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Supplementary Fig. 1. Narrow-sense heritability and genetic / phenotypic correlations 
between blood traits. (a) Estimates of narrow-sense SNP heritability are plotted in gray 
with corresponding standard errors. Heritability estimates for all variants with fine-mapped 
PP > 0.001 are plotted in blue for each trait (n = 114,910- 116,667 individuals), and the 
proportions of total narrow-sense heritability captured by these fine-mapped variants 
(blue bar / gray bar) are indicated by the numbered labels. (b) Phenotypic and (c) genetic 
correlations across the 16 traits examined (n = 114,910- 116,667 individuals).  
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Supplementary Fig. 2. Fine-mapped configurations. Total PPs for the top (a) 1 and (b) 
25 configurations per region across all traits. (c) The estimated number of causal variants 
in all fine-mapped regions, stratified by the PP of the top configuration in each region (n 
= 2,056 regions). The observed association is likely a reflection of our combined ability to 
fine-map each independent association, which is predominately determined by each 
association’s strength and LD structure. Boxplots represent median and interquartile 
range. 
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Supplementary Fig. 3. Additional fine mapping diagnostics. (a) Distribution of all coding 
variants with posterior probability (PP) > 0.10, as annotated by Variant Effect Predictor 
(VEP).1 (b) Proportion of fine-mapped variants with PP > 0.10 which fall into coding, 
promoter, UTR, hematopoietic chromatin accessible, intron, or intergenic regions. 
Overall, 95.0% of variants with PP > 0.10 are non-coding. (c) Local z-scores for 
enrichment of hematopoietic chromatin-accessible regions in the set of fine-mapped 
variants with PP > 0.10. (d) Local shifting enrichments excluding all variants with high 
correlation (R2 > 0.6) to the sentinel variants.  

4



a

b

c

d

5



Supplementary Fig. 4. Overview of web resource for fine-mapped variants. (a-d) This 
interactive resource provides users with an integrated experience linking variants 
identified in this study with disease-relevant traits, putative target genes, and plausible 
molecular functions.    

6



rs1354034

600

400

200

0

20

15

10

5

0

7.5

5.0

2.5

0.0

-l
o
g

1
0
 p

-v
a
lu

e
lo

g
1

0
 B

a
y
e
s
 F

a
c
to

r

ba

rs78744187

(fine-mapped variant)0.5 1.0
R2

0.0

0.5 1.0
R2

0.0

0.5 1.0
R2

0.0
rs1354034

(fine-mapped variant)

rs78744187

(PP = 0.99)

10

5

0

0.5 1.0
R2

0.0

HSC
MPP

LMPP
CLP
CMP

GMP-A
GMP-B
GMP-C

MEP
Mono
mDC

Ery
Mega

CD4 T
CD8 T

B
NK

pDC

rs78744187 CEBPA ARGHEF3

rs1354034

(PP = 0.99)

