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Histone modification ChIP-seq and RNA-seq data across cells/tissues 
We downloaded the epigenetic and RNA-seq data from the Epigenomics roadmap project:  

• http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak; 

• http://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/57epigenomes.RPKM.pc
.gz  

The H3K27me3-DHSs were defined as the DNase-seq peaks overlapping with the 
H3K27me3 ChIP-seq peaks. The requirements of DNase-seq, RNA-seq, and H3K27me3 ChIP-
seq data restricted us to 27 tissues. We then filtered out the H3K27me3-DHSs with the length of 
<200 bp, and those of which the centers are located within gene promoters. After collecting 
H3K27me3-DHSs across these tissues, we merged the overlapped or immediately-neighboring 
(the gaps between genomic regions < 100bp) H3K27me3-DHSs using “bedtools merge” with the 
setting of n = 100. We next measured the similarity of H3K27me3-DHS maps across the 27 
tissues and discarded fetal small intestine and variant human mammary epithelial cell (vHMEC) 
since they were greatly redundant to fetal intestine large and HMEC, respectively. We ended up 
with epigenetic and transcriptional data for 25 distinct cell lines (Fig. S2). 
 
TFBS profiles based on TF ChIP-seq data 

We downloaded TF ChIP-seq data from the ENCODE project 
(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/), 
and focused the human lymphoblastoid cell line GM12878, the human liver cancer cell line 
HepG2, and the human cervical cancer cell line HeLa S3 cell line due to the abundance of data 
for these cell lines. For a TF having multiple ChIP-seq datasets from different labs or conditions, 
we collected all the ChIP-seq peaks to establish a unified TFBS profile.  

We used posCORs as a background to evaluate the TFBS signature of silencers. To ensure 
reliability of analysis, we focused only on the TFs for which TFBSs occurred in at least 3% of 
either enhancer sequences or silencer sequences. For example, in GM12878, P300 was excluded 
from our study since less than 3% of H3K27me3-DHSs overlap with P300 ChIP-seq peaks. 

 
Bivalent elements defined by chromHMM  



Bivalent elements, carrying the activating and repressive histone modifications 
simultaneously, were defined by Chromatin Hidden Markov Model (ChromHMM). Through 
exploring histone modification profiles, ChromHMM annotated human genomic regions with 15 
functional categories, including enhancers, transcriptional start sites, bivalent regions, etc. 
Bivalent regions, i.e., the functional category featuring the co-existence of activating and 
repressive histone modifications, was used to verify the transcriptional impact of the predicted 
silencers.  Since promoter regions were not the focus, only the DNA regions labeled as bivalent 
enhancers were used in this study. We demonstrate that negCORs and bivalent enhancers have 
disparate transcriptional impacts. 
 
Hi-C data 

Hi-C data that we used were deposited to Gene Expression Omnibus (GEO GSE63525) by 
Aiden’s lab. We downloaded Hi-C loops in seven human cell lines, i.e., GM12878, mammary 
epithelial cells HMEC, umbilical vein endothelial cells HUVEC, HeLa S3, myelogenous 
leukemia cells K562, normal epidermal keratinocytes NHEK, and fetal lung cells IMR90. 
Whereas the first six cell lines were examined in our study, IMR90 was used as the surrogate of 
normal human lung fibroblasts NHLF due to the close match of these two cell lines. The reported 
Hi-C loops were used to verify our prediction results in the corresponding cell lines. A silencer, 
or more broadly a regulatory element (RE), was considered to target a gene when the center of 
that silencer and the transcription start site (TSS) of the inquiry gene residing in two ends of a 
Hi-C loop.   

Hi-C loops were also used to analyze the collective effect of REs on gene expression. 
Given a gene, we built its RE compound by collecting all the silencers and enhancers connected 
to it by Hi-C loops. For an RE compound, the enrichment of the silencers (enhancers) was 
evaluated with eq. 1 (eq.2) by setting !(#) the numbers of the enhancers (silencers) included in 
the inquiry RE compound, with %(&) being the total numbers of the silencers (enhancers) having 
Hi-C connection. The limited availability of Hi-C loops caused relatively low enrichment 
estimates. As such, a loose criterion was used to determine if an RE compound was 

silencer/enhancer-rich. That is, an RE compound was labeled as silencer-rich when '()(* > #) <
10/0 and ! ≥ 1.  
 
