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Supplemental Material 

Mouse husbandry 

All animals were treated and housed in accordance to the Guide for Care and Use of 

Laboratory Animals. All experimental procedures were approved by Stanford’s 

Administrative Panel on Laboratory Animal Care (APLAC) and were in accordance with 

institutional and national guidelines. Male C57BL/6N mice at different ages (3, 12, and 29 

month old animals) were obtained from the National Institute on Aging (NIA) colony at 

Charles Rivers, which is a specific-pathogen-free (SPF) facility, and were acclimated at 

the SPF animal facility at Stanford University for 1 to 2 weeks before processing. All 

animals were euthanized between 10am-12pm for tissue harvesting or NSCs isolation. No 

animals were censored. 

 

Primary NSC cell culture 

NSCs were isolated from 3 month, 12 month, and 29 month old male C57BL/6N mice from 

the NIA aging colony at Charles River as previously described (Renault et al. 2009; Webb 

et al. 2013). Briefly, the subventricular zone (SVZ) was finely microdissected and chopped 

into ice-cold PBS. Microdissected SVZs from 5 age-matched mice were pooled from each 

age group to make a single culture. Tissue chunks were digested by 10 min incubation 14 

U/mL Papain (Worthington) at 37oC. Following mechanical trituration, cells were purified 

by a 22% Percoll (GE Healthcare) gradient. NSCs were plated at a density of <105 cells/cm2 

as non-adherent spheres in NSC growth media (i.e. Neurobasal A medium [Life 

technologies] medium supplemented with 1% penicillin/streptomycin/glutamine [Life 

technologies], 2% B27 supplement [Life technologies] and 20 ng/mL each of FGF2 

[Peprotec] and EGF [Peprotec]).  Cultures from all ages were plated at the same density to 

minimize differences in autocrine/paracrine signaling. Cells were passaged using Accutase 

enzyme (Stem Cell Technologies, 07920). All datasets were generated on cells grown as 

non-adherent spheres that had been disassociated the day prior, replated as a suspension 

culture and collected at the end of passages 2-3 (14 days of culture). NSCs cultures derived 

from animals at these different ages were assessed at the end of passages 1 and 3/4 

(Supplemental Fig. S1C). This analysis revealed that there were significantly fewer NSCs 
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in cultures from 29 month old mice compared to 3 month old mice at passage 1, although 

this difference seemed to have been erased by passage 3/4 (Supplemental Fig. S1C). 

 

Tissue dissection and histopathology 

For our aging ‘omics’ studies, we selected the heart, liver, cerebellum, olfactory bulb, as 

well as primary NSCs cultures derived from the Subventricular Zone (SVZ) because (i) 

these tissues and cells are known to display age-related functional decline (Enwere et al. 

2004; Sussman and Anversa 2004; Zhang et al. 2010; Shioi and Inuzuka 2012; Mobley et 

al. 2014; Delire et al. 2016) and (ii) the tissues are all clearly defined anatomically, which 

guarantees reproducible isolation across animals of different ages and minimizes the risk 

that observed differences comes from dissection differences. For the heart, we dissected 

the ventricle tissue for chromatin and RNA extraction. For the liver, the top-most lobe was 

harvested for chromatin and RNA extraction. The complete anatomical structure of the 

cerebellum and olfactory bulb (both sides) was used for chromatin and RNA extraction. 

Detailed information for each sample is reported in Supplemental Table S1A. 

 Heart and liver tissue were harvested for histopathology evaluation in parallel to 

RNA-seq profiling. Tissues samples were processed as described previously (Harel et al. 

2015). Briefly, tissues were collected into ice cold PBS, washed, then fixed for 24h in 

Bouin’s solution at room temperature. The following day, tissues were rinsed in PBS and 

paraffin-embedded using standard procedures. Sections of 5 µm were stained with 

hematoxylin and eosin (HE) and Mason’s trichrome for histopathologic analysis. All 

tissues were reviewed by a board-certified veterinary anatomic pathologist who was 

blinded to animal identification (K.M.C.). Microscopically, cross-sectional areas of the 

liver and heart were qualitatively evaluated for age-related histopathologic lesions from 3 

month old (n=3), 12 month old (n=3) and 29 month old (n=3) C57BL/6N male mice. Liver 

tissues were specifically evaluated for hepatic capsule contour, perivascular lymphoid 

aggregates, hepatocellular atrophy, extramedullary hematopoiesis (foci of myeloid and 

erythroid precursor cells), anisocytosis (variation in hepatocellular size), anisokaryosis 

(variation in hepatic nuclear size), bile duct proliferation, fibrosis, sinusoidal cellularity, 

and the presence of Ito cells (i.e. major resident cell type involved in liver fibrosis, also 

known as hepatic stellate cells). Because of dissection of parts of the tissue for RNA-seq 
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analysis, representative histologic sections of all heart chambers (i.e. left and right atria, 

left and right ventricles), valves, and vessels could not be consistently obtained for all mice. 

Thus, comparisons could not be drawn between specific heart chambers. Based on tissue 

availability, heart samples were evaluated for age-related pathology including myocardial 

fibrosis, myocardial degeneration (i.e. loss of cross striations, vacuolization, necrosis), 

myocardial inflammation, lymphoid aggregates, mineralization, and atrial thrombosis.  

Livers of 3 month old mice were characterized by smooth hepatic capsules and rare 

scattered foci of extramedullary hematopoiesis (Supplemental Fig. S1B). Normal lobar 

architecture and sinusoidal organization of the liver were evident, with evenly spaced 

centrilobular and portal regions. At 12 months of age, in addition to rare foci of 

extramedullary hematopoiesis, small perivascular lymphoid aggregates were identified in 

the liver. Slight anisocytosis and anisokaryosis were also observed across hepatocytes at 

12 months of age. By 29 months of age, foci of extramedullary hematopoiesis and 

perivascular lymphoid aggregates were increased in number and size in the liver. 