Supplementary Fig. 5. Previously identified causal variants corroborated by fine-
mapping results and genomic annotations. (a) rs78744187 is associated with basophil 
count (n = 116,482 individuals; BOLT-LMM p-values) and was shown in Guo et al.2 to lie 
in a CMP-specific enhancer that regulates CEBPA expression to regulate basophil 
development and was investigated using reporter assays and genome editing. Although 
this locus is imputed and poorly tagged by genotyped variants, it is readily resolved by 
our fine-mapping method. (b) rs1354034 is associated with platelet traits (n = 116,663 
individuals; BOLT-LMM p-values) and was shown in Zou et al.3 to lie within a 
megakaryocyte enhancer and is associated (by eQTL) with expression of ARHGEF3; 
Arhgef3 KO mice were then shown to have larger platelets than normal. This variant is 
predicted to disrupt a GATA motif and GATA factors are observed to be bound here by 
ChIP-seq in several hematopoietic cells.
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(c) rs3184504 is a nonsynonymous variant in SH2B3 associated with multiple blood
cell traits (n = 116,666 individuals; BOLT-LMM p-values); SH2B3 is a negative regulator
of several signaling pathways, and its perturbation by either genome editing or naturally
occurring loss of function mutations has been shown to have a role in erythroid
differentiation.4 (d) rs3811444 is a nonsynonymous variant in TRIM58 associated with
red cell traits (n = 116,667 individuals; BOLT-LMM p-values); knockdown of TRIM58
by RNAi previously showed a role for this gene in erythroblast enucleation through
the regulation of dynein degradation.5
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(e) rs1175550 is an erythroid enhancer variant associated with red cell traits (n =
114,910 individuals; BOLT-LMM p-values) that is associated with SMIM1 expression by
genome editing and SMIM1 protein (Vel antigen) by eQTL.6,7 The Vel antigen is a
blood group, and Vel-negative humans often have transfusion reactions to Vel-
positive blood. (f) rs737092 is an erythroid enhancer variant associated with red
cell traits that regulates RBM38 expression (by genome editing).7 RBM38 knockdown
by RNAi has been shown to regulate RNA splicing and erythroid maturation.
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(g) rs342293 is a megakaryocyte enhancer variant associated with platelet traits
(n = 116,663 individuals; BOLT-LMM p-values) that is associated with PIK3CG
expression (by eQTL); PIK3CG knockout mice exhibited dysfunction platelet
function.8 (h) rs2038479 is a megakaryocyte enhancer variant associated with
platelet traits (n = 116,666 individuals; BOLT-LMM p-values) that is associated
with DNM3 expression by eQTL and exhibited regulatory function in a reporter
assay.9 Inhibition of DNM3 activity in mouse resulted in reduced platelet formation.
In addition to rs2038479, our fine-mapping identified rs2208368, which was not
marginally associated with platelet traits (n = 116,666 individuals; BOLT-LMM p <
10-51) but was strongly associated after conditioning on rs2038479. rs2208368 was
similarly localized to a megakaryocyte NDR in an intron of DNM3. 
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Supplementary Fig. 6. Gene set enrichments of fine-mapped coding variants with PP > 
0.10, calculated using Functional Mapping and Annotation of Genome-Wide Association 
Studies (FUMA).10 All protein-coding genes were used as background model. Fine-
mapped coding variants with PP > 0.10 were divided into five separate lineages 
depending on their associated trait: (a) red blood cell traits (HCT, HGB, MCH, MCHC, 
MCV, mean reticulocyte volume, RBC count, reticulocyte count; n = 77 genes), (b) platelet 
traits (platelet count, mean platelet volume; n = 59 genes), (c) lymphoid traits (lymphocyte 
count; n = 28 genes), (d) monocyte traits (monocyte count; n = 20 genes), and (e) 
granulocyte traits (neutrophil count, basophil count, eosinophil count; n = 46 genes). The 
most highly enriched Gene Ontology (GO) biological processes are shown, requiring a 
minimum overlap of two genes and a hypergeometric test FDR  < 0.01. 
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and pDCs reported in this work. Cells derived from this gating strategy were profiled using 
FAST-ATAC. 
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Supplementary Fig. 8. Mechanisms of core gene regulation in blood production across 
other lineages (similar to Fig. 2B). Heatmaps depicting chromatin accessibility for (a) 
platelet trait-associated variants (PP > 0.10), (b) granulocyte-associated variants (PP > 
0.10), and (c) monocyte count-associated variants (PP > 0.10) across their respective 
lineages. Each row marks a fine-mapped variant, each column denotes a cell type within 
the relevant lineage, and the color denotes relative chromatin accessibility along the 
lineage at each variant (blue = least open chromatin, red = most open chromatin). Putative 
target genes (predicted by ATAC-RNA correlation and/or PCHi-C) and disrupted TFs 
(predicted by ChIP-Seq occupancy and motif disruption) are indicated to the right. 
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(d) Fine-mapped variants in or proximal to (+/- 20 bp) TF motifs across 
groups of hematopoietic traits. Each row represents a different set of traits where 
the TF motifs support the factor binding from ChIP-seq. The unique margin sums 
across each lineage are shown in the bar plot for each TF. The expected number of 
variants with ChIP + motif disruption across all PPs is estimated using 100,000 
permutations and is shown as a single point. In total, fine-mapped variants were 
closer to 50 distinct TFs in AC than expected at an FDR < 10%. (e) 
Characterization of 3 distinct variants near the IKZF1 locus with a PP > 0.75 
(rs6592965, rs13231420, rs80085250) for traits spanning the hematopoietic lineage. 
An MCV-associated variant was within an erythroid-specific PCHi-C loop (red), a 
lymphocyte count associated variant was within a B and T cell-specific loop (blue), 
and a white blood cell count associated variant was specific to a B cell loop (purple). 
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Supplementary Fig. 9. Additional information for fine-mapped variant pairs. (a) For each 
