĥ(tc) < α(x1(t0) + x2(t0)). (C42)

Proof of Lemma 5. Assume that, in contrast to Eq. C42,

Ĥ(t) ≥ α(x1(t) + x2(t)) (C43)

for all t > t1. Denote xH the total area that has been degraded due to non-sustainable harvest
from time t0 to time t1,

xH =

∫ t1

t0

Hn(t)dt. (C44)

It follows from Eq. 7 that, for all t > t1,

x1(t) + x2(t) ≤ x1(t0) + x2(t0)− xH. (C45)

(Strict inequality is possible if Hn(t) > 0 at times greater than t1.) In turn, Eqs. 6 and C45
imply that

Hn(t) +Hs(t) ≤ x1(t0) + x2(t0)− xH (C46)

for all t > t1. Next, Eqs. C43 and Eq. C46 imply that

Hn(t) ≥ α

1− α
xH (C47)

for all t > t1. In turn, note that the right-hand-side of Eq. C47 is a constant that does not
depend on time, and therefore, it follows from Eqs. 7 and C47 that x1(t) + x2(t) is negative for

S14



sufficiently large t. However, this contradicts the Lemma’s assumptions because x1 + x2 must
be non-negative at all times to satisfy Eq. 8 where Hn and Hs are non-negative. Therefore, Eq.
C43 cannot hold for all t > t1, which completes the proof of Lemma 5. �

Proof of Theorem. The assumptions of the theorem satisfy the assumptions of all Lemmas and
corollaries in this Supplementary Note. First, note that, if C1 = C2 =constant, then it follows
from Corollary 3 that xopt ≥ xmarket at all t. Then, according to Corollary 2, there exists t1 such
that x2(t) = 0 and market follows optimal dynamics for all t > t1. Then, for all t > t1, the only
difference between the systems is that xopt(t) ≥ xmarket(t). Therefore, it follows from Lemma
4 that, for sufficiently large t, harvest in the system that follows optimal harvest is not smaller
than harvest in the system that follows market harvest. Then, it follows from Lemmas 2A and
2B that ∆opt ≥ ∆market, which completes the proof of the first part of the theorem.

Next, denote Ĥsus the total harvest (Hn + αHs) following the optimal sustainable harvest, and
denote Ĥmarket the total harvest in the case where Hn(t) > 0 from time t0 to time t1. Corollary
1 implies that, for sufficiently large t, Hsus is given by the the right-hand-side of Eq. C42
in Lemma 5. Therefore, Lemma 5 implies that, there exists tc > t1, such that Ĥsus(tc) >

Ĥmarket(tc). This completes the proof of the second part of the theorem. �

Supplementary Note 4. The Stochastic Programming algo-
rithm

In this Supplementary Note, we describe the algorithm that we used for the numerical simula-
tions of the model. First, we describe the algorithm that we used for finding the socially optimal
solution (Fig. 2A, B). Then, we describe the algorithm that we used for finding the market
solution (Fig. 2C, D). Specifically, to find the optimal solution, we implemented a Stochastic
Programming algorithm in C/C++. Here we focus on details that are more specific to the partic-
ular model described in the paper. For a more detailed explanation on Stochastic Programming,
see Clark & Mangel (2000)44

Optimal solution

As in a standard Dynamic Programming method, we first set a terminal time, T . Then, the
algorithm uses some heuristics§ to set the values of U∗T (x), which are the utilities that the society

§The algorithm would work even if we simply set U∗T (x) = 0; however, the algorithm uses the following
heuristics that helps it converging faster, and yields the same results when T → ∞: It calculates U∗T (x) as the
social welfare added to the system, assuming that only sustainable harvest takes place for the 1000 years that
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would have from still having x = x1(T ) + x2(T ) non-degraded areas when arriving to time
T . Specifically, the algorithm calculates U∗T (x) for all values of x up to some resolution, ∆x

(namely, x = 0,∆x, 2∆x, ..., xmax, where xmax = x1(0) + x2(0)). The algorithm chooses a
sufficiently small ∆x, such that the results well-approximates the a dynamics of a continuous
variable (∆x = 10−5 in Fig. 2A, B). Furthermore, when calculating the optimal solution, the
only difference between a private and a public land is the potentially different costs. Therefore,
the algorithm incorporates a single state variable, x, where the cost of harvest is given by a
single function that incorporates both C1 and C2:

Ceff(x) =


C1(x) if C1(x) > C2(0)

C2(x) if C2(x) > C1(0)

C1(x1)|C1(x1)=C2(x−x1) otherwise.
(D1)