Undulation of the hepatic capsule was evident and was considered a direct result of hepatic 

cord atrophy. Anisocytosis and anisokaryosis were more pronounced in 29 month old mice 

than in 12 month-old mice. Additional histologic findings that were present only in the 

livers from 29 month old mice included occasional bile duct hyperplasia, increased 

sinusoidal cellularity (notably for Kupffer cells), increased numbers of lipid-rich Ito cells, 

and rare sinusoidal fibrosis (Supplemental Fig. S1B). Overall, no observable histologic 

differences were identified between available heart samples from 3 month, 12 month, and 

29 month old mice. Occasionally, small foci of myocardial degeneration (characterized by 

loss of myofiber cross-striation and vacuolization) were noted across all age groups. 

Surprisingly, hemangiosarcoma (an endothelial cell neoplasm) was noted within the left 

ventricle of one mouse within the 29 month old cohort. The tumor comprised ill-defined 

and infiltrative vascular channels lined by variably plump neoplastic endothelial cells. 

Lymphatic dilation and perivascular edema were noted adjacent to the neoplasm in the 

heart and were thus considered sequelae to tumor formation, rather than an age-related 

manifestation. The corresponding RNA-seq sample did not encompass the tumor, which is 

compatible with the absence of gross outlier behavior in the RNA-seq analysis. Since the 
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whole cerebellum and olfactory bulb samples were used to extract RNA, the histological 

status of these tissues could not be assessed in our cohorts.  

 

Chromatin preparation from cells and tissues 

We performed ChIP experiments on different tissues from independent animals 

(Supplemental Table S1A). Olfactory bulbs were microdissected from 3, 12, and 29 

months old males C57BL/6N mice (NIA colony at Charles Rivers) and pooled from 4-8 

mice of the same age per biological replicate (Supplemental Table S1A). Cerebella were 

dissected, weighed, and pooled from 2 mice of the same age per biological replicate. The 

entire upper left lobe of the liver was dissected and weighed from an individual mouse and 

used for a single biological replicate. Following removal of blood and aorta, the heart 

ventricles from an individual mouse were dissected and weighed, and they served as a 

single biological replicate. All tissue samples were finely minced with a fresh razor blade, 

then resuspended in ice-cold PBS. Following mincing, tissues were crosslinked via 

addition of 1% formaldehyde for 15min at room temperature and quenched by the addition 

of 0.125M glycine for 5min at room temperature. ChIP experiments on mouse primary 

NSC cultures were performed as previously described (Benayoun et al. 2014). Briefly, 

NSCs neurospheres (passages 2-3) (Supplemental Table S1A) were dissociated 16-18 

hours prior to collection. Cells were crosslinked at a density of 100,000 cells/mL in ice 

cold PBS with 1% formaldehyde for 9min at room temperature, and the crosslinking 

reaction was quenched with 0.125M glycine for 5min. For tissues and cells, after the 

quenching step, all crosslinked samples were washed three times with 1X PBS with 

protease inhibitors cocktail (Roche). Samples were then snap-frozen in liquid nitrogen and 

preserved at -80oC as dry cell or tissue pellets until the day of the IP. On the day of the IP, 

samples were resuspended in 1mL of SDS lysis buffer (50 mM Tris-HCl pH7.5, 10 mM 

EDTA, 1% SDS in PBS at pH7.4) with protease inhibitors (Roche). Chromatin was sheared 

with a Vibra-Cell Sonicator VC130 (Sonics) 8 [tissues] or 7 times [cells] for 30 seconds at 

60% amplitude with probe CV188, and then diluted 1:5 fold in RIPA buffer (1% NP-40, 

0.5% Sodium deoxycholate in PBS, pH 7.4) with protease inhibitors (Roche).  

 

Chromatin quantification and immunoprecipitation 
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For liver, heart, and cerebellum, chromatin content was measured and equalized for all ages 

to enable fair comparison across samples of a tissue. To measure the chromatin content of 

sonicated samples, samples were incubated with 0.2 µg/mL RnaseA (Life Technologies) 

for 1h at 37oC and 0.2 mg/mL Proteinase K (Life Technologies) for 1h at 55oC, and 

crosslinks were reversed by incubation at 80oC for 2h. DNA was precipitated by the 

addition of 0.1 volume 3M sodium acetate, 2µg glycoblue (Life Technologies), and 2.5 

volumes of 100% ethanol. The resulting DNA concentration was quantified by Nanodrop 

technology.  

We used 20µg of chromatin for the H3 ChIPs, 50µg for the H3K4me3 ChIPs, and 

respectively 70µg (heart) or 100µg (liver and cerebellum) for the H3K27ac ChIPs. For the 

olfactory bulb, chromatin from approximately 30mg of tissue was used for 

immunoprecipitation with anti-H3 antibody, and 60mg was used for immunoprecipitation 

with anti H3K4me3 and H3K27ac antibodies. For adult NSCs, we used chromatin from 

~250,000 cells for the H3 ChIP, ~750,000 cells for the H3K4me3 ChIP, and ~1,000,000 

for the H3K27ac ChIP. ChIP was performed as previously described (Webb et al. 2013; 

Benayoun et al. 2014). The corresponding amount of chromatin diluted in RIPA buffer 

containing protease inhibitors cocktail (Roche) [see above] was incubated overnight at 4oC 

with the following antibodies: 5µg H3K4me3 antibody (Active Motif #39159, lot 

#1609004), 5µg Histone H3 (Abcam #1791 lot #GR178101-1), and 7µg H3K27ac (Active 

motif #39133, lot #1613007). 