variant with PP > 0.50, the distance to the closest variant also with PP > 0.50 in the same 
trait was calculated, and this distribution is shown as a barplot. (b-c) Genomic annotations 
for variant pairs with PP > 0.50 either across each (b) 3 Mb region (from FINEMAP) or 
(c) restricted to variant pairs within 1 kb. (d) Chromatin accessibility for variant pairs within
1 Mb that are not in the same specific AC peak. AC for each hematopoietic population
are correlated (Pearson r) across variant pairs (n = 12 pairs), although there are several
clear outliers. (e) An example of variant pairs where one variant is located in an intron
(rs60757417) and another variant within an exon (rs150813342) of GFI1B.
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(f) RNA-seq relative log2 counts-per-million (min-max normalized) of GFI1B. Gray
populations did not have expression data available. (g) Observed phenotypic effects of
these two variants on neutrophil count across diplotypes (n = 116,482 individuals). Mean
and standard error are indicated.
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Supplementary Fig. 10. Additional fine-mapped regulatory regions with multiple causal 
variants. (a) Track plot of two variants (rs445, rs144023540) associated with neutrophil 
count located in an intronic AC region of CDK6. (b) Observed phenotypic effects of these 
two variants on neutrophil count across diplotypes (n = 116,482 individuals). Mean and 
standard error are indicated. (c) Track plot of two variants (rs332426, rs106212) 
associated with platelet traits, located in proximal, but distinct, AC regions within a VAV1 
intron. (d) Observed phenotypic effects of these two variants on mean platelet volume 
across diplotypes (n = 116,666 individuals). Mean and standard error are indicated. 
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Supplementary Fig. 11. CCND3 locus fine-mapping across alternative LD backgrounds. 
Fine-mapped log10(Bayes factor) values for CCND3 variants when estimating LD with (a) 
hard-called genotypes rather than dosage imputed genotypes, and with (b) smaller 
UK10K reference panel (n = 3,677) instead of the larger UK biobank panel (n = 120,086). 
Variants discussed in Fig. 2A are highlighted.  
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Supplementary Fig. 12. Additional examples of fine-mapped pleiotropic variants. (a) A 
coding variant in CD33 (rs12459419) tunes eosinophil count (PP = 0.11), lymphocyte 
count (PP = 0.28), and platelet count (PP = 0.30). RNA-seq across hematopoietic 
lineages is shown in log2 counts-per-million (min-max normalized). Gray populations did 
not have RNA-seq data available. (b) A switch variant (rs562240450) located in a 
regulatory element of MYC that is associated with eosinophil count (PP = 0.91) and 
monocyte count (PP = 0.97). RNA-seq across hematopoietic lineages is shown in log2 
counts-per-million (min-max normalized). (c) A variant (rs8017228) that tunes basophil 
count (PP = 0.85) and monocyte count (PP = 1.00) is located in a regulatory element near 
CEBPE.  
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Supplementary Fig. 13. Application of g-chromVAR and parameterization 
characteristics. All trait / cell type pairs (n = 288 cells) scored by (a) g-chromVAR with the 
Bonferroni-adjusted significance level (one sided z-test) indicated by the dotted line. (b) 
Characterization of variable background peak numbers in g-chromVAR. By default, 50 
background peaks are used per analysis peak. (c) Enrichments from g-chromVAR using 
varied PP cutoffs. Our analysis used PP > 0.001 for all computations. (d) Results from 
running g-chromVAR on binarized peak counts (0/1) shows a drastic decrease in power, 
and no pairs passed Bonferroni-adjusted significance.  
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Supplementary Fig. 14. Simulation diagnostics for g-chromVAR. 100 simulations were 
performed for each panel. (a) Mean and standard deviation of enrichments (z-score) 
under a null phenotype simulation where no cell types are enriched for the simulated 
phenotype. (b-g) Mean and standard deviation of enrichments (z-score) when an arbitrary 
phenotype is simulated to as enriched for a designated cell type indicated by the asterisk 
(*). In general, true enrichments for terminally differentiated cell types (b-d) and late-stage 
progenitors (e,f) can be reliably detected using g-chromVAR. For early progenitors such 
as HSCs in (g), MPPs also appear enriched due to the striking similarity of the chromatin 
accessibility profiles of these two cell types.   
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Supplementary Fig. 15. Comparison of g-chromVAR to S-LDSC, GoShifter, and 
chromVAR. (a,b) Selected traits (monocyte count and mean reticulocyte respectively) for 
all hematopoietic enrichments for g-chromVAR, chromVAR, and stratified LD score 
regression. Bonferroni-adjusted significance level indicated by the dotted line for all figure 
panels. Complete visual representation of all trait / cell type pairs (n = 288 pairs) scored 
by (c) chromVAR, (d) LD Score Regression, (e) LD Score Regression using an additional 
covariate for all hematopoietic peaks, and (f) GoShifter are shown in a consistent manner. 
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Supplementary Fig. 16. Depiction of the lineage specificity test and enrichment results 
across 8 methods. (a) Example of the biological lineage for platelet traits (mean platelet 
volume and platelet count). The five colored populations (HSC, MPP, CMP, MEP, 
megakaryocyte) are defined as “lineage specific”, whereas the other non-lineage specific 
populations are shown in gray. (b) (Top) Results from the lineage specificity rank-sum 
test for the 8 enrichment methods. (Bottom) Graphical representation of results from the 
lineage specificity test (two-sided Mann-Whitney U test). Each column shows the relative 
rank of all pairs of trait/cell type pairs examined (n = 288 pairs). Blue indicates a lineage-
specific pair, whereas gray is a population that is not lineage-specific for that trait. (c) 
Bonferroni-adjusted counts of lineage and non-lineage enrichments across all trait/cell 
type pairs examined for the 8 enrichment methods. Darker color indicates a higher 
proportion of enrichments (scaled across each method). 