GTEx eQTLs 

Genotype-Tissue Expression project (GTEx) release V6p was explored in this study. GTEx 
eQTL studies associate noncoding SNPs with the genes when the genotypic changes of SNPs 
significantly correlate with the transcriptional variations of genes, suggesting the cis-/trans-
regulatory relationship between the SNPs and the associated genes. In total, seven of our cell 
lines were identical to or matched with one GTEx tissue each. HepG2 in our study matched with 
liver in GTEx, pancreas with pancreas, small intestine with small intestine, GM12878 with 
whole blood, NHLF with lung, psoas muscle with muscle, and human skeletal muscle myoblast 
HSMM with muscle. 

Given a SNP-gene association, we linked the silencers (and other REs) hosting the SNP 
with the gene. These genes were used to evaluate the impact of predicted silencers (and other 
REs) in the same way of Hi-C target genes for evaluating the regulatory function of negCORs 
and SVM silencer predicts.  
 
Performance evaluation of SVM classification 



To test classification performance of SVMs, a five-fold cross validation scheme was used. 
In this scheme, a training dataset was equally divided into five subsets. After using every subset 
for validating the SVM built on the other four subsets, we obtained validation results on all 
training samples and evaluated these results in terms of false positive rate, precision, and recall. 
Also, we applied all the built SVMs to score each of the H3K27me3-DHSs other than negCORs 
and posCORs and used the average of the SVM scores as a final estimate of the inquiry 
H3K27me3-DHS. H3K27me3-DHSs having scores greater than a threshold were then marked as 
potential silencers. The threshold was determined in such a way that the false positive rate on the 
validation results was 0.1. After concatenating negCOR and SVM silencers, we delivered a 
silencer map for each tested cell line.  
 
Sharpr-MPRAs  

We explored the results of Sharpr-MPRAs (Massively Parallel Report Assays) to examine 
the function of the REs of interest. In Sharpr-MPRAs, each of 15,720 DNA fragments (defined 
by the DNase-ChIP peaks in four cell lines) was coupled with a promoter and a distinct reporter 
gene. The activity of a tested DNA sequence was scored based on the normalized expression of 
the corresponding reporter gene. Following the rules used by the Sharpr-MPRA designers, we 
calculated the MaxPos for each Sharpr-MPRA sequence in K562. A negative MaxPos score 
implies a regulatory repressive impact. After overlaying the Sharpa-MPRA sequences with the 
predicted silencers in K562, we retained the ones having the >80% overlap with a predicted 
K562 silencer. The MaxPos scores of these Sharpa-MPRA sequences provided the assessment of 
K562 silencers. We repeated the above process on the H3K27me3-DHSs, H3K27ac peaks and 
DNase-ChIP peaks in K562. The comparative results demonstrated the function of RE groups.  
 
Human TFs  

We collected human TFs and transcription co-factors (TCF) from the Dragon Database for 
Human Transcription Co-Factors and Transcription Factor Interacting Proteins (TcoF-DB) 
resource.  
 
GWAS SNPs 

We downloaded the NHGRI GWAS Catalog of April 2015, where 14,841 GWAS SNPs 
were associated with at least one of 1,106 traits. To account for the incompleteness of the SNPs 
directly assayed in GWAS studies, we expanded the SNP set through identifying all SNPs in a 
tight link disequilibrium block with each GWAS SNP (20 > 0.8 and 56!789:# < 500	=>) based 
on at least one population from the 1000 Genomes Project , such as Northern Europeans from 
Utah (CEU), Yoruba in Idaban, Nigeria (YRI), and Han Chinese in Beijing, China/Japanese in 
Tokyo, Japan (CHB/JPN) by using Single Nucleotide Polymorphism (SNP) Annotation and 
Proxy Search (SNAP) (Johnson et al. 2008). After that, we linked these tight-LD SNPs to the 
corresponding traits and eventually obtained 324,454 SNPs associated with 1,106 GWAS traits. 