 

S2 cell culture for ChIP normalization control 

We explored the use of spike-in for ChIP normalization in some of our samples. Indeed, 

ChIP-seq from spiked-in chromatin from a different species (e.g. Drosophila) (termed 

ChIP-Rx for ChIP with reference exogenous genome (ChIP-Rx) has been shown to allow 

genome-wide quantitative comparisons of histone modification status across cell 

populations (Orlando et al. 2014). For example, the fraction of histone modification ChIP-

seq reads (e.g. H3K4me3) corresponding to the species of interest (e.g. mouse) compared 

to the exogenous control (e.g. Drosophila) can be used to detect global differences in the 

amount of that histone modification between conditions of interest (e.g. aging). As several 

studies suggested that global levels of total histone proteins or specific histone 
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modifications may change with aging (Feser et al. 2010; O'Sullivan et al. 2010; Liu et al. 

2013), we thought that ChIP-Rx could be helpful to account for this potential change. 

To this end, Drosophila S2 cells were grown at 25°C in Schneider’s media 

(Invitrogen) with 10% heat inactivated fetal bovine serum and 1% 

Penicillin/Streptomycin/Glutamine (Invitrogen).  Cells were crosslinked at a density of 1-

2x106 cells/ml in 1X PBS with 1% formaldehyde for 8min at room temperature, and the 

reaction was quenched with 0.125M glycine for 5min at room temperature. Next, 107 S2 

cells were sonicated 7 times for 30s at 60% amplitude in 1mL of SDS lysis buffer (50 mM 

Tris-HCl pH7.5, 10 mM EDTA, 1% SDS in PBS pH7.4) containing protease inhibitors 

cocktail (Roche) using a Vibra-Cell Sonicator VC130. The S2 chromatin was added to 

heart, liver, and cerebellum tissues at a ratio of 1µg:120µg chromatin from S2:mouse 

tissue. For the second set of NSCs ChIPs, S2 chromatin was added at a 1:4 S2:NSC cell 

number ratio. ChIP was performed using the combination of probed tissue chromatin and 

S2 chromatin (Orlando et al. 2014). Note that the first set of NSC ChIPs and the Olfactory 

bulb ChIPs were performed without S2 chromatin, because this set was done before we 

became aware of the possibility to perform ChIP-Rx. However, we found that too few reads 

per spiked sample mapped to the Drosophila genome build dm3 in our libraries (<50,000 

on average), which may explain why there was more variation in observed percentages of 

Drosophila reads between samples of the same age than between ages. For this reason, we 

did not end up using the S2 chromatin mappings to normalize our data in the processing 

pipeline. However, these reads are present in the ChIP-seq data and could be used for re-

analysis.  

 

Next-generation sequencing ChIP library generation 

For olfactory bulb libraries and the first set of NSCs libraries, libraries were generated with 

the Illumina TruSeq kit (IP-202-1012) according to the manufacturer instructions. Briefly, 

repaired and adapter-ligated DNA was size-selected in range of 250-400bp and PCR-

amplified for 16 (H3), 17 (H3K4me3) and 18-19 (H3K27ac) cycles. After the TruSeq kit 

became backordered, we generated libraries for the liver, heart, cerebellum, and the second 

set of H3 and H3K4me3 NSCs libraries using the NEBNext DNA library prep kit 

(E6040L). Repaired and adapter-ligated DNA was size-selected in range of 250-400bp 
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using agarose gel electrophoresis and PCR-amplified for 14 (H3), 16-17 (H3K4me3) or 

17-18 (H3K27ac) cycles. Library quality was assessed using the Agilent 2100 Bioanalyzer 

(Agilent Technologies). Single-end 101bp reads were generated on Illumina HiSeq 2000 

machines at the Stanford Genome Center. 

 

ChIP-seq data processing 

For ChIP-seq data processing, 101 bp reads were trimmed using Trim Galore! 0.3.1 to 

retain high-quality bases with phred score of greater than 15. The trimming command was: 

Trim_galore -q 15 --stringency 3 --length 36 --phred33 data_file.fastq. Reads were mapped 

to the mm9 mouse genome assembly using bowtie 0.12.7 (Langmead et al. 2009). We used 

GRCm37 (mm9) assembly to map all sequencing reads from mouse origin throughout our 

study, because when we started our study, many functional annotation programs did not 

yet support the mm10 build. Because our study compares samples across different ages 

and does not perform absolute analyses in each tissue, realigning the reads to GRCm38 

(mm10) should not significantly affect our conclusions. PCR duplicates were removed 

using FIXSeq (fixseq-e2cc14f19764) (Hashimoto et al. 2014), which accounts for 

overdispersed per-base read count distributions using a nonparametric method which was 

shown to substantially improve the performance and precision of ChIP-seq analysis 

compared to existing alternatives (Hashimoto et al. 2014). Regions of significant 

enrichment were determined using MACS2 2.0.8 (Zhang et al. 2008) using the --broad 

option to enable wider regions of enrichment to be detected. The ‘--keep-dup=all’ 

option was used to supersede MACS2 basic duplicate removal method since the FIXSeq 

method had already been applied. Total H3 ChIP-seq samples were used to determine the 

local background of H3 modification ChIP-seq datasets. Significant ChIP peaks of interest 

were annotated to the gene with the closest transcription start site in the mm9 assembly 

using the HOMER suite (Heinz et al. 2010). Files with the mm9 coordinates of ChIP-seq 

peaks that significantly changed with aging can be found on our GitHub repository 

(https://github.com/BenayounLaboratory/Mouse_Aging_Epigenomics_2018). 

