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Supplemental Figure S1. Mouse aging multi-omics dataset across 4 tissues and 1 cell type.  

(A) Summary of the datasets generated in this study. Also see Supplemental Table S1A-D. (B) 

Liver histology of 3 month (i, iv), 12 month (ii, v), and 29 month old (iii, vi) C57BL/6N mice 

paired to the RNA-seq cohort from this study. Tissue sections were stained with Hematoxylin and 

Eosin (H&E), and magnification is 2x (upper panels) and 40x (lower panels). With age, undulation 

of the hepatic capsule (iii) and perivascular lymphoid aggregates (ii, iii - black arrows) are evident 

compared to 3 month old mice (i). Mild (v) and moderate (vi) increase in cell (anisocytosis) and 

nuclear size (anisokaryosis) was present in old individuals compared to 3 month old mice (iv). 

Additional histologic findings at 29 months (vi) included bile duct hyperplasia (white arrowhead), 

extramedullary hematopoiesis (black arrowheads), increased sinusoidal cellularity, and increased 

numbers of lipid-laden Ito cells. Single and double asterisks denote central veins and portal triads, 

respectively. (C) Properties of primary NSCs cultures with increasing animal age at the end of 

passages 1 and 3/4. Mean +/- SEM of 5-6 independent primary NSCs cultures. Each dot 

corresponds to an independent NSC culture derived from an independent pool of 5 mice. P-values 

were calculated using a Mann-Whitney test. n.s. = not significant. (D-E) Multidimensional Scaling 

analysis results across datasets based on the breadth of the top 5% broadest H3K4me3 domains 

(D), or H3K27ac peak intensity at super-enhancers only (E). (F-G) Principal Component Analysis 

(PCA) results across datasets based on RNA expression (F), or H3K4me3 peak breadth (G) 

provided for comparison to MDS results. For RNA-seq data, the MDS and PCA input was a matrix 

of log2-transformed DESeq2 1.6.3 normalized counts. For chromatin marks, the most intense or 

broadest peak associated to a gene was used when more than one peak was present, and the log2-

transformed normalized intensity or breadth was used as MDS and PCA input data (see 

Supplemental Material).  
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Supplemental Figure S2. Separation of samples across tissues and cell types as a function of age. 

Multidimensional Scaling (MDS) analysis results across samples derived from specific tissues, 

Heart, Olfactory Bulb and primary NSCs cultures, based on RNA expression (A-C), H3K4me3 

intensity (D-F), H3K4me3 breadth (G-I), H3K27ac intensity (all peaks: J-L; super-enhancers only: 

M-O). Corresponding example of Principal Component Analysis (PCA) analysis results across 

liver samples (P-T). For RNA-seq data, the MDS and PCA input was a matrix of log2-transformed 

DESeq2 1.6.3 normalized counts. For chromatin marks, the most intense or broadest peak 

associated to a gene was used when more than one peak was present, and the log2-transformed 

normalized intensity or breadth was used as MDS and PCA input data (see Supplemental Material).  
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Supplemental Figure S3. Machine-learning analysis reveals that changes in enhancer score and 

H3K4me3 breadth with age can predict transcriptional aging (2-class classification). 

(A) Scheme of the 2-class machine learning pipeline. NNET: neural network, SVM: support vector 

machine, RF: random forest, GBM: gradient boosting machine. (B-C) Classification accuracy over 

the 2-classes (i.e. upregulated vs. downregulated genes) cross tissues for Random Forest models 

(B) or Gradient Boosting Machine models (C). The accuracy of the model trained in a specific 

tissue on the same tissue (e.g. the liver-trained model on liver data) is measured using held-out 

validation data, and for cross-tissue validation, the entire data of the other tissue was used. 

‘Random’ accuracy is displayed to illustrate the accuracy of a meaningless model (~50%). All tests 

were more accurate than random. (D-E) Feature importance from Random Forest models (D; Gini 

and mean decrease in accuracy) or Gradient Boosting Machine models (E; Gini). High values 

indicate important predictors. See analysis of 3-class models in Fig. 3. Note that 2-class models 

systematically outperformed 3-class models, which is consistent with the increased complexity of 

a classification problem with the number of classes to discriminate. (F-I) Classification accuracy 

over the 3- or 2-classes cross tissues for Random Forest models (F, H) or Gradient Boosting 

Machine models (G, I) with dynamic, static, or both dynamic and static features. The accuracy of 

the model trained in a specific tissue on the same tissue (e.g. the liver-trained model on liver data) 

is measured using held-out validation data. ‘Random’ accuracy is displayed to illustrate the 

accuracy of a meaningless model (~50%). All tests were more accurate than random. 

 

  



Supplemental Figure S4

Tissue-independent transcriptional changes with aging (FDR<5%)
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Supplemental Figure S4. Age-related transcriptomic and epigenomic remodeling. 

(A) Table of the number of genes or loci with significant age-remodeling across cells and tissues 

(FDR<5%). (B-D) UCSC Genome Browser Shots for example of significantly remodeled loci in 

the liver samples. Chr: chromosome. (E) Circular genome plot showing the genomic distribution 

of regions with significantly remodeled H3K4me3 breadth, H3K4me3 intensity or H3K27ac 

intensity in Liver (a) or Cerebellum (b). Note that there is no obvious clustering on a specific 

chromosome. (F) Heatmap of genes with significant tissue-independent transcriptional changes 

with aging in each tissue and cells. Gene expression differences were called by DESeq2 1.6.3 with 

a significance threshold of FDR < 5%. Also see Supplemental Table S4. (G-I) Functional 

enrichments using the minimum hypergeometric (mHG) test at for differential RNA expression 

(C), differential H3K4me3 intensity (D), and differential H3K27ac intensity (all enhancers) (E). 