In total, 19,937 of the GWAS SNPs reside in silencers. Given the extreme diversity of 
GWAS traits and the relative scarcity of GWAS SNPs, we used all the GWAS SNPs to evaluate 
the silencers as a whole, instead of performing analyses in individual cell lines. 

 
Mapping predicted silencers from human genome assembly hg19 to GRCh38 

The prediction of negCOR and SVM silencers are based on human genome assembly hg19 
due to significant data abundancy on hg19 as compared to on GRCh38. We will lose about 0.4% 



predicted silencers after aligning them to the newest version of human genome (i.e. GRCh38), 
which would not change our conclusion. 
 



Supplemental Figures 
 
 
 
 

 
Figure S1. Similarity of H3K27me3-DHS activity profiles across 25 cell lines.  



 
Figure S2. Schematic overview of the proposed silencer identification framework.  
 
 
 
  



 
Figure S3. Distribution of tissue specificity of H3K27me3-DHSs. 
 



 
Figure S4. Distribution of the correlation between the activity of H3K27me3-DHSs and the 
expression of their proximal genes. The significance p values were estimated under the Wilcoxon 
rank-sum test. An intronic H3K27me3-DHS was associated with its host gene, while an 
intergenic one was assigned with two genes, one in each genomic direction (downstream and 
upstream). “Dual” H3K27me3-DHSs are those negatively correlated with one assigned gene, and 
positively correlated with the other. ? < 0.05 was used to identify the significantly negatively 
correlated H3K27me3-DHSs (negCORs) and significantly positively correlated H3K27me3-
DHSs (posCORs). To avoid ambiguity, we conservatively excluded dual H3K27me3-DHSs from 
the sets of negCORs and posCORs.  
 
 
 
 
  



 
Figure S5. A negCOR silencer in the neighborhood of the PPARGC1A gene. 
  
 



 
 
Figure S6. Signal intensity of ChIP-seq H3K27me3 of negCORs (in orange) and posCORs (in 
grey) across cell lines. The median and standard deviations of signal intensities are represented 
by the dot-center diamonds and the bars flanking the diamonds, respectively.  
 
  



 
 
Figure S7. Lengths of negCORs and posCORs.  
 



 
 
Figure S8. Distances of H3K27me3-DHSs to their nearest transcriptional start sites (TSSs).  
  
 
 



 
Figure S9. Motif-based TFBS enrichment and density (# per 1kbp) of negCORs in K562 cell 
line.   
 
  



 
 
Figure S10. Enrichment of ChIP-seq TFBS signatures of negCORs in HeLa-S3. 
  
 
 
  



 
 

 
 Figure S11. Enrichment of ChIP-seq TFBS signatures of negCORs in HepG2.   
  



 
Figure S12. Tissue specificity of SVM silencers. Tissue specificity of an SVM silencer is 
measured as the number of the cell lines in which the inquiry silencer is present.    
  



 
Figure S13. Density of H3K9me3 and H4K20me1, the repression-associated histone 
modifications, along SVM silencers, DHSs and H3K27me3-DHSs. DHSs/H3K27me3-DHSs 
used here were randomly selected from all the DHSs/H3K27me3-DHSs active in the 
corresponding cell line and in the matching length to inquiry SVM silencers.  
  



 

 
 
Figure S14. Sharpr-MPRA score of predicted silencers in K562 cell line. “N=*” gives the 
number of the elements examined in Sharpr-MPRAs.  



Figure S15. Tissue-specificity of genes linked to silencers and enhancers by Hi-C connections. @ 
of genes targeted by silencers and enhancers (A).  Fraction of tissue-specific ( @ > 0.9) and 
housekeeping (@ < 0.6) genes having Hi-C links to silencers and enhancers (B). 
  



 
 
 

 
Figure S16. Length of tissue-specific or housekeeping gene locus. 
 
  



 
 
Figure S17. Fraction of tissue-specific genes hosting silencers in their loci. Background was 
generated through randomly selecting the H3K27me3-DHSs with the matching numbers to the 
corresponding silencers. The grey diamonds and the flanking blue lines are the median and 
standard deviations of the results on 50 independent background sets, respectively. 
 