 

Datasets quality control 
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Quality metrics for each sample (e.g. sequencing depths, unique reads, replicate 

correlations, etc.) are reported in Supplemental Table S1B-E. Using either Pearson’s and 

Spearman’s correlation, we find that biological replicates of chromatin marks are generally 

well correlated and similar (>0.96 (Pearson) and >0.97 (Spearman) for H3K4me3 

normalized to total H3; >0.9 (Pearson) and > 0.9 (Spearman) for H3K27ac normalized to 

total H3, with the exception of H3K27ac olfactory bulb samples, which exhibit correlations 

of 0.694-0.837 (Pearson) and 0.606-0.802 (Spearman) between samples) (Supplemental 

Table S1D,E). The biological replicates of RNA-seq are also well correlated overall (>0.82 

(Pearson) and > 0.97 (Spearman)). Though some tissues presenting better replicate 

Pearson’s correlations (>0.91 in cerebellum and olfactory bulb samples) or lesser Pearson’s 

replicate correlations (0.822-0.864 in heart, liver and NSCs), these differences were not 

observed with the Spearman’s correlation values (Supplemental Table S1D,E). As each 

sample is derived from independent animals, each with its own life trajectory, and as RNA 

measurement is quite sensitive to small differences, this may contribute to some of the 

observed differences between biological replicates. In addition, accumulating evidence has 

shown that aging is accompanied by increased variability in transcription across cells and 

individuals (Southworth et al. 2009; White et al. 2015; Enge et al. 2017; Martinez-Jimenez 

et al. 2017), which is likely to contribute to variability between biological replicates in 

these tissues/samples.  

 

Dimensionality reduction techniques for data exploration 

To perform Multidimensional Scaling (MDS) analysis, we used a distance metric based on 

the Spearman’s rank correlation value (1-Rho) between samples, which was then provided 

to the core R command ‘cmdscale’ (R Core Team 2018). Principal component analysis 

(PCA) was performed using the core R command ‘prcomp’ (R Core Team 2018). 

Dimensionality reduction techniques were applied to log2-transformed DESeq2 1.6.3 

normalized counts.  

 

H3K4me3 breadth remodeling analysis 

To compare changes in the breadth of H3K4me3 domains, we improved upon our 

previously developed pipeline to computationally adjust samples such that the signal-to-
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noise ratio across all peaks is equalized between samples (Benayoun et al. 2014). We 

created a reference peakset for all comparative analyses using pooled QC reads from all 

ages and replicates (hereafter referred to as ‘metapeaks’). To match the signal-to-noise 

ratios across all aging samples, we down-sampled reads separately in each H3K4me3 

ChIP-seq biological sample to match the coverage histogram across all samples over the 

metapeaks intervals, similar to (Benayoun et al. 2014). This procedure matches the 

“height” of the peaks from the peak caller’s point of view. The appropriate down-sampling 

rate that allows the coverage histogram of higher sensitivity H3K4me3 ChIP-seq samples 

to be equal or lower than that of the lowest sensitivity H3K4me3 ChIP-seq sample was 

determined by minimizing the p-value of Kolmogorov-Smirnov test (comparison to the 

sample with lowest H3K4me3 ChIP-seq sensitivity). In addition, to limit the effect of 

variations in input sample depth, we also matched the effective depth of H3 input samples 

to that of the lowest available sample. Final H3K4me3 domain breadth calls per samples 

were performed by using MACS 2.08 with the same parameters as above. IntersectBed 

(BEDTools 2.16.1) (Quinlan and Hall 2010) was used to estimate the length coverage of 

the sample peaks over the reference metapeaks. The goal of this pipeline is to increase the 

likelihood that called gains/losses of breadth result from a change in breadth of the enriched 

region, and not simply from an underlying difference in H3K4me3 intensity. Differential 

breadth was then estimated using the DESeq2 R package (DESeq2 1.6.3) (Love et al. 

2014). Files with the mm9 coordinates of loci that exhibit significant remodeling of 

H3K4me3 breadth with age (all H3K4me3 domains and top 5% broadest H3K4me3 

domains) can be found on our GitHub repository 

(https://github.com/BenayounLaboratory/Mouse_Aging_Epigenomics_2018). 

 

Super-enhancer calling 

Super-enhancers were called as outlined in (Hnisz et al. 2013). Briefly, MACS2 H3K27ac 

peaks were stitched together if within 12.5kb of one another (Hnisz et al. 2013), using 

mergeBed from BEDTools 2.16.0. Reads mapping within these peaks were counted using 

intersecBed from BEDTools 2.16.0, and the ROSE algorithm (Hnisz et al. 2013) was used 

to determine the H3K27ac intensity inflexion point determining typical versus super-

enhancers. Files with the mm9 coordinates of super-enhancers that exhibit significant 
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changes in H3K27ac ChIP-seq intensity with age can be found und on our GitHub 

repository (https://github.com/BenayounLaboratory/Mouse_Aging_Epigenomics_2018). 

 

H3K4me3 and H3K27ac intensity remodeling analysis 

Similar to above, we created a reference peak sets (i.e. ‘metapeaks’) for all comparative 

analyses using pooled QC reads from all ages and replicates. Intensity signals for histone 

H3 modifications normalized to the local H3 occupancy were obtained using the ‘DiffBind’ 

R package (DiffBind 1.12.3) (Ross-Innes et al. 2012). Normalized intensities were then 

used to estimate differential intensities as a function of age using the DESeq2 R package 

(DESeq2 1.6.3) (Love et al. 2014). Files with the mm9 coordinates of loci marked by 

H3K4me3 and H3K27ac peaks that exhibit intensity remodeling with age can be found on 

our GitHub repository 

(https://github.com/BenayounLaboratory/Mouse_Aging_Epigenomics_2018). 

