Supplementary Information

Temperature-controlled repeatable scrambling and induced-sorting of building blocks between cubic assemblies

Zhan *et al*.

Supplementary Methods

Synthesis of partially deuterated GSAs

$1D{\cdot}Cl_2\,GSA$

CD₃I (55 mg, 0.38 mmol) was added to a solution of compound **3** (20 mg, 0.025 mmol) in CH₂Cl₂ (1 mL). The reaction mixture was stirred at 40 °C for overnight under dark. Then the solvent was removed in vacuo. The crude material was washed with *n*-hexane and CH₂Cl₂ two times to obtain **1D**·I₂ (23 mg, 0.021 mmol) as a yellow solid. A suspension of **1D**·I₂ (23 mg, 0.021 mmol) and IRA 400J CL© (302 mg, 0.60 mmol) in water (2 mL) were stirred for overnight. Then the solution was filtered and the filtrate was concentrated in vacuo to obtain **1D**·Cl₂ (17 mg, 0.019 mmol) as a pale yellow solid in 79% yield in two steps. ¹H NMR (500 MHz, CD₃OD, 25 °C): δ 9.12 (s, 2H), 8.74 (d, *J* = 6.0 Hz, 2H), 8.66 (d, *J* = 8.2 Hz, 2H), 8.00 (dd, *J* = 8.7, 6.1 Hz, 2H), 7.46–7.36 (m, 6H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.23 (t, *J* = 7.3 Hz, 1H), 7.19–7.12 (m, 6H), 6.93 (d, *J* = 8.2 Hz, 2H), 6.88–6.80 (m, 6H), 6.73–6.65 (m, 6H), 2.04 (s, 6H), 2.01 (s, 3H); ¹³C NMR (125 MHz, CD₃OD, 298 K): δ 144.97, 144.58, 144.22, 143.30, 142.21, 142.10, 141.96, 141.79, 141.45, 140.90, 139.19, 138.67, 138.63, 136.32, 134.09, 133.02, 132.47, 132.42, 131.36, 129.67, 128.89, 128.69, 128.63, 128.08, 127.56, 126.66, 126.07, 21.03; HR-ESI-TOF-MS (*m*/*z*): [M]²⁺ calcd. for C₆₃H₄₆D₆N₂, 421.2248; found, 421.2252.

$\boldsymbol{2D}{\cdot}Cl_2\,GSA$

CD₃I (30 mg, 0.20 mmol) was added to a solution of compound **4** (10 mg, 0.013 mmol) in CH₂Cl₂ (1 mL). The reaction mixture was stirred at 40 °C for overnight under dark. Then the solvent was removed in vacuo. The crude material was washed with *n*-hexane, diethyl ether and CHCl₃ two times, respectively to obtain **2D**·I₂ (10 mg, 0.010 mmol) as a yellow solid. A suspension of **2D**·I₂ (10 mg, 0.010 mmol) and IRA 400J CL© (150 mg, 0.30 mmol) in water (2 mL) were stirred for 30 h at 50 °C. Then the solution was filtered and the filtrate was concentrated in vacuo to obtain **2D**·Cl₂ (8 mg, 0.010 mmol) as a pale yellow solid in 74% yield in two steps. ¹H NMR (500 MHz, CD₃OD, 25 °C): δ 9.09 (s, 2H), 8.75 (d, *J* = 5.8 Hz, 2H), 8.63 (d, *J* = 8.4 Hz, 2H), 8.01 (dd, *J* = 8.2, 6.0 Hz, 2H), 7.44–7.36 (m, 6H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.23 (t, *J* = 7.3 Hz, 1H), 7.18 (d, *J* = 8.6 Hz, 4H), 7.13 (d, *J* = 8.5 Hz, 2H), 7.02–6.94 (m, 8H), 6.90–6.85 (m, 6H); ¹³C NMR (125 MHz, CD₃OD, 298 K): δ 144.65, 144.61, 144.33, 143.32, 142.32, 141.99, 141.93, 141.76, 141.57, 141.53, 141.49, 140.81, 140.61, 139.37, 134.06, 133.00, 132.58, 132.54, 131.54, 129.67, 128.91, 128.12, 127.93, 127.88, 127.57, 126.74, 126.15. HR-ESI-TOF-MS (*m/z*): [M]²⁺ calcd. for C₆₀H₃₇D₉N₂, 401.7107; found, 401.7090.

The effect of guest molecules on the scrambling of GSAs between nanocubes

Scrambling experiment between TBM₂@ $\mathbf{1}_6$ and $\mathbf{2}_6$: Solutions of TBM₂@ $\mathbf{1}_6$ and of $\mathbf{2}_6$ ([GSA] = 2 mM) in D₂O were prepared separately. A solution of TMACl (8 mM, TMACl indicates tetramethylammonium chloride) in D₂O (15 µL), which was used as an internal standard, was added to an NMR tube. Then the solutions of TBM₂@ $\mathbf{1}_6$ (150 µL) and of $\mathbf{2}_6$ (150 µL) and D₂O (285 µL) were added to the NMR tube to adjust the concentration of GSAs to 0.5 mM. The scrambling of the GSAs was monitored at 25 °C by ¹H NMR spectroscopy (Supplementary Figure 7).