33



b

c

a

P
C

3

P
C

3

PC2 PC2

GATA1

CEBPA
IRF8

KLF1

0

20

40

60

80

0 500 1000 1500
Rank

−l
og

10
 (F

D
R

)

GATA TFs
Other TFs

KLF1

GATA1
MEF2C

0

5

10

15

0 500 1000 1500
Rank

−l
og

10
 (F

D
R

)
GATA TFs
Other TFs

Meg/Ery-biased
Myel-biased
non-CMP

Ery-biased
Meg-biased
non-MEP

d

Supplementary Fig. 17. Further diagnostics of scATAC clustering and TF variability. 
Two-dimensional representation (PC2 and PC3) of scATAC samples highlighting defined 
clusters of (a) CMPs and (b) MEPs. All variable TFs (n = 1,764 TFs, 𝜒" test) between 
scATAC clusters are shown for (c) CMPs and (d) MEPs.  
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Supplementary Table Descriptions 
Supplementary Table 1. Summary statistics and information for all fine-mapped 
variants with PP > 0.001. Summary statistics (Beta, SE) were calculated via BOLT-LMM 
v2.211 linear mixed model association analysis. Fine-mapped posterior probabilities (PP) 
were calculated via FINEMAP v1.112 (see Online Methods). The sample sizes for each 
trait analyzed were as follows: basophil count 116482; eosinophil count, 116482; 
hematocrit, 116667; hemoglobin, 116666; lymphocyte count, 116482; mean corpuscular 
hemoglobin, 116666; mean cellular hemoglobin concentration, 116666; mean cell 
volume, 116667; mean reticulocyte volume,114910; monocyte count, 116482; mean 
platelet volume, 116663; neutrophil count, 116482; platelet count, 116666; red blood cell 
count, 116667; reticulocyte count, 114910; white blood cell count, 116667. 
 
Supplementary Table 2. Summary of top fine-mapped configurations in each 
region.  
 
Supplementary Table 3. Summary of fine-mapped coding variants. 
 
Supplementary Table 4. Summary statistics for bulk ATAC-seq libraries. 
 
Supplementary Table 5. Summary of motif disrupting variants occupied by 
corresponding transcription factors. 
 
Supplementary Table 6. Summary of putative gene targets for variants mapping to 
PCHi-C interactions. Variants with FINEMAP posterior probability (PP) > 0.10 were 
overlapped with PCHi-C interactions across 14 primary human hematopoietic cell types. 
PCHi-C interactions were assigned confidence scores via the CHiCAGO pipeline as 
described in Javierre et al, 201613, and only interactions with a CHiCAGO score > 5 were 
used for this analysis.  
 
Supplementary Table 7. Summary of putative gene targets for variants mapping to 
ATAC-RNA correlations. Variants with FINEMAP posterior probability (PP) > 0.10 were 
included in this analysis. ATAC-RNA correlations were calculated by correlating ATAC 
peak counts to gene RNA counts across n = 16 hematopoietic cell types. Then, two-sided 
p-values were generated from the Pearson correlation. The qvalue column represents the 
estimated FDR.  
 
Supplementary Table 8. Fine-mapped variants with PP > 0.5 identified in the same 
3 Mb region.  
 
Supplementary Table 9. Pleiotropic variants (PP > 0.1) for blood cell count traits. 
 
Supplementary Table 10. g-chromVAR results for 39 predominately immune-
related disorders previously fine-mapped with PICS to 18 chromatin accessibility 
profiles. A one-sided z-test was used to convert g-chromVAR z-scores to p-values. 
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Supplementary Table 11. Application of g-chromVAR to DNase 1 hypersensitivity 
data of 53 tissues from Roadmap Epigenomics. A one-sided z-test was used to 
convert g-chromVAR z-scores to p-values.  
 
Supplementary Table 12. Top differentially enriched TFs between CMP and MEP 
sub-clusters. All variable TFs (n = 1,764) between scATAC clusters are listed for CMPs 
and MEPs. Two-tailed t-tests were used for each comparison.  
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Supplementary Note 
 
Fine-mapping configuration probabilities 

In addition to individual variants, fine-mapping also provided posterior probabilities 
(PPs) for causal configurations, which contain all predicted causal variants in a region. 
Interestingly, the top 1 and 25 configurations per region demonstrated > 0.75 PP for 
containing the correct causal configuration in only 3.9% and 28.9% of regions, 
respectively (Supplementary Fig. 2; Supplementary Table 2), likely reflecting the 
difficulty of predicting exact configurations in regions with multiple causal variants. Indeed, 
configurations for regions with a greater number of expected causal variants had lower 
PPs (Supplementary Fig. 2). 
  