 

Cell and tissue isolation for RNA purification 

For RNA isolation, we used a new cohort of aging male C57BL/6N mice (same ages than 

the ChIP-seq cohort), and RNA-seq datasets were generated at a later time than the ChIP-

seq datasets (Supplemental Table S1A). For RNA extraction on tissues: olfactory bulbs 

were microdissected from 3 month, 12 month, and 29 month old C57BL/6N male mice and 

weighed, and tissues from 2 independent mice of the same age were pooled per biological 

replicate. Cerebellum samples were similarly dissected, weighed, and samples from 2 mice 

of the same age were pooled per biological replicate. For the liver, the leftmost part of 

upper left lobe of the liver was dissected and weighed from an individual mouse and was 

used for a single biological replicate. For the heart, following removal of blood, the bottom-

most part of heart ventricles from an individual mouse was dissected, weighed and used as 

a single biological replicate. All tissue samples were flash-frozen in liquid nitrogen until 

further processing. Tissues were resuspended in 600µL of RLT buffer (RNeasy plus mini 

kit, Qiagen) supplemented with 2-mercaptoethanol, then homogenized on Lysing Matrix 

D 2mL tubes (MP Biomedicals) on a FastPrep-24 machine (MP Biomedicals) with a speed 

setting of 6. Heart tissue was homogenized for 4 times 30 seconds, and all other tissues 

were homogenized for 40 seconds. Subsequent RNA extraction was performed using the 
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RNeasy plus mini kit (Qiagen) following the manufacturer’s instructions. Primary NSC 

neurospheres (passages 2-3) were dissociated 16-18 hours prior to collection and seeded in 

12-well plates. Cells were spun down and collected in RLT buffer supplemented with 2-

mercaptoethanol and processed as above. 

 

RNA-seq library preparation 

For RNA-seq library preparation, 1µg of total RNA was combined to 2µL of a 1:100 

dilution of ERCC RNA Spike-in mix (Thermo Fisher Scientific) in nuclease-free water, as 

recommended by the manufacturer. The resulting mix was then subjected to rRNA 

depletion using the NEBNext rRNA Depletion Kit (NEB), according to the manufacturer’s 

protocol. Strand-specific RNA-seq libraries were then constructed using the SMARTer 

Stranded RNA-Seq Kit (Clontech), according to the manufacturer’s protocol. Paired-end 

75bp reads were generated on the Illumina NextSeq 500 platform.  

 

RNA-seq analysis pipeline 

Paired-end 75bp reads were trimmed using Trim Galore! 0.3.1 

(github.com/FelixKrueger/TrimGalore) to retain high-quality bases with phred score > 15 

and a remaining length > 35bp. Read pairs were then mapped to the UCSC mm9 genome 

build using STAR 2.4.0j (Dobin et al. 2013). Read counts were assigned to genes using 

subread 1.4.5-p1 (Liao et al. 2014). Read counts were imported into R to estimate 

differential gene expression as a function of age using the DESeq2 R package (DESeq2 

1.6.3) (Love et al. 2014). Because no overt variation of ERCC spike-in levels were 

observed from samples to samples with a tissue/cell type, and because their use can 

increase technical noise, ERCC reads were not used after the initial quality-checking step.  

To map repetitive element expression, we used the TEtranscripts 1.5.1 software (Jin 

et al. 2015), with mm9 RepeatMasker data (Smit 1996-2005)downloaded from the UCSC 

Table Browser. Read counts were imported into R to estimate differential gene expression 

as a function of age using the DESeq2 R package (DESeq2 1.6.3) (Love et al. 2014). We 

also used the ‘analyzeRepeats.pl’ functionality of the HOMER software (Heinz et al. 

2010). In that case, read counts were imported into R to estimate differential gene 

expression as a function of age using the DESeq2 R package (DESeq2 1.16.1) (Love et al. 
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2014). We used a more recent version of DESeq2 for this because these analyses were run 

at a later time than the rest of the study. Because there were no major changes between 

these versions, the overall results should not be significantly affected.  

 

Differential nucleosome calling using total H3 ChIP-seq 

To compare changes in the local H3 deposition landscape, we used DANPOS 2.2 (Chen et 

al. 2013) and DiNUP 1.3 (Fu et al. 2012) nucleosome-calling softwares. For higher 

confidence results, we considered nucleosomes to be significantly remodeled if the position 

were called differential by DANPOS (p < 1x10-15) and DiNUP (FDR < 0.05) following the 

same direction (i.e. increased vs. decreased signal). Consistently with a previously 

published MNase study on mouse aging liver tissue (Bochkis et al. 2014), we found that 

significant nucleosome remodeling with chronological aging seems to be restricted to a 

limited number of loci. Based on our observations and previously published reports, it is 

possible that decreased nucleosome occupancy may only be a cell-type or context specific 

effect of aging. Differential nucleosome calls were used as features in our machine learning 

models [see machine-learning section]. 

 

Machine-Learning analysis 

Machine-learning models were built for each tissue, but not in NSCs since no gene was 

found to be significantly misregulated by RNA-seq in these cells. We built classification 

models in each tissue independently using 4 different classification algorithms as 

implemented through R package ‘caret’ (caret 6.0-80). Classification algorithms for neural 

nets (NNET; ‘pcaNNet’) are directly implemented in the ‘caret’ 6.0-80 package. Auxiliary 

R packages were used with ‘caret’ to implement random forests (RF; ‘randomForest’ 4.6-

14), gradient boosting (GBM; ‘gbm’ 2.1.3) and radial support vector machines (SVM; 

kernlab 0.9-27). These package versions for machine-learning are used throughout our 

machine-learning analyses. 

