Supplementary Information

The file contains

• Supplementary information figure1-8

Supplementary Information

Supplementary figure 1. (a) Frequency of TNBC subtypes in this study and (b) other studies (Cancer Genome Atlas, 2012; Curtis et al., 2012; Lehmann et al., 2011; Liu et al., 2016; Masuda et al., 2013.

Gene ontology/Pathways TNBC subtypes

Supplementary figure 2. Gene ontology from FFPE TNBC samples in this study. Each subtype shows biological enrichment according to gene expression profile from DAVID analysis.

Supplementary figure 3. Independent validation of some LncRNAs in TNBC subtypes. The plot represent levels of normalized fluorescence intensity (RMA) of LncRNAs evaluated in our cohort (n=156) and in the validation cohort (n=160) (GEO: GSE76250). FC: fold change. The dotted line shows the mean expression. BL1: Basal-like 1, BL2: Basal-like 2, IM: immunomodulatory, M: mesenchymal, MSL: mesenchymal stem-like, LAR: luminal androgen receptor.

Supplementary figure 4. Correlation analysis of coding and non-coding genes co-expressed positively in the immunomodulatory phenotype. In the table shows the coding and long non-coding genes (adjacent or overlapping) from IM subtype TNBC. Triangular heat map representing the correlation coefficients matrix of coding and non-coding genes co-expressed, the blue dots indicate the statistically significant positive correlations (p<0.0001), and blank squares indicate non-significant correlations.

Supplementary figure 5. Guilt-by-association analysis. Bubble chart shows enrichment of biological pathways correlated by expression of LncKLHDC7B. Y-axis label represents pathways. Size and color of the bubble represents the Score each pathway and significance, respectively.

Supplementary figure 6. Up-modulation of LncKLHDC7B and KLHDC7B in tumor samples of breast cancer. Expression of *LncKLHDC7B* and *KLHDC7B* in human normal adjacent and tumor tissues from TCGA data.

(a)

IncKLHDC7B

KLHDC7B

Supplementary figure 7. Functional analysis by the silencing of LncKLHDC7B in BT-20 cell line. (a) The expression of LncKLHDC7B and KLHDC7B in BT-20 cells transfected with NC or shRNA-1 or -2 versus LncKLHDC7B was determined by gRT-PCR. (b) Transwell migration and (c) invasion assay showed that LncKLHDC7B silencing increase the migration and invasion of BT-20. Representative images are shown on the left and its quantification on the right. Scale bar = $50\mu m$. (d) Flow cytometric analysis of apoptosis (early and late) in BT-20 cell transfected with control and shRNAs-1 and -2 after Annexin-V/PI staining. All data are shown as the mean ± SD of at least three independent experiments. Student's t-test was performed to determine significance, ns = p > 0.05, *p<0.05, **p<0.01, ***p<0.001 of NC vs shRNAs.

Supplementary figure 8. Kaplan-Meier curve of overall survival (OS). Kaplan-Meier analysis was analyzed according to *KLHDC7B* and *LncKLHDC7B* expression levels from TCGA BRCA data (Anaya, J., 2016. Li et al., 2015). *P* value was obtained using the log-rank test.

References

Cancer Genome Atlas, N., 2012. Comprehensive molecular portraits of human breast tumours. Nature 490, 61-70.

Curtis, C., Shah, S.P., Chin, S.F., Turashvili, G., Rueda, O.M., Dunning, M.J., Speed, D., Lynch, A.G., Samarajiwa, S., Yuan, Y., Graf, S., Ha, G., Haffari, G., Bashashati, A., Russell, R., McKinney, S., Group, M., Langerod, A., Green, A., Provenzano, E., Wishart, G., Pinder, S., Watson, P., Markowetz, F., Murphy, L., Ellis, I., Purushotham, A., Borresen-Dale, A.L., Brenton, J.D., Tavare, S., Caldas, C., Aparicio, S., 2012. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346-352.

Lehmann, B.D., Bauer, J.A., Chen, X., Sanders, M.E., Chakravarthy, A.B., Shyr, Y., Pietenpol, J.A., 2011. Identification of human triplenegative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121, 2750-2767.

Liu, Y.R., Jiang, Y.Z., Xu, X.E., Yu, K.D., Jin, X., Hu, X., Zuo, W.J., Hao, S., Wu, J., Liu, G.Y., Di, G.H., Li, D.Q., He, X.H., Hu, W.G., Shao, Z.M., 2016. Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. Breast Cancer Res 18, 33.

Masuda, H., Baggerly, K.A., Wang, Y., Zhang, Y., Gonzalez-Angulo, A.M., Meric-Bernstam, F., Valero, V., Lehmann, B.D., Pietenpol, J.A., Hortobagyi, G.N., Symmans, W.F., Ueno, N.T., 2013. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res 19, 5533-5540.

Anaya, J., 2016. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Computer Science 2:e67, 2e:67 ed, PeerJ Computer Science.

Li, J., Han, L., Roebuck, P., Diao, L., Liu, L., Yuan, Y., Weinstein, J.N., Liang, H., 2015. TANRIC: An Interactive Open Platform to Explore the Function of IncRNAs in Cancer. Cancer Res 75, 3728-3737.