Additional examples of variants disrupting hematopoietic transcription factor binding 

In total, we identified 145 distinct fine-mapped non-coding variants that were 
predicted to both disrupt a transcription factor (TF) motif and show occupancy by that 
specific TF in a hematopoietic tissue or cell line (Fig. 2C). These variants most commonly 
disrupted the binding sites of key transcriptional regulators of hematopoietic lineage 
commitment and differentiation. Several compelling variants include the platelet trait 
associated variant rs74340846 and the lymphocyte count associated variant rs79716587, 
which are occupied by and predicted to disrupt RUNX1 binding,14,15 the RBC trait 
associated variants rs10758656 and rs66480687, which are occupied by and predicted 
to disrupt GATA1 binding,7 the monocyte count associated variant, rs4970966, which is 
occupied by and predicted to disrupt IRF1 and IRF4 binding,16 and the platelet trait 
associated variant, rs75522380, which is occupied by and predicted to disrupt MEF2A 
and MEF2C binding (Fig. 2D)17. In each case, the disrupted TF has been previously 
reported to be involved in the regulation of the corresponding blood cell lineage. 
 
Analysis of fine-mapped variants disrupting proximal transcription factor motifs 

In light of previous studies which found that many functional variants are proximal 
to but not predicted to strongly disrupt the canonical binding sites of relevant TFs7,18, we 
extended our analysis and investigated whether the same 426 TF binding motifs were 
proximal (within 20 bp) to fine-mapped regulatory variants occupied by that TF in 
accessible chromatin (AC). Overall, we observed similar patterns, but with some key 
differences (Supplementary Fig. 8). For example, we only observed three fine-mapped, 
RBC trait associated variants predicted to disrupt the binding of GATA1, a key erythroid 
TF, but a total of 16 fine-mapped variants that were occupied by GATA1 and proximal to 
a canonical GATA1 binding site (Supplementary Fig. 2C, Supplementary Fig. 8). These 
findings build upon our previous functional work7 suggesting that the majority of common 
genetic regulatory variation acts by fine-tuning, rather than abolishing, TF binding and 
activity. Overall, the molecular mechanisms identified here using fine-mapping, relevant 
AC overlap, and TF occupancy with matching motif disruption are of higher confidence 
than those based upon only AC overlap19, motif disruption18, or TF occupancy20 alone.  
 
Additional examples of regions with multiple causal variants 
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We conducted a closer examination of the 785 trait-associated regions with 
multiple independent causal signals. As an example of a pair of variants in which one is 
non-coding while the other is coding, we identified MPV-associated rs150813342 and 
rs60757417 (PP > 0.99; 75 bp apart) in GFI1B, which encodes for a transcriptional 
regulator important for erythroid and megakaryocytic development (Supplementary Fig. 
9E-G). rs150813342 is a rare synonymous variant that we have previously shown to affect 
splicing of GFI1B isoforms21, whereas rs60757417 is annotated as a non-coding variant 
in AC. As rs60757417 is 12 base pairs from the intron-exon junction of exon 5, we 
hypothesize that this variant may similarly be cryptically involved in regulating GFI1B 
mRNA splicing. 

Besides the example of CCND3 in the main text, other variant pairs in the same 
AC region or within an AC cluster include eosinophil count-associated rs445 and rs8 (PP 
> 0.99; 39 bp apart), a pair within an AC region in the intron of CDK6, a gene that encodes 
for a cell cycle regulator involved in granulocyte production (Supplementary Fig. 11A-
B),22 and MPV-associated rs8106212 and rs332426 (PP > 0.61; 603 bp apart), a pair 
within an AC region in the intron of VAV1, a gene that encodes for a Rho guanine 
nucleotide exchange factor involved in platelet function (Supplementary Fig. 11C-D).23 
Overall, our statistical fine-mapping results have verified that multiple independent causal 
variants can not only occur in the same LD block but also within the same regulatory 
element. Together, these results indicate that other fine-mapping methodologies that 
assume one causal variant per locus likely miss true independent effects.  
 