‘Caret’ was allowed to optimize final model parameters on the training data using 

10-fold cross validation. Accuracies, sensitivities and specificities for all classifiers in their 

cognate tissue were estimated using a test set of randomly held out 1/3 of the data (thus not 

used in the training phase) obtained using the ‘createDataPartition’ function in ‘caret’ 6.0-
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80 package (Supplemental Table S3). Feature importance estimation was only done using 

random forests and gradient-boosted trees, since other algorithms do not natively allow for 

it. The Gini score for feature importance was computed by ‘caret’ for each feature in the 

GBM and RF models, and the maximum in each model was scaled to ‘100’ for ease of 

visualization.  

 

Feature extraction and machine-learning analysis 

For each expressed gene in each tissue, we extracted two types of ‘features’: (i) dynamic 

features, which encode changes to the chromatin landscape with age, and (ii) static 

features, which reflect the status of the chromatin and transcriptional landscape in young 

healthy animals. For dynamic features, we included: number of H3 nucleosomes with 

increased occupancy between 3 and 29 months, number of H3 nucleosomes with decreased 

occupancy between 3 and 29 months, maximum log2 fold change in H3 occupancy between 

3 and 29 months, slope of H3K4me3 intensity change at annotated promoter with aging, 

slope of H3K27ac intensity change at annotated promoter with aging, slope of H3K4me3 

breadth quantile change at annotated promoter with aging, and slope of H3K27ac intensity 

at stitched enhancers with aging (i.e. enhancer score).  

For static features using the data we generated, we included the enhancer presence 

and type (i.e. None, Typical, or Super), the distance of the closest super-enhancer to the 

transcriptional start site of the gene, the broad H3K4me3 domain status (i.e. None, Typical, 

or Broad), the H3K4me3 breadth quantile in the young sample, the breadth of the broadest 

H3K4me3 domain associated to gene in the young sample, the average promoter intensity 

for H3K4me3 and H3K27ac in the young samples (promoters defined as -300bp;+300bp 

with regards to the transcriptional start sites defined in mm9 build, downloaded from the 

UCSC Genome Browser on 2016/1/21), the enhancer score in the young sample (as defined 

in (Hnisz et al. 2013)). In addition, we took advantage of the mouse ENCODE datasets 

(Shen et al. 2012; Yue et al. 2014) in the same tissues (heart, liver, cerebellum and olfactory 

bulb) in 2 months old mice to select additional potentially informative features (see 

complete list of datasets in Supplemental Table S2A). Using the H3K4me1 and 

H3K27me3 ENCODE ChIP-seq datasets, we collected the average promoter intensity for 

these marks (same promoter definition as above). In addition, we intersected our young 



 14 

H3K4me3 ChIP-seq datasets to the H3K27me3 peaks to identify whether a gene had a 

potentially bivalent domain (i.e. with overlapping H3K27me3 and H3K4me3 peaks) 

(Bernstein et al. 2006) in the young animals or not. Using RNA polymerase II subunit 

POLR2A ChIP-seq datasets, we included the number of POLR2A peaks associated with 

each gene, the absolute distance of the closest POLR2A peak to the transcriptional start 

site of the gene, the maximal MACS2 score for POLR2A associated to the gene, the 

average promoter intensity for POLR2A. We also extracted the Traveling Ratio (TR) of 

POLR2A, which gives a measure of RNA polymerase II pausing, as described before 

(Benayoun et al. 2014). Using the CCCTC-binding factor (CTCF) ChIP-seq datasets, we 

included the number of CTCF peaks associated with each gene, the absolute distance of 

the closest CTCF peak to the transcriptional start site of the gene, the maximal MACS2 

2.08 score for CTCF associated to the gene, and the average promoter intensity for CTCF. 

We also included the average promoter intensity for DNase I signals, which quantifies how 

accessible the gene promoter is to the transcriptional machinery. Finally, we included 

several DNA sequence features from the mm9 build associated to each gene: the presence 

of a CpG island, the percentage of CG nucleotide and the percentage of CpG dinucleotide 

in promoters computed using HOMER, as well as the number of exons in each gene.  

Because absolute gene expression levels can influence the ability of differential 

gene expression pipelines to identify differentially expressed genes (Tarazona et al. 2011), 

we also included the average expression level of the genes in the young samples, expressed 

in FPKM (fragments per read per million). This should allow us to account for potential 

non-biological effects (i.e. effects due to differential expression pipelines) in our models. 

Any additional feature that is significantly predictive of differential gene expression with 

age should then be associated independently of the expression level effect, since the 

expression level is taken into account by the model at the same time when evaluating the 

importance of features. 

We then trained machine-learning classification models in two different ways: (i) 

either only comparing genes called by DESeq2 1.6.3 as up vs. down with age at FDR < 

10% (2-class models) or (ii) comparing genes called by DESeq2 1.6.3 as up, down, or 

unchanged with age at FDR < 10% (3-class models) (Fig. 3, Supplemental Fig.  S3). These 

2 types models allow us to ask different questions: the former interrogates whether there 
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are chromatin differences between upregulated and downregulated genes, without taking 

the rest of the genes into account, whereas the latter also attempts to identify differences 

between the genes that change and the ones that do not change during aging. To note, 2-

class models systematically outperformed 3-class models in terms of model accuracy (Fig. 

3B,C and Supplemental Fig. S3B,C; Supplemental Table S3), which is consistent with 

the increased complexity of a classification problem with the number of classes to 

discriminate.  