Note that none of the KEGG 2017 pathways were significantly enriched using genes with 

differential H3K4me3 breadth. Enriched pathways are plotted if 4 out of the 6 tests (RNA) or 3 out 

of the 5 tests (chromatin marks) were significant (FDR < 5%).  
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Supplemental Figure S5. Analysis of significantly remodeled chromatin domains with aging. 

(A-F) Overlap analysis for genes with (A,C,E) upregulated domains or (B,D,F) downregulated 

domains at FDR < 5% across tissues and cell types. Domains were associated to the closest 

transcriptional start site using HOMER (Heinz et al. 2010). Note that no gene was found to have 

recurrent significant chromatin remodeling across tissues. (G-H) Example heatmaps of H3K4me3 

(G) or H3K27ac (H) intensity at significantly remodeled repeat families in the liver. Data from all 

tissues are reported in Supplemental Table S6F-I. 
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Supplemental Figure S6. Comparison of aging RNA-seq datasets in liver and cerebellum. 

(A-C) Scatter plot of DESeq2 log2-fold change per month comparing liver (A-B) or cerebellum (C) 

transcriptomes to published RNA-seq datasets from liver (Bochkis et al. 2014; White et al. 2015) 

and cerebellum astrocytes (Boisvert et al. 2018). DESeq2 1.6.3 was used for our data, and DESeq2 

1.16.1 for published datasets, as they were analyzed later in the course of the study [see methods]. 

Spearman’s correlation (Rho) is reported for the fold change of gene expression in our dataset and 

the published datasets. The significance of the Rho value is also reported. (D-I) Venn diagrams of 

overlap for significantly regulated genes at FDR < 5% across listed datasets. Reported p-values 

were calculated using a one-sided Fisher’s exact test. (J-K) Functional enrichments using the 

minimum hypergeometric (mHG) test for differential RNA expression with aging in our datasets 

and datasets from (Bochkis et al. 2014; White et al. 2015; Boisvert et al. 2018). For our liver and 

cerebellum datasets, the data are a subset of the panel shown in Supplemental Fig. S4G and are 

plotted as a reference point. 
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Supplemental Figure S7. CIBERSORT pipeline and signature matrix validation.  

(A) Scheme of the CIBERSORT analysis pipeline. The signature matrix was built using publicly 

available RNA-seq datasets derived from pure cell types that are expected in the tissues analyzed 

(Supplemental Table S2B). (B) Heatmap of predicted cell type fractions on held-out purified 

RNA-seq samples using trained CIBERSORT Signature Matrix (see methods). aNSCs: activated 

Neural Stem Cells; qNSCs: quiescent Neural Stem Cells. (C) Heatmap of predicted cell type 

fractions on RNA-seq in silico mixtures of known cell types using trained CIBERSORT Signature 

Matrix (see Supplemental Material). aNSCs: activated Neural Stem Cells; qNSCs: quiescent 

Neural Stem Cells.  (D) RNA deconvolution analysis of hippocampus RNA-seq datasets derived 

from mouse models with known increased inflammatory cell content (in particular microglia) and 

activity. (Left panel) CK-p25 Alzheimer’s mouse model (Gjoneska et al. 2015); (Right panel) 

5XFAD Alzheimer’s mouse model following forced 40Hz gamma oscillations, reported to increase 

microglia number and activity (Iaccarino et al. 2016). P-values were calculated using a one-sided 

Wilcoxon test, to test for an increase in inflammatory cell content. Also see Supplemental Table 

S7C. (E) RNA deconvolution analysis of tissue aging RNA-seq datasets. P-values were calculated 

using a one-sided Wilcoxon test, to test for an increase in inflammatory cell content between the 3 

month and 29 month samples. Linear regression tests as a function of age were also non-significant. 

Also see Supplemental Table S7D. (F-G) Boxplots of DESeq2 1.6.3 normalized counts (log2 

scale) for expression of immune marker genes Ptrpc/CD45 and Itgam/CD11b. FDR from DESeq2 

analyses of changes in aging gene expression are reported. N.A.: not calculated by DESeq2. For 

the boxplot representation: the thick bar is the sample median, the upper and lower edges of the 

box are the first and third quartiles of the data, and the whiskers are placed at 1.5 times the Inter 

Quartile range (IQR), as coded in the ‘base’ R package.  
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Conservation of tissue-specific transcriptional response with aging
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Supplemental Figure S8. Conservation of age-related transcriptional trajectories in vertebrate 

species. 

(A) Functional enrichments using the minimum Hypergeometric (mHG) test for differential RNA 

expression with aging in mouse, rat, human and African turquoise killifish samples using KEGG 

2017 gene sets. The mouse data are a subset of the panel shown in Supplemental Fig. S4G and 

are plotted as a reference point. (B) DESeq2 normalized log2 fold change per unit of time during 

aging for genes orthologous to differentially expressed mouse genes in this study in rat and human 

(GTEx) samples, combining male and female samples. The p-values reported were calculated using 

a one sample one-sided Wilcoxon test, to test the differences between observed fold changes and 

0 (i.e. no change with age).  (C-D Limma-normalized log2 fold change per unit of time during aging 

for genes orthologous to differentially expressed mouse genes in this study in human samples 

(GSE61260) only in males (C) or in combined male and female samples (D) after inclusion of 

metabolic parameters as covariates (i.e. BMI and liver disease status) in ‘limma’, the R package 

used for microarray analysis. The p-values were calculated using one sample one-sided Wilcoxon 

test, to test the differences between observed fold changes and 0 (i.e. no change with age).  
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