Local annotation shifting 

To calculate genomic enrichments (similar to GoShifter), we calculated the overlap 
between the fine-mapped variant set of each trait (16 total) with each of the 5 genomic 
annotations. To define the null distribution of annotation overlap, we performed 10,000 
locally shifting permutations; with every permutation, we shifted the genomic coordinates 
of the fine-mapped variant set by a random distance between -1.5 Mb and 1.5 Mb (this 
approach is equivalent to shifting the annotations). This was performed using the 
permTest function of the regioneR package24. The final odds ratio was calculated by 
dividing the number of overlaps between the original fine-mapped variant set and a 
genomic annotation by the mean number of overlaps between the 10,000 permuted sets 
and the same genomic annotation. To test if the association between a fine-mapped 
variant set and a genomic annotation (e.g. hematopoietic AC) was highly dependent on 
their exact positions, we used the localZScore function to calculate enrichment scores 
after various increments of shifting the fine-mapped variant set. 

 
Extended methodological details of g-chromVAR 
 The bias-corrected enrichment statistics for T traits and a set of S samples 
(chromatin cell type profiles) with P peaks computed by g-chromVAR is a generalization 
of the chromVAR method.25 Intuitively, our implementation of g-chromVAR relaxes the 
requirement in chromVAR that trait-peak annotations be binary, allowing for uncertainty 
in annotations such as transcription factor binding or in our case, localization of GWAS 
variants. Specifically, the chromVAR implementation requires a binarized matrix 𝑴 
(dimension P by S) where 𝑚%,'is 1 if annotation 𝑘 is present in peak 𝑖 and 0 otherwise. 
For example, in our examination of chromVAR (Fig. 5),	𝑴 represents a binary matrix 
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where 𝑚%,' = 1	if a genome-wide significant variant for trait 𝑘  was present in peak 𝑖 . 
However, our application of chromVAR to variant association data for our 16 
hematopoietic traits revealed inflated summary statistics and poor lineage-specific 
enrichments without modeling the posterior confidence of variants (Fig. 5B-D, 
Supplementary Fig. 16). We note that if FINEMAP identified only 1 causal variant per 
region with a posterior probability of 1, g-chromVAR and chromVAR would yield identical 
results.  
 Instead, our methodology, g-chromVAR, uses a matrix of variant posterior 
probabilities 𝑮 , where 𝑔%,'  is the sum of the posterior probabilities of the variants 
contained in the genomic coordinates of peak 𝑖  for each trait 𝑘 . Using the matrix of 
fragment counts in peaks 𝑿, where 𝑥%,1	represents the number of fragments from peak 𝑖 
in sample 𝑗, a matrix multiplication 𝑿𝑻 ∙ 𝑮	yields the total number of fragments weighted 
by the fine-mapped variant posterior probabilities for S samples (rows) and T traits 
(columns). To compute a raw weighted accessibility deviation, we compute the expected 
number of fragments per peak per sample in 𝑬, where 𝑒%,1	is computed as the proportion 
of all fragments across all samples mapping to the specific peak multiplied by the total 
number of fragments in peaks for that sample:  
 

𝑒%,1 =
∑ 𝑥%,11

∑ ∑ 𝑥%,1%1
Σ%𝑥%,1 

 
Analogously, 𝑿𝑻 ∙ 𝑬	yields the expected number of fragments weighted by the fine-
mapped variant posterior probabilities for S samples (rows) and T traits (columns). Using 
the 𝑮 , 𝑿 , and 𝑬  matrices, we then compute the raw weighted accessibility deviation 
matrix 𝒀 for each sample 𝑗 and trait 𝑘 (𝑦1,') as follows: 
 

𝑦1,' =
∑ 𝑥%,1𝑔%,' −<
%=> ∑ 𝑒%,1𝑔%,'<

%=>

∑ 𝑒%,1𝑔%,'<
%=>

 

 To correct for technical confounders present in assays (differential PCR 
amplification or variable Tn5 tagmentation conditions), g-chromVAR borrows the strategy 
implemented in chromVAR by generating a background set of peaks intrinsic to the set 
of epigenetic data examined. We note that other GWAS enrichment tools such as S-
LDSC or GoShifter ignore biases prevalent in epigenomic assays that are explicitly 
corrected by g-chromVAR. In particular, variance in PCR or Tn5 tagmentation quality can 
lead to substantial differences in the number of observed fragment counts between cells 
based on an individual peak’s GC content or average accessibility,25 leading to errant 
GWAS-cell type enrichments. To correct for these technical confounders, each peak is 
assigned a background set of peaks that are matched in mean nucleotide GC content 
and average fragment accessibility between the sums of the cell types. An inverse 
Cholesky transformation is applied to a P by 2 matrix containing these variables to 
generate two uncorrelated dimensions describing the per-peak confounding. This two-
dimensional space is divided into a pre-defined number of equally spaced bins where bin 
i is indicated 𝛽% . Each peak 𝑞 is assigned a bin from the shortest Euclidean distance 
between the bin’s centroid and the individual peak in this transformed space. The 
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probability that a peak 𝑞A	 in bin j is selected as a background peak for peak 𝑞  is 
proportional to the distance between bins i and j over the total number of peaks in bin j 
B𝛽1B: 