The relative number of genes that change transcriptionally with age (< 500) is low 

compared to the number of expressed genes (>3000) (class sizes in each tissue can be found 

in Supplemental Table S3). Thus, to avoid biases in the 3-class classification output due 

to the imbalanced number of genes called as transcriptionally changed and unchanged with 

aging, we generated a list of unchanged genes for each sampling that are equal in number 

to the changed genes in the training set of the cognate tissue (e.g. sample 500 unchanged 

genes to be compared to 500 changed genes in each iteration). We repeated the sampling 

procedure 50-250 times to eliminate random sampling biases (NNET and SVM: 100 

samplings; RF: 250 samplings; GBM: 50 samplings). Notably, to improve the signal-to-

noise ratio and decrease the inclusion of false negatives (i.e. genes called as “unchanged” 

because of lack of statistical power) in our dataset in the learning and testing of the 

machine-learning, the constant class was restricted to genes with a log2 fold change (as 

called by DESeq2 1.6.3) within half a standard deviation of the log2 fold change 

distribution both above and below 0 (no change). 

Importantly, for all machine-learning models, performance was evaluated using the 

1/3 randomly held out genes (not used in the training phase) for testing, without artificially 

correcting the natural class imbalances created by the large number of unchanged genes 

with aging compared to changed genes. 

 

Ingenuity Pathway Analysis 

Upstream regulator analysis was performed using QIAGEN’s Ingenuity Pathway Analysis 

(IPA QIAGEN Redwood City) software, using the genes that passed the filter in our 

datasets as reference genome, the cutoff of 0.05 for FDR-corrected p-values and species 

parameter was restricted to mouse. Results in Supplemental Table S5 are shown for gene 
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sets that passed significance in IPA in at least 4 of the analyzed sets (each tissues and tissue-

independent analysis). 

 

Analysis of chromatin remodeling at repetitive elements 

To assess chromatin remodeling at repetitive elements with aging, we used an approach 

based on extracting uniquely mapping reads to the mm9 genome in the vicinity of 

annotated repeats from the UCSC mm9 RepeatMasker track. We focused on repeats which 

overlapped H3K4me3 or H3K27ac metapeaks in each tissue, and combined reads mapping 

to all instances of a repeat family in this catalog. This strategy is similar to what the 

HOMER software performs for RNA-level repetitive element analysis, and akin to the 

method implemented to analysis chromatin at repetitive elements in a recent study (Liu et 

al. 2018). We used a modified version of our ChIP-seq differential pipeline, using DiffBind 

2.4.8 and DESeq2 1.16.1, to calculate differential ChIP intensity at each repeat family and 

identified significant chromatin remodeling at several TE families with FDR < 5%. 

However, we note that because our ChIP data is single-ended, our ability to robustly and 

uniquely map reads around repetitive loci is limited because of the inherent repetitiveness 

of these loci and the existence of multiple annotated insertion sites in the genome (Liu et 

al. 2018).  To note, we used a more recent version of DiffBind and DESeq2 here because 

these analyses were run at a later time than the rest of this study. Because the packages did 

not undergo major algorithmic changes between these versions, the overall results should 

not be significantly affected by the versions that were used.  

 

Comparison of RNA-seq datasets with previously published studies 

We compared our RNA-seq datasets with publicly available aging datasets (Bochkis et al. 

2014; White et al. 2015; Boisvert et al. 2018) (see Supplemental Table S2C). We 

modified our pipeline to accommodate shorter sequencing reads and unpaired designs used 

in these studies (Bochkis et al. 2014; White et al. 2015; Boisvert et al. 2018). First, 

sequencing reads were trimmed using Trim Galore! 0.3.1 with a remaining length > 25bp. 

Read pairs were then mapped to the UCSC mm9 genome build using STAR v2.4.0j, and 

Read counts were assigned to genes using subread 1.4.5-p1. Read counts were imported 

into R to estimate differential gene expression as a function of age using the DESeq2 R 
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package (DESeq2 1.16.1) (Love et al. 2014). Gene-level changes were compared using 

DESeq2 log2 fold change values, using gene names as comparison points. Gene expression 

genes were considered significant when FDR < 5%. Although there are notable differences 

in between these RNA-seq datasets, these significant overlaps suggest that transcriptome 

remodeling with aging is overall robust, despite differences at both the technical (e.g. RNA 

selection methods, library construction kits, sequencing platforms) and biological (e.g. 

ages of the mice, genetic background, time of dissection) levels. 

 

Tissue RNA-seq deconvolution using CIBERSORT  

Raw data from RNA-seq datasets from purified mouse cell types was downloaded from 

the SRA repository. All samples were processed using a standardized pipeline, which 

consisted of mapping with STAR 2.4.0j (Dobin et al. 2013) to the mm9 assembly, and 

counting of reads over mm9 genes using subread 1.4.5-p1 (Liao et al. 2014). Read counts 

from all samples were imported into R for further processing and normalization. Single-

cell RNA-seq datasets were aggregated into pseudo-bulks by adding reads coming from 4-

150 cells of the same cell type from the same study (depending on sequencing depth and 

number of available cells) (Supplemental Table S2; Supplemental Code). Next, any bulk 

or pseudo bulk sample with more than 18,000 genes without any read detected were 

eliminated from further processing as too low coverage. Then, all retained quality-checked 

samples were normalized using the DESeq2 1.6.3 variance stabilizing transformation 

(VST), and subjected to log2 transformation before upload to the CIBERSORT portal 

(Newman et al. 2015). The CIBERSORT website was used with default parameters to build 

the signature matrix and to analyze RNA-seq samples from cell mixtures. 

To perform the deconvolution process, CIBERSORT requires an input matrix of 

reference gene expression signatures (or ‘signature matrix’), collectively used to estimate 

the relative proportions of each cell type of interest. To provide this reference framework 

for CIBERSORT, we curated >1500 RNA-seq datasets of purified mouse cell types 

(Supplemental Fig. S5A; Supplemental Table S2B). After undergoing standardized 

processing, these datasets were used to build a signature matrix for CIBERSORT 

(Supplemental Table S7A). To test the accuracy of the trained signature matrix, we 

randomly withheld one RNA-seq sample per cell type with at least 3 biological samples 
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for validation (which was thus not used in the training phase). We verified that 

CIBERSORT was generally sensitive enough to detect various cell types on their own, and 

within in silico mixes of cell types expected to co-occur in tissues (Supplemental Fig. 