  



 
Figure S18. Fraction of TFs among different genes stratified based on their composition of the 
silencers and the enhancers linked to them by Hi-C connections. Red asterisks indicate the 
significant differences of TF fraction in silencer-enhancer-loci across gene groups, while green 
asterisk suggests the significant difference between silencer-enhancer-loci and silencer-rich loci. 
 

  



Supplemental Tables 
 
Table S1. Basic characteristics of negCORs. 

 
  

Repeat density 
(%) 

GC content 
(%) intronic RE (%) 

CpG island 
(%) 

negCOR 26.4 49.7 36.8 7.87 

posCOR 27 52.1 31.8 7.76 

H3K27me3-DHS 31.2 47.4 46.9 2.58 

enhancer 33.5 45.6 53.1 2.28 

 
 
 
 
 
 
Table S2. NegCORs silencers and silencers predicted using SVMs. Each row corresponds to a 
silencer. Three columns are “cell name”, “silencer coordinates” and “prediction method”, 
respectively. The table is provided as a separate text file Supplemental_Table_S2.txt. 
 
  



Table S3. Fraction of REs carrying polycomb associated ChIP-seq peaks (%). Here, the 
enhancers are identified as the DHSs carrying H3K27ac and H3K4me1 modification.		
 

REs H3K27me3 EZH2 SUZ12 
negCOR silencers 100 57.8 13.3 

 SVM silencers 100 53.9 13.2 

H3K27me4-DHS 100 54.5 11.1 

Enhancers 25.6 37.6 5.7 

DHSs without H3K27me3 0 28.6 5.1 
 
  



Table S4. Experimental results 	
element coordinate Length(bp) nearest gene  R1 R2 R3 Avg std 

S1 chr12:66377281-66377852 572 HMGA2 (chr12:66,219,051-66,357,072; +)  1.339 1.395 1.417 1.384 0.032838 
S2 chr7:54856104-54856781 677 EGFR (chr7:55086714-55275773; +)  1.625 1.699 1.818 1.714 0.079503 
S3 chr1:27293222-27293922 700 TRNP1 (chr1:27320195-27327377; +)  1.611 1.253 1.428 1.431 0.146165 
S4 chr1:178470782-178471226 444 RASAL2 (chr1:178,310,731-178,442,374; +)  1.7 1.75 1.93 1.79 0.098826 
S5 chr9:91692203-91692813 610 SHC3 (chr9:91,628,362-91,793,375; -)  1.577 0.962 1.721 1.42 0.329147 
S6 chr7:100787036-100787976 940 SERPINE1 (chr7:100,770,370-100,782,547; +)  1.759 1.723 1.728 1.736 0.015937 
S7 chr1:228122078-228123263 1185 WNT9A (chr1:228106357-228135631; -)  0.906 0.862 0.8 0.856 0.043482 
S8 chr15:52773630-52774898 1268 MYO5A (chr15:52599480-52821247; -)  2.399 2.279 2.314 2.331 0.050388 
S9 chr1:120533133-120533497 364 NOTCH2 (chr1:120,454,176-120,612,317; -)  1.272 1.239 1.406 1.306 0.072215 
S10 chr1:207084179-207084844 665 FAIM3 (chr1:207,078,364-207,087,30; -)  0.493 0.589 0.592 0.558 0.045978 

          

H1 chr1:222789849-222790431 582 TAF1A (chr1:222731244-222763275; -)  1.75 1.708 1.633 1.697 0.048394 
H2 chr10:72003325-72003761 436 PPA1 (chr10:71,962,586-71,993,190; -)  1.924 2.047 1.985 1.985 0.050216 
H3 chr12:4737219-4738051 832 AKAP3 (chr12:4,724,676-4,754,358; -)  1.58 1.587 1.616 1.594 0.015588 
H4 chr21:35068167-35068785 618 ITSN1 (chr21:35,014,784-35,210,802; +)  2.374 2.601 2.531 2.502 0.094914 
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