𝑃D𝑞′	 ∈ 𝛽1B	𝑞	 ∈ 𝛽%) ∝
𝑑(𝛽%	, 𝛽1)
B𝛽1B

 

where the distance function 𝑑  contains hyperparameters which, along with the total 
number of bins, have been previously discussed.25 
 By default, the framework samples a background set of 50 background elements 
per peak, which we’ve verified to be robust (Supplementary Fig. 13B). The matrix	𝑩(𝒃) 
encodes this background peak mapping where 𝑏%,1

(N) is 1 if peak 	𝑖  has peak 𝑗  as its 
background peak in the 𝑏 background set (𝑏 ∈ {1,2, … ,50}) and 0 otherwise. The matrices 
𝑩(𝒃) ∙ 𝑿 and 𝑩(𝒃) ∙ 𝑬 thus give an intermediate for the observed and expected counts also 
of dimension P by S. For each background set 𝑏, sample 𝑗, and trait	𝑘, the elements 𝑦1,'

(N) 
of the background weighted accessibility deviations matrix 𝒀(𝒃) are computed as follows:  
 

𝑦1,'
(N) =

∑ (𝑩(𝒃) ∙ 𝑿)%,'𝑔%,' −<
%=> ∑ (𝑩(𝒃) ∙ 𝑬)%,'𝑔%,'<

%=>
∑ (𝑩(𝒃) ∙ 𝑬)%,'𝑔%,'<
%=>

 

 
After the background deviations are computed over the 50 sets, the bias-corrected matrix 
Z for sample 𝑗 and trait 𝑘 (𝑧1,') can be computed as follows: 
 

𝑧1,' =
𝑦1,' − mean(𝑦1,'

(N))

𝑠d(𝑦1,'
(N))

 

 
where the mean and variance of 𝑦1,'

(N)  is taken over all values of 𝑏  (𝑏 ∈ {1,2, … ,50}).  
Sample-trait p-values can then be computed from the one-tailed normal distribution of 
these z-scores using the pnorm function in R. Our implementation of g-chromVAR utilizes 
efficient matrix operations for each step and can compute pair-wise trait-cell type 
enrichments in ~1 minute on a standard laptop computer.  
 
g-chromVAR simulations 
 We developed a new approach called genetic-chromVAR (g-chromVAR), a 
generalization of the recently described chromVAR method25 to measure the enrichment 
of regulatory variants in each cell state using uncertainties in fine-mapped genetic 
variants and quantitative measurements of regulatory activity. Briefly, this method weights 
chromatin features by variant posterior probabilities and computes the enrichment for 
each cell type versus an empirical background matched for GC content and feature 
intensity (g-chromVAR is thus intuitively a competitive method across cell types based on 
top loci or “core gene” information).  
 To verify that enrichments computed by g-chromVAR were well-calibrated in our 
system, we devised a general simulation framework that computes enrichments for the 
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18 bulk hematopoietic cell types for an arbitrary simulated phenotype. Using the same 
matrix of fragment counts in peaks 𝑿 as described in the g-chromVAR section of the 
Online Methods, where xi,j represents the number of fragments from peak 𝑖 in sample 𝑗, 
we simulated a causal relationship between one of the accessibility samples 𝑗  by 
performing a weighted draw of observed variant posterior probabilities 𝑮, where 𝑔%,' is the 
sum of the posterior probabilities of the variants contained in the genomic coordinates of 
peak 𝑖 for each trait 𝑘.  
 Specially, we first perform a counts-per-million (CPM) transformation of the 
fragment counts in peaks matrix to account for uneven sequencing depth between 
samples. Next, we z-transform the CPM-normalized matrix row wise to yield a matrix 
termed 𝑿∗ where 𝑥%,1∗  represents the amount of open chromatin observed in sample 𝑗 in 
peak 𝑖 relative to other samples. Intuitively, elements of the z-score matrix 𝑿∗ yield larger 
positive numbers for cell type-specific peaks in specific samples (values 𝑥%,1∗  range from -
3.46 to 4.01). This matrix 𝑿∗ serves as a basis for determining the cell type specificity of 
an individual regulatory element.  
 
g-chromVAR simulation framework 
 To generate simulated elements of 𝑮, we define a sorted vector 𝑣 of length T * P 
(where 99.7% of values were zero) from the observed elements of 𝑮 for our T = 16 
hematopoietic traits and P = 451,283 regulatory peak elements. This vector 𝑣  thus 
represents empirically derived values from the hematopoietic system studied that serve 
as input into g-chromVAR. Then, for a fixed causal cell-type 𝑗, we generate matrix 𝑺 of 
𝑞	 ∈ (1, 2, … , 100) simulated traits, where entries are defined as follows: 
 