S5B,C; Supplemental Table S7B). Using CIBERSORT and the trained signature matrix, 

we could detect a macrophage/microglia signature in the brain tissue of Alzheimer’s mouse 

models with known increased inflammatory cell content (Gjoneska et al. 2015; Iaccarino 

et al. 2016) (Supplemental Fig. S5D; Supplemental Table S7C). However, when applied 

to our RNA-seq datasets, CIBERSORT did not identify significant change in the presence 

of inflammatory cell signatures, and no other significant changes could be observed 

(Supplemental Fig. S5E; Supplemental Table S7D). Moreover, CIBERSORT did not 

detect changes in relative proportions of other cell types (e.g. fibroblasts, astrocytes, 

hepatocytes, etc.) either. However, single-cell RNA-seq from dissociated tissues will be 

needed to fully elucidate this question. 

 

Functional enrichment analysis using the minimum hypergeometric test 

To perform functional enrichment analysis, we leveraged the minimum HyperGeometric 

(mHG) distribution, which has been spearheaded through the GOrilla enrichment tool 

(Eden et al. 2007; Eden et al. 2009). The mHG tests is performed using a ranked list of 

genes, and allows computing of an exact p-value for the observed enrichment, taking 

threshold multiple testing into account without the need for simulations, which enables 

rigorous and rapid statistical analysis of thousands of genes and thousands of functional 

enrichment terms (Eden et al. 2007; Eden et al. 2009). We used the R implementation of 

the mHG distribution (‘mHG’ 1.1 package) to run a minimum-hypergeometric (mHG) test 

as described in (Eden et al. 2007) on gene sets from MSigDB hallmarks (Liberzon et al. 

2015), KEGG 2017 (Kanehisa et al. 2017), obtained using KEGG API, after excluding 

disease pathways to focus on core biological processes (lists in Supplemental Table 

S5B,C), and transcription factor loss-of-function targets compiled by EnrichR (list 

downloaded on 2015/11/19) (Kuleshov et al. 2016). For analysis of function enrichments 

associations on chromatin datasets, we ranked domains to run the mHG tests based on the 

intensity or breadth of the mark of interest and annotated each domain to the gene with the 

closest transcriptional start site. Genes were often associated to more than one chromatin 



 19 

domain, and only the most extreme domain (i.e. more intense, or broadest) were retained 

when running the mHG enrichment test. 

 

Rat and turquoise killifish RNA-seq processing 

Tissue aging RNA-seq datasets from female and male rats were obtained from the rat 

Bodymap project (GEO accession number GSE53960) (Yu et al. 2014). Reads were 

mapped using Kallisto (0.43.0) (Bray et al. 2016). DESeq2 log2-normalized fold changes 

were then used to estimate differential gene expression as a function of age using the 

DESeq2 R package (DESeq2 1.6.3). Orthology tables between rat and mouse genes for 

aging trends comparison were obtained from Ensembl BioMart (2017/05/15). 

The African turquoise killifish (Nothobranchius furzeri, wild-derived MZM-0410 

strain) aging RNA-seq dataset was obtained from GEO (GSE69122) (Baumgart et al. 2014; 

Baumgart et al. 2016). Reads were mapped to African turquoise killifish reference 

transcriptome (GRZ) from NCBI Annotation Release 100 using Kallisto. Pseudo-counts 

for each transcript were merged and read counts per gene were obtained using 

Bioconductor R package ‘tximportData’ 1.6.0 (Love M, 2017). Linear modeling of the 

differential expression analysis from 5-weeks to 39-weeks old tissues was performed using 

DESeq2 (v1.6.3). To note, biological replicate clustering by hierarchical clustering and 

PCA was not clear, suggesting potential unknown covariates in the dataset. High 

confidence orthologs between African turquoise killifish and mouse genes were obtained 

using bidirectional best BLASTp analysis using longest protein sequences for each of the 

two species (E-value < 10-3).  

 

Human RNA-seq analysis with aging (GTEx) 

Read counts of human tissue RNA-seq with aging per genes were obtained from from the 

GTEx Consortium (‘v6p’ version) (The GTEx Consortium 2015). Genotyping principal 

components, sex, age, as well as other provided sample meta-data (i.e. “RIN” [RNA 

integrity score], “Ischemic time”, “Fixation time”, “RNA batch”), were used as covariates 

for differential expression analysis. To allow for integration of the discretized age variable 

(by 5 year increments) into quantitative models, age ranges were converted to a single age 

at the middle point of the coded range (e.g. "50-59" coded as 55 years). DESeq2 normalized 
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fold-changes were then used to estimate differential gene expression as a function of age 

(DESeq2 1.6.3). The GTEx v6p count data on genes is reported according to GENCODE 

19 models, which correspond to Ensembl 74/75 builds (NCBI assembly GRCh37.p13). 

Using the Biomart mirror for the Ensembl 75 build, we obtained the orthology table 

between human and mouse genes for aging trajectory comparisons.  

 

Human microarray analysis with aging 

We obtained an independent human liver aging transcriptome dataset (accession 

GSE61260; “GSE61260_datLiverNormalizedExpr.csv”) (Horvath et al. 2014), along with 

accompanying sample meta-data (sex, age, BMI, disease status). R package ‘limma’ 

3.32.10 normalized fold-changes were used to estimate differential gene expression as a 

function of age.  
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