Scrambling experiment between $\mathbf{1}_6$ and TBM₂@ $\mathbf{2}_6$: Solutions of $\mathbf{1}_6$ and of TBM₂@ $\mathbf{2}_6$ ([GSA] = 2 mM) in D₂O were prepared separately. A solution of TMACl (8 mM, TMACl indicates tetramethylammonium chloride) in D₂O (15 µL), which was used as an internal standard, was added to an NMR tube. Then the solutions of $\mathbf{1}_6$ (150 µL) and of TBM₂@ $\mathbf{2}_6$ (150 µL) and D₂O (285 µL) were added to the NMR tube to adjust the concentration of GSAs to 0.5 mM. The scrambling of the GSAs was monitored at 25 °C by ¹H NMR spectroscopy (Supplementary Figure 8).

Scrambling experiment between $\mathbf{1}_6$ and $\text{TBM}_2@\mathbf{2}_6$ with the presence of insoluble TBM: Solutions of $\mathbf{1}_6$ and of $\text{TBM}_2@\mathbf{2}_6$ ([GSA] = 2 mM) in D₂O were prepared separately. A solution of TMACl (8 mM) in D₂O (15 µL), which was used as an internal standard, was added to an NMR tube. Then the solutions of $\mathbf{1}_6$ (150 µL) and of $\text{TBM}_2@\mathbf{2}_6$ (150 µL) and D₂O (285 µL) were added to the NMR tube to adjust the concentration of GSAs to 0.5 mM. About 1 mg of TBM was added to the prepared NMR tube. The scrambling of the GSAs was monitored at 25 °C by ¹H NMR spectroscopy (Supplementary Figure 9).

Scrambling experiment between $\text{TBM}_2@1_6$ and 2_6 with the presence of insoluble TBM: Solutions of $\text{TBM}_2@1_6$ and of 2_6 ([GSA] = 2 mM) in D₂O were prepared separately. A solution of TMACl (8 mM) in D₂O (15 µL), which was used as an internal standard, was added to an NMR tube. Then the solutions of $\text{TBM}_2@1_6$ (150 µL) and of 2_6 (150 µL) and D₂O (285 µL) were added to the NMR tube to adjust the concentration of GSAs to 0.5 mM. About 1 mg of TBM was added to the prepared NMR tube. The scrambling of the GSAs was monitored at 25 °C by ¹H NMR spectroscopy (Supplementary Figure 10).

Scrambling experiment between PCCP₂@ $\mathbf{1}_6$ and $\mathbf{2}_6$: Solutions of PCCP₂@ $\mathbf{1}_6$ and of $\mathbf{2}_6$ ([GSA] = 2 mM) in D₂O were prepared separately. A solution of TMACl (8 mM) in D₂O (15 µL), which was used as an internal standard, was added to an NMR tube. Then the solutions of PCCP₂@ $\mathbf{1}_6$ (150 µL) and of $\mathbf{2}_6$ (150 µL) and D₂O (285 µL) were added to the NMR tube to adjust the concentration of GSAs to 0.5 mM. The scrambling of the GSAs was monitored at 25 °C by ¹H NMR spectroscopy (Supplementary Figure 11).

Scrambling experiment between PCCP₂@**1**₆ and PCCP₂@**2**₆: The solutions of PCCP₂@**1**₆ and of PCCP₂@**2**₆ ([GSA] = 2 mM) in D₂O were prepared separately. A solution of TMACl (8 mM) in D₂O (15 μ L), which was used as an internal standard, was added to an NMR tube. Then the solutions of PCCP₂@**1**₆ (150 μ L) and of PCCP₂@**2**₆ (150 μ L) and D₂O (285 μ L) were added to the NMR tube to adjust the concentration of GSAs to 0.5 mM. The scrambling of the GSAs was monitored at 25 °C by ¹H NMR spectroscopy (Supplementary Figure 12).

Scrambling experiment between $\mathbf{1}_6$ and $\mathbf{2}_6$ in the presence of 2 eq of PCCP: Solutions of $\mathbf{1}_6$ and of $\mathbf{2}_6$ ([GSA] = 2 mM) in D₂O were prepared separately. A solution of TMACl (8 mM) in D₂O (15 µL), which was used as an internal standard was added to an Eppendorf microcentrifuge tube. Then the solutions of $\mathbf{1}_6$ (150 µL) and of $\mathbf{2}_6$ (150 µL) and D₂O (275 µL) were added to the Eppendorf microcentrifuge tube. A solution of NaPCCP (10 mM, 10 µL) was added and the tube

scrambling of the GSAs was monitored at 25 °C by ¹H NMR spectroscopy (Supplementary Figure 14).

Supplementary Figure 1 | ¹H NMR spectra of the host-guest complexes between $\mathbf{2}_6$ and *n*-hexane (500 MHz, 25 °C, D₂O, [**2**] = 1.0 mM). (a) $\mathbf{2}_6$. (b) Hex₂@ $\mathbf{2}_6$. Hex indicates *n*-hexane. Blue and violet solid circles indicate the signals of the *N*-methyl signals of $\mathbf{2}_6$ and Hex₂@ $\mathbf{2}_6$, respectively. Violet solid triangle indicates the encapsulated Hex.