𝑠%,_~𝑈𝑛𝑖𝑓d	𝑓DΦ(𝑥%,1∗ )f	, 1	g 
 
Here, 𝑓 is a linear function that maps the normal cumulative distribution function (CDF) 
transformation of the 𝑥%,1∗  z-score to a (0, 1) real number and is calibrated to yield 
phenotypic values similar to those observed empirically (matched mean column sum of 
𝑮). The 𝑠%,_	value thus is a randomly generated (0, 1) real number skewed toward 1 when 
peak 𝑖 contains cell type-specific chromatin for the fixed cell-type 𝑗. A final transformation 
of 𝑺  maps these (0, 1) real number values to observed weights (elements of 𝑮  or 
equivalently 𝑣) using the inverse CDF of 𝑣 to index values. This final matrix, which serves 
as the input for g-chromVAR, is simulated to be enriched for cell-type 𝑗 and null for all 
others. For the fully null simulation, elements of 𝑠%,_ were populated from random draws 
of a 𝑈𝑛𝑖𝑓[	0	, 1	]. 
 
Validation of g-chromVAR 

We compared g-chromVAR to three state-of-the-art methods: S-LDSC,26 which 
calculates the enrichment for genome-wide heritability using binary annotations after 
accounting for LD and overlapping annotations, GoShifter,27 which calculates the 
enrichment of tight LD blocks containing sentinel GWAS single nucleotide variants for 
binary annotations, and chromVAR, which calculates enrichments similarly to g-
chromVAR but only accepts binary annotations for variants, rather than continuous fine-
mapped PPs. Using a Bonferroni correction, g-chromVAR identified 22 trait-tissue 

41



enrichments, S-LDSC identified 71, GoShifter identified 39, and chromVAR identified 79 
(Fig. 5C, S15, S16). 
 In order to compare the performance of these enrichment tools, we leveraged our 
knowledge of the hematopoietic system and devised a lineage specificity test. For any 
measured cell trait, we identified all possible upstream progenitor populations that could 
be passed through before terminal differentiation (Fig. 1A). For example, the 
differentiation of a platelet is thought to begin at the hematopoietic stem cell (HSC) and 
progress through multipotent progenitor (MPP), common myeloid progenitor (CMP), and 
megakaryocyte erythroid progenitor (MEP) before reaching the megakaryocyte stage 
(Supplementary Fig. 16A). The lineage specificity test is a nonparametric rank-sum test 
that measures the relative ranking of lineage specific trait-cell type pairs relative to the 
non-lineage specific traits for each of the compared methodologies. Using this metric for 
specificity, we found that g-chromVAR outperformed all three other methods (Fig. 5D). 
When we extended this comparison to additional cell type enrichment methods, g-
chromVAR exhibited the highest lineage specificity among the 8 tested methods 
(Supplementary Fig. 16).  

Finally, we assessed the generalizability of g-chromVAR by (1) using alternative 
fine-mapping methods and (2) applying it across larger epigenomic datasets. In each 
scenario, g-chromVAR identified known cell type enrichments as well as several novel 
and compelling associations, such as an enrichment for genetic variants associated with 
C-reactive protein level in myeloid dendritic cells28,29 and variants associated with platelet 
traits in lung30 (Supplementary Table 10, Supplementary Table 11)31  
 
Application of g-chromVAR to single-cell pseudotime trajectories 

We applied g-chromVAR to 2,034 single bone-marrow derived hematopoietic 
progenitor cells profiled using scATAC-seq.32 In order to model the relatedness and 
heterogeneity of single cell measurements, we inferred pseudotime trajectories for the 
megakaryocyte and erythroid lineage (Meg/Ery), the myeloid and monocyte lineage 
(Myel), and the lymphoid lineage (Lymph) (Fig. 6C). We then used local regression to 
investigate the timing of blood trait GWAS enrichments during lineage commitment. 
Interestingly, we found that along these trajectories we could reconstruct our observations 
from bulk data with finer granularity. For example, we found that platelet count showed 
enrichment early along Meg/Ery differentiation with a sharp increase at firmly committed 
MEPs (Fig. 6D). This enrichment along the Meg/Ery commitment path coincided with 
negative enrichments along the alternative Myel and Lymph paths (Fig. 6D). This 
suggests that although the majority of variants act in committed progenitors, a subset of 
regulatory variants act in multipotential or heterogeneous progenitor populations, 
consistent with our earlier finding that many distinctly fine-mapped variants only 
overlapped with multipotential progenitor populations (Fig. 2A-B). 
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