Next, the algorithm goes backward in time and, for each t, it calculates, for each x, the optimal
strategy at time t− 1, using the value of each state at time t that was calculated at the previous
step. Specifically, the contribution to the welfare from time t− 1 onward is given by

Ut−1(x(t− 1),H) = u (c(H, t− 1), f(H, t− 1)) + e−ρU∗t (x(t)), (D2)

where H is the harvest profile at time t (H = (Hn, Hs)), the asterisk indicates that U∗t is the
welfare that results from using the optimal strategy from time t onward. Specifically, c(H, t−1)

is the amount of manufactured good consumed at time t − 1 and f(H, t − 1) is the amount of
natural resource harvested at time t − 1, where the harvest functions are given by H. In turn,
the dynamics of f(H, t) and c(H, t) are given by Eqs. 6, 9 (main text), and they depend on
H(x, t − 1). Note that x(t) also depends on H, since x(t) = x(t − 1) − Hn(t − 1) (Eq. 7).
Next, for each x, the algorithm finds the harvest profile H∗(x, t − 1), the harvest profile that
maximizes Ut−1(x). In turn, this implies that U∗t−1(x(t− 1)) = Ut−1(x(t− 1),H∗). Repeating
this backward induction algorithm from t = T back to t = 0 provides the entire harvest profile
at all times, given a terminal time T . Finally, to find the optimal harvest in the limit where
T →∞, we chose a sufficiently large T such that further increasing T makes no visible change
on the numeric results¶. Note that, in the simulations generating Fig. 2, the instantaneous
utility function, u, is given either by the separable utility function, Eq. B2 (Fig. 2A), or by the
non-separable utility function, Eq. B10 (Fig. 2B).

Market solution

To calculate the solution that emerges following market dynamics, we consider two state vari-
ables, x1(t) and x2(t), which follow Eq. 7, as described in the main text. For numeric purposes,

follow year T .
¶Note that the value of T in our simulations is greater than the largest value of t that is visible in Fig. 2
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these variables are discretized using some fine resolution (∆x1 = ∆x2 = 10−3 in Fig. 2C, D).
As in the algorithm used for finding the optimal solution, we set some terminal time, T , and
the algorithm uses the same heuristics to set the terminal values, U∗T (x1, x2), characterizing the
value of having x1(T ) private and x2(T ) public non-degraded natural resource at time T . Next,
the algorithm goes backward in time and, for each t, it calculates, for each state (characterized
by an (x1, x2)-pair), the Nash equilibrium at time t− 1, using the value of each state at time t,
which was calculated at the previous step. We consider a perfectly competitive market in which
there are infinitely many managers and the actions of a given manager have no influence on
her/his future revenues from the shared resource. Therefore, the objective is to find a solution
that maximizes social welfare, with the exception that we ignore the externality that emerges
via harvesting in the shared regions12,40.

Specifically, the contribution to the welfare from time t− 1 onward is given by

Ut−1(x1(t− 1), x2(t− 1),H) = u (c(H, t− 1), f(H, t− 1)) + e−ρU∗t (x1(t), x2(t)), (D3)

where the notations are similar to those that are used for describing the algorithm that finds the
optimal solution, except that here the harvest profile comprises the four harvest functions (H =

(H1
n, H

2
n, H

1
s , H

2
s )) and U∗t is the utility that result from the solution of the market dynamics

(i.e., in the Nash equilibrium). The dynamics of the state variables are given by

x1(t) = x1(t− 1)−H1
n, (D4a)

x2(t) = x2(t− 1)− H̃2
n, (D4b)

where consistency implies that H̃2
n must be equal to H2

n . Nevertheless, in the market dynamics,
each managers ignores her/his own effect on x2 and considers H̃2

n as given and determined
by the strategies of the other agents. Therefore, for each (x1, x2)-pair, the algorithm finds
H∗(x1, x2, t− 1) = (H1∗

s , H
1∗
n , H

2∗
s , H

2∗
n ) that maximizes Eq. D3 subject to Eq. D4 for various

values of H̃2
n , until it finds a value of H̃2

n for which H̃2
n = H2∗

n . (Specifically, it starts from
H̃2

n = 0, and increases H̃2
n gradually while finding each time the optimal solution, until it finds

a solution that also satisfies H̃2
n = H2∗

n .) Repeating this backward induction for the times from
t = T back to t = 0 provides the entire harvest profile at all times, given a terminal time T .
Finally, to find the optimal harvest in the limit where T → ∞, we chose a sufficiently large
T such that further increasing T makes no visible change on the numeric results (see previous
footnote¶).

S17


