Table S1: KO target sequences

Table S1: KO target sequences													
	Target sequence	Oligonucleotide	Sequence	Sequence	Species								
SLC35A2- KO4 SLC35A2-	GGTGGTTCCACCGCGGCGCCCGG	SLC35A2- KO4-F SLC35A2-	caccGGTGGTTCCACCGCGGCGCC	SLC35A2- C KO4-R SLC35A2-	aaacGGCGCCGCGGTGGAACCACC	human							
KO1 PIGS-KO1	GTGGATCTACCGCTGCGGCCGGG GCCGCGGTGGCCATTCTGCTGGG	KO1-F PIGS-KO1-F	caccGTGGATCTACCGCTGCGGCC caccGCCGCGGTGGCCATTCTGCT	C KO1-R C PIGS-KO1-R	aaacGGCCGCAGCGGTAGATCCAC aaacAGCAGAATGGCCACCGCGGC	mouse hamaser							
SLC35A2- KO2	GTCATGGCTGAAGTGCTTAAAGC	SLC35A2- KO2-F	caccGTCATGGCTGAAGTGCTTA	SLC35A2- KO2-R	aaacTTAAGCACTTCAGCCATGAC	hamaser							
PGAP2-KO2 PIGZ-KO1	GTCCCTGCTCTTCCACTTCAAGG GATGGCAGCCAGGGTGATTTGGC	PGAP2-KO2-F FIGZ-KO1-F	caccGTCCCTGCTCTTCCACTTCA caccGATGGCAGCCAGGGTGATT	PGAP2-KO2-R TPIGZ-KO1-R	aaacTGAAGTGGAAGAGCAGGGAC aaacAAATCACCCTGGCTGCCATC	hamaser hamaser							

Figure S1. Unprocessed image of immunoblot using T5 mAb. Western blotting of free GPIs of 3B2A, 3BT5 and PIGT-mutant CHO cells. Lysates of WT (3B2A), 3BT5 and PIGT-mutant cells treated with or without PI-PLC were analyzed by western blotting with T5 mAb.

Figure S2. Confirmation of knockout (KO) of PIGS and SLC35A2. (*A*) Confirmation of KO of PIGS in CHO-3BT5 cells. 3BT5 and 3BT5-PIGS KO cells were stained with anti-CD59. (*B*) Confirmation of KO of SLC35A2 in PIGU-mutant CHO cells. PIGU-mutant and PIGU-mutant-SLC35A2 KO CHO cells were stained with lectin GS-II. (*C*) Confirmation of KO of PIGS in C19 cells. C19 and C19-PIGS KO cells were stained with anti-CD59. (*D*) Confirmation of KO of PIGS in C10 cells. C10 and C10-PIGS KO cells were stained with anti-CD59. (*E*) Confirmation of KO of SLC35A2 in C10-PIGS KO and C19-PIGS KO cells. C10-PIGS KO and C19-PIGS KO CHO cells (left), and C10-PIGS-SLC35A2 DKO and C19-PIGS-SLC35A2 DKO cells (right) were stained with lectin HPA, which binds to GalNAc exposed *O*-glycan. (*F*) Confirmation of KO of PIGS in 3BT5-PGAP3 KO cells. 3BT5-PGAP3 KO and 3BT5-PGAP3-PIGS DKO cells were stained with anti-CD59.

WТ	ATG/ M	۹А <mark>G</mark> К	ATG M	i <mark>GC/</mark> A	AGC A	CAC	GGG [.]	TGA		<u>GGC</u> N	<u>a</u> GT/ G	AGCO S		AGC S	CTG L	CTTO	CGA R	GTC V		GTG W	GTC C	ATCT
									·			-	_	-	- 1							
PIGZ KO	ATG/ M	۹А <mark>G</mark> К	ATG M	i <mark>GC/</mark> A	A <mark>GC</mark> A	CAC F) {															
WT	CCTT L	rcco P		GAC	TG(GCT/	ACA [.] Y	TAC I	ACC H	CAC P	GAT(GAG	TTC ⁻ F	TTCC F	CAG [.] Q	TCA S	CCT P	GAG E	GT V		GG	CAGA
PIGZ KO				- AC	TG	GCT	ACA [.]	ТАС	ACC	CAC	GAT	GAG	ттс	гтсо	CAG	TCA	сст	GAG	GT	САТ	GGG	CAGA
TIGE NO					L	А	Т	Y	Т	Q	М	S	S	S	S	Н	L	F	8 3	S	W	Q
WT	GGA D	CAT	CCT L	GG((GTG G	TGC V	Q Q	GCT A	TCA S	CGC R	CCC P	CTG W	GGA E	ATT F	TTA(Y	CCC P	CAG S	CAA N	CT {	CCT S	GTC C	GCAC R T
PIGZ KO	GGA R	CAT T	CCT S	GG(W	GTG V	TGC C	AGC R	GCT L	TCA H	CGC C	àCCC à F	CTG	GGA	ATT N I	TTA	CCC(F F	CAG	CAA A	CT T	CCT P	GTC V	GCAC A
WT	TGT(V	GGT V	CTT F	CCC F	CC1	IGC L	ГGA L															
PIGZ KO	TGTO L V	GGT V	CTT S	ccc s	CC1 P	rgc C	ГGA *															

Figure S3. Confirmation of KO of PIGZ by Sanger sequencing. Nucleotide and translated amino acid sequences are aligned for wild-type PIGZ (WT) and gene-edited PIZG (PIGZ KO). Nucleotide sequences are shown from the initiation ATG codon (blue). Twenty nucleotides (red) located 3-nucleotide downstream of the initiation codon are targeted by gRNA. PAM sequence (GGG) is underlined. Sanger sequencing confirmed a deletion of 55 base pairs (dashed region) from within the gRNA target sequence, which caused a frame-shift leading to generation of a premature termination codon (asterisk). A putative catalytic site, DE motif (magenta), within the first transmembrane domain (TM1; underlined) was lost due to the frame-shift. Nucleotides with or without dotted underline are in exon 3 and exon 2, respectively. Exon 2 sequences were determined by Sanger method whereas exon 3 sequence was from the NCBI data base.

PIGZ