Supplementary Figure 2 | ¹H NMR titration experiments of PCCP against $\mathbf{2}_6$ (500 MHz, 25 °C, D₂O, [**2**] = 1.0 mM, PCCP indicates pentacyanocyclopentadienide). Red and black solid circles indicate the signals of the *p*-tolyl methyl signals of PCCP₂@ $\mathbf{2}_6$ and $\mathbf{2}_6$, respectively.

Supplementary Figure 3 | ¹H NMR spectra of the scrambling experiment between 1_6 and 2_6 (500 MHz, 25 °C, D₂O, [1] = [2] = 0.4 mM). TMA⁺ indicates tetramethylammonium used as an internal standard.

Supplementary Figure 4 | ¹H NMR spectra of the scrambling experiment between $\mathbf{1}_6$ and $\mathbf{2}_6$ (500 MHz, 25 °C, D₂O, [1] = [2] = 0.5 mM). TMA⁺ indicates tetramethylammonium used as an internal standard.

Supplementary Figure 5 | ¹H NMR monitor of the induced-sorting of 1₆ upon heating (500 MHz, D₂O, [1] = [2] = 0.5 mM). (a) A mixture of 1₆ and 2₆ at 25 °C measured right after the mixing of 1₆ and 2₆. (b) An almost statistical mixture after heating a₆ to 5 °C) for @Oathf file(after the convergence). (c) heated at 70 °C. (d) heated at 90 °C. (e) heated at 95 °C. (f) cooling to 0 °C at red at red of a blue solid circles indicate the signals of 1₆ and 2₆, respectively. TMA⁺ indicates tetramethylammonium used as an internal standard. after scrambling

Supplementary Figure 7 | ¹H NMR spectra of the scrambling experiment between $TBM_2@1_6$ and 2_6 (500 MHz, 25 °C, No scrambling occurred when **BM** encapsulate TBM. D₂O, [1] = [2] = 0.5 mM). TMA⁺ indicates tetramethylammonium used as an internal standard.

I am going to test the scrambling experiments with TBM₂@BD and other nanocube.

8

[**1**6]¹²⁺

Supplementary Figure 8 | ¹H NMR spectra of the scrambling experiment between 1_6 and TBM₂@ 2_6 (500 MHz, 25 °C, D₂O, [1] = [2] = 0.5 mM). TMA⁺ indicates tetramethylammonium used as an internal standard.

BM (0.5 mM) white solid TBM

Supplementary Figure 9 | ¹H NMR spectra of the scrambling experiment between $\mathbf{1}_6$ and TBM₂@ $\mathbf{2}_6$ in the presence of insoluble TBM in D₂O (500 MHz, 25 °C, D₂O, [1] = [2] = 0.5 mM). TMA⁺ indicates tetramethylammonium used as an internal standard.

nanocube + 2eg PCCP TBM2@BM TBM2@BM and BD in the presence of TBM

Supplementary Figure 11 $\stackrel{1}{}_{H}$ MMR spectra of the scrambling experiment between PCCP₂@**1**₆ and **2**₆ (500 MHz, 25 °C, D₂O, [**1**] = [**2**] = 0.5 mM). TMA⁺ indicates tetramethylammonium used as an internal standard.

PCSP2@PM4(0.5ynHigurePCC) \neq DDR(0.5enH) of the scrambling experiment between PCCP₂@1₆ and PCCP₂@2₆ (500 MHz, 25 °C, D₂O, [1] = [2] = 0.5 mM). TMA⁺ indicates tetramethylammonium used as an internal standard.

Supplementary Figure 13 | ¹H NMR spectra of the scrambling experiment between $\mathbf{1}_6$ and $\mathbf{2}_6$ in the presence of 2 eq of PCCP (500 MHz, 25 °C, D₂O, [1] = [2] = 0.5 mM). TMA⁺ indicates tetramethylammonium used as an internal standard.

BM + PCCP@BD

Supplementary Figure 14 | ¹H NMR spectra of the scrambling experiment between $\mathbf{1}_6$ and PCCP₂@ $\mathbf{2}_6$ (500 MHz, 25 °C, D₂O, [**1**] = [**2**] = 0.5 mM). TMA⁺ indicates tetramethylammonium used as an internal standard.

Supplementary Figure 15 | ¹H NMR monitoring of kinetic lock and unlock of the induced-sorted state (500 MHz, 25 °C, D₂O, [1] = [2] = 0.5 mM). (a) The locked state: a mixture of Hex₃@1₆ and Hex₂@2₆. Hex indicates *n*-hexane. Orange and violet solid circles indicate the signals o**DHex**₃@1₆ and Hex₂@2₆, respectively. Orange, violet and green

ppm

Supplementary Figure 19 | 13 C NMR spectrum (125 MHz, CD₃OD, 25 °C) of 2D ·Cl₂