MicroRNA-144-3p targets relaxin/insulin-like family peptide receptor 1 (RXFP1) expression in lung fibroblasts from patients with idiopathic pulmonary fibrosis

Harinath Bahudhanapati^{§1}, Jiangning Tan^{§1}, Justin A Dutta¹, Stephen B Strock¹, John Sembrat¹, Diana Àlvarez¹, Mauricio Rojas¹, Benedikt Jäger³, Antje Prasse^{2,3}, Yingze Zhang¹ and Daniel J Kass^{1*}

From the ¹Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine University of Pittsburgh School of Medicine, Pittsburgh, PA-15213; ²Department of Pulmonology, Hannover Medical School, Carl-Neuberg Straβe 1, 30625 Hannover, Germany & DZL BREATH; ³Fraunhofer ITEM, Nicolai-Fuchs-Straβe 1, 30625 Hannover, Germany & DZL BREATH

Running title: miR-144-3p targets RXFP1 expression in IPF

§ These authors contributed equally to this work.

*To whom all correspondence should be addressed: Simmons Center for Interstitial Lung Disease. Division of Pulmonary, Allergy, and Critical Care Medicine. University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh. Tel.: 412-624-7444; Fax: 412-624-1670; E-mail: <u>kassd2@upmc.edu</u>

Keywords: relaxin/insulin-like family peptide receptor 1 (RXFP1), lung fibroblasts, idiopathic pulmonary fibrosis (IPF), microRNA, relaxin, pulmonary fibrosis, lung disease, posttranscriptional regulation, TGFβ, epigenetics

Table S1. Baseline Characteristics of IPF Patients and HV*		
Characteristic	IPF N=126	HV N=18
Age -yr	71.6 ± 8.1	63.1 ± 8.8
Male sex -%	83	62
FVC percent predicted value -	69 ± 19	98 ± 18
Bronchoalveolar Lavage		
Alveolar macrophages -%	75 ± 16	78 ± 15
Lymphocytes -%	11 ± 10	18 ± 12
Neutrophils -%	10 ± 11	3 ± 4
Eosinophils -%	4 ± 6	0 ± 1

Table S1. Baseline Characteristics of IPF Patients and HV

 * Plus-minus values are means $\pm SD.$ FVC denotes for forced vital capacity. HV denotes for healthy volunteers. IPF denotes for idiopathic pulmonary fibrosis.

Supplemental Figure legends

FIGURE S1. Silencing of RXFP1 by siRNA.

Donor lung fibroblasts (N=4) were incubated with RXFP1 siRNA. RXFP1 protein was silenced significantly upon treatment with SiRXFP1 compared to scramble control SiRNA. RXFP1 protein was detected using mouse anti-human RXFP1 antibody purchased from Santa Cruz biotech (sc-293228) at 1:500. Goat anti-mouse-HRP secondary antibody was used for detection.

FIGURE S2. Original uncropped blot images for Fig2D and Fig3A.

(C) IPF (N=3) lung fibroblasts were processed for quantitative RT-PCR for miR-144-3p at several time points following incubation with TGF β and Actinomycin D. Data represent the relative abundance of miR-144-3p ($\delta\delta$ Ct) remaining compared to 0 hr time point, and the best fit curves for miR-144-3p decay were plotted.

FIGURE S3. Original uncropped blot image for Fig7C.

FIGURE S4. Original uncropped blot image for Fig8A.

FIGURE S5. hsa-miR-144-3p targets human NFE2L2 (Nrf2)

(*A*) The seed region of hsa-miR-144-3p predicted to target the 3' UTR of human Nrf2. There are two potential targets for miR-144-3p in 3' UTR of human Nrf2. Donor lung fibroblasts (N=4) were treated with miR-144-3p mimic or scrambled control. RNA was isolated and processed for qPCR for (*B*) Nrf2. Transfection of mimic resulted in significantly lower basal levels of Nrf2 mRNA in Donor lung fibroblasts compared to scrambled negative control.

FIGURE S6. Effect of IL1b on miR-144-3p and RXFP1 in lung fibroblasts

Donor and IPF lung fibroblasts were treated with IL1b (10 ng/ml) or vehicle control for 24 hours. Total RNA was isolated and processed for qPCR for miR-144-3p (*A*) Donor or (*B*) IPF lung fibroblasts. There were no significant differences in miR-144-3p levels in IL1b treated cells compared to vehicle controls in both donor and IPF lung fibroblasts (*Student t-test*, N=3). Treatment of Donor and IPF lung fibroblasts with the IL1b has no significant effect on RXFP1 expression (*student t-test*, N=3).

FIGURE S7. Transfection efficiency of 5' FAM labeled miR-144-3p AntagomiR in lung fibroblasts.

Primary lung fibroblasts were transfected on days 0 and 1 as described in Experimental Procedures with (A) 5' FAM-labeled complexes or (B) unlabeled controls. Cells were counterstained with DAPI. Yellow arrows identify the punctate positive staining with the labeled complexes. FAM+ cells were counted as the percentage of total cells in the field (Magnification x600, N=3).

FIGURE S8. Original uncropped blot images for Fig8A for fibroblast lines used in the densitometry analyses

β-ACTIN

1

۱ ł

I

В

